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Abstract

Birnbaum & Saunders (1969b) used a probability distribution to explain
the lifetime data and stress produced in materials. Based on this distribu-
tion, we propose a generalization of the Birnbaum-Saunders distribution, re-
ferred to as the proportional hazard Birnbaum-Saunders distribution, which
includes a new parameter that provides more flexibility in terms of skewness
and kurtosis than existing models. We derive the main properties of the
model. We discuss maximum likelihood estimation of the model parameters.
As a natural step, we define the log-linear proportional hazard Birnbaum-
Saunders regression model. An empirical application to a real data set is
presented in order to illustrate the usefulness of the proposed model. The
results showed that the proportional hazard Birnbaum-Saunders model can
be used quite effectively in analyzing survival data, reliability problems and
fatigue life studies.
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Resumen

Birnbaum & Saunders (1969b) presentaron una distribución de probabi-
lidad para explicar los datos de supervivencia y estrés producidos sobre los
materiales. Basados en esta distribución, proponemos una generalización de
la distribución Birnbaum-Saunders, la cual llamamos distribución Birnbaum-
Saunders de riesgo proporcional, incluyendo un nuevo parámetro que pro-
porciona una mayor flexibilidad en términos de asimetría y curtosis com-
parado con los modelos existentes. Derivamos las principales propiedades
del modelo. Discutimos la estimación de máxima verosimilitud de los pa-
rámetros del modelo. Como un paso natural, definimos el modelo de re-
gresion log-lineal Birnbaum-Saunders de riesgo proporcional. Presentamos
una aplicación con un conjunto de datos reales con el propósito de ilustrar
la utilidad del modelo propuesto. Los resultados mostraron que el modelo
Birnbaum-Saunders de riesgo proporcional puede ser utilizado efectivamente
en el análisis de datos de supervivencia, problemas de confiabilidad y estu-
dios de resistencia a la fatiga.

Palabras clave: distribución Birnbaum-Saunders, riesgo proporcional, con-
fiabilidad, datos de supervivencia.

1. Introduction

The Birnbaum-Saunders (BS) distribution was introduced by Birnbaum &
Saunders (1969b) to explain survival time and the stress produced in materials
due to the cumulative damage laws for fatigue. This model gives probabilistic
interpretation for a physical fatigue process where dominant crack growth causes
failure. A random variable T has a Birnbaum–Saunders distribution if it can be
expressed as

T = β

[
γ

2
Z +

√(γ
2
Z
)2

+ 1

]2

, (1)

where Z is a random variable following the standard normal distribution, denoted
by Z ∼ N(0, 1). Its density function is

fT (t) = φ

(
1

γ

[√
t

β
−
√
β

t

])
t−3/2(t+ β)

2γ
√
β

, t > 0, (2)

where φ(·) is the standard normal density function, γ > 0 is the shape parameter
and β > 0 is the scale parameter. The parameter β is also the median of the
distribution. The density function (2) is right skewed and the skewness decreases
with γ. We have kT ∼ BS(γ, kβ) for any k > 0, that is, the BS distribution is
closed under scale transformations. Some interesting results on statistical inference
for the BS distribution may be revised in Wu &Wong (2004) and Lemonte, Cribari-
Neto & Vasconcellos (2007).

The BS distribution was extended to other families using distributions with less
or more asymmetry than the normal distribution. Díaz-García & Leiva-Sánchez
(2005) generalize this model to the case of elliptical distributions. Extensions of
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the BS distribution to the asymmetric case have been given by several authors,
including, Vilca-Labra & Leiva-Sánchez (2006) extend to the elliptical asymmetric
distribution known as the Doubly Generalized Birnbaum-Saunders model, Leiva,
Vilca, Balakrishnan & Sanhueza (2010) present the asymmetric BS distribution
with five parameters, while Castillo, Gomez & Bolfarine (2011) considered the
asymmetric epsilon-Birnbaum-Saunders model and Gómez, Elal-Olivero, Salinas
& Bolfarine (2009) considered an extension based on the slash-elliptical family of
distributions.

Recently Martínez-Flórez, Moreno-Arenas & Vergara-Cardozo (2013) have stud-
ied an other family of univariate asymmetric distributions which is called Propor-
tional Hazard distribution. Its probability density function is given by

ϕF (z;α) = αf(z){1− F (z)}α−1, z ∈ R, (3)

where α is a positive real number and F is a continuous distribution function with
continuous density function f . This is denoted by PHF(α). Its hazard function
with respect to the density ϕF is

hϕF (X,α) = α hf (x)

where hf = f/(1− F ) is the hazard function with respect to the density f .
When F = Φ(·) and f = φ(·), where Φ(·) is the standard normal cumulative

function, called the proportional hazard normal distribution, denoted by Z ∼
PHN(α). Its density function is given by

ϕΦ(z;α) = αφ(z){1− Φ(z)}α−1, z ∈ R. (4)

This model is also an alternative to accommodate data with asymmetry and
kurtosis that are outside the ranges allowed by the normal distribution. Taking any
values from α they find that the range of the asymmetry and kurtosis coefficients,√
β1 and β2 of the variable Z ∼ PHN(α) belong to the intervals (−1.1578, 0.9918)

and (1.1513, 4.3023), respectively. They are better in terms of asymmetry and kur-
tosis than the skew-normal distribution and the alpha-power normal distribution
(Pewsey, Gómez & Bolfarine 2012).

In this paper we extend the BS model to the case of the family of Proportional
Hazard distributions. This new family of distributions is a huge generalization of
the BS model since it has a newer and more flexible family than the BS model to
fit survival data, those related to material fatigue, and other data types in which
the BS distribution has had wide applicability, for example, pollution air (Leiva
et al. 2010).

The paper is organized as follows. Section 2 is dedicated to the development of
an asymmetric proportional hazard BS model and some of its properties studied.
Section 3 is dedicated to moments and maximum likelihood estimation for the
new model. Section 4 is dedicated to the development of the log-linear regression
proportional hazard BS model. Section 5 defines the generalized proportional
hazard BS distribution. Section 6 is devoted to real data applications. It is
revealed that the model proposed can perform well in applied scenarios. Finally,
Section 7 closes the paper with some concluding remarks.
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2. Proportional Hazard Birnbaum-Saunders Model

Given the characteristics that distribution PHN have, with respect to fits data
with less negative asymmetry and more platykurtic than the SN and PN distri-
butions do, it also fit distributions with a higher positive asymmetry than PN
and more leptokurtic than SN. Additionally, it fits data with as much positive
asymmetry as SN does and as much kurtosis as PN does. We now extend the
BS model to the case of a family of PHN distributions. Thus it can be said that
the random variable T follows the proportional hazard Birnbaum-Saunders model,
with shape parameter γ, scale parameter β and parameter of asymmetry α, and
can be written as (1) where Z ∼ PHN(α). The probability density function of T
is on the form:

ϕT (t) = αφ(at) {1− Φ(at)}α−1
At, t > 0, (5)

with at =
1

γ

[√
t

β
−
√
β

t

]
and At =

t−3/2(t+ β)

2γ
√
β

. We use the notation T ∼

PHBS(γ, β, α). The inclusion of α makes the proposed model more flexible than
the previous extensions discussed above.

This model is a huge generalization of the BS model, since it can be applied to
material fatigue data to explain the cumulative probability of stress in materials
after some time, when the asymmetry and/or kurtosis of the data exceeds or is
under permitted values of the BS model.

We can note that the PHBS model contains, as a special case, the BS model
when α = 1, and the Skew-BS model when γ = −1 and α = 2.

Figures 1 and 2 depict the behavior of the distribution for some parameter
values.
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Figure 1: PHBS distributions for α = 0.5 (dashed and dotted line), 1.5 (dotted line),
2.5 (dashed line) and 3.5 (solid line) (a) γ = 0.5 and (b) γ = 0.75.
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Figure 2: PHBS distributions for γ = 0.25 (dashed and dotted line), 0.5 (dotted line),
0.75 (dashed line) and 1.0 (solid line) (a) α = 0.5 and (b) α = 1.75.

2.1. Properties

In this section we present the main properties of the PHBS model. Some of
them come directly from those already known in the classic BS model.

Proposition 1. Let T ∼ PHBS(γ, β, α), then the cumulative distribution function
is given by

FT (t;α) = 1− {1− Φ(at)}α, t ∈ R+. (6)

The inversion method can be used to generate a random variable with PHBS
distribution. Thus, if U ∼ U(0, 1), then generating the random variable Z =
0.5γΦ−1(1 − (1 − U)1/α) with Zi ∼ PHN(0, 0.5γ, α), for i = 1, 2, . . . , n, where
PHN(µ, σ, α) denotes the location-scale PHN model, see Martínez-Flórez et al.
(2013). Thus, the random variable T with distribution PHBS(γ, β, α) is obtained
from T = β

(
1 + 2Z2 + 2Z

(
1 + Z2

)1/2)
.

Proposition 2. Let T ∼ PHBS(γ, β, α), with α, β and γ ∈ R+. Then

(i) aT ∼ PHBS(γ, aβ, α) for a > 0.

(ii) ϕT−1(t) = αφ(at) {Φ(at)}α−1
At.

One of the large applications of the BS distributions is analyzing survival data.
Survival functions, cumulative hazard rate and hazard function of the PHBS model
are respectively show by:

S(t) = {1− Φ(at)}α, H(t) = −α log[1− Φ(at)] and h(t) = αhBS(t),

where hBS(t) is the hazard function of the BS model. That is, the hazard function
of the PHBS model is proportional to the hazard function of the BS model under
normality. It also has the same increase and decrease intervals.
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That is, in the presence of asymmetry and/or kurtosis outside the permitted
range of the BS distribution, 0 < α < 1 or α > 1, the curve of the hazard function
is above or below that of the BS model, as is illustrated in Figure 3.
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Figure 3: Plots for h(t) for α = 0.75 (dashed and dotted line), 1.0 (dotted line), 1.5
(dashed line) and 2.5 (solid line) (a) γ = 0.5 and (b) γ = 0.1.

Theorem 1. If h(t) the hazard function, then

• limt→∞ h(t) = α(2γ2β)−1

• When γ → 0 and α > 1, h(t) tends to be a non-decreasing function.

3. Moments

For the PHN(α) distribution, the r -th moment is given by

µr = α

∫ 1

0

{
Φ−1(y)

}r
(1− y)α−1dy, r = 0, 1, 2, . . . . (7)

The following theorem guarantees the existence of moments for the PHBS
model.

Theorem 2. Let T ∼ PHBS(γ, β, α) and Z ∼ PHN(α). Hence, E(T r) exists if
and only if,

E

[(
γZ

2

)k+l((
γZ

2

)
+ 1

) k−l
2

]
(8)

exists for k = 1, 2, . . . , r with l = 0, 1, . . . , k.

The r-th moment of the random variable T with PHBS distribution, denoted
by µr = E(T r), can be obtained from the following theorem.
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Theorem 3. Let T ∼ PHBS(γ, β, α) and Z ∼ PHN(α). If E[Zr] exists for
r = 1, 2, . . . , then

µr
βr

=
∑

[0≤k≤r/2]

(
1

2

)2k
( r

2k

) 2k∑
j=0

(
2k

j

)
κ1j +

1

2

(
r

2k + 1

) 2k+1∑
j=0

(
2k + 1

j

)
κ2j

 ,
where κ1j = E[(γZ)4k−j(γ2Z2 + 4)j/2], κ2j = E[(γZ)4k+2−j(γ2Z2 + 4)j/2] and [·]
index of the sum is the integer part function.

The central moments, for r = 2, 3, 4, can be obtained using the relations µ′2 =
µ2 − µ2

1, µ′3 = µ3 − 3µ2µ1 + 2µ3
1 and µ′4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1. Then,
the variance, the coefficient of variation, asymmetry and kurtosis can be obtained

using the relationships: σ2
T = µ′2, CV =

σT
µ1

,
√
β1 =

µ′3
[µ′2]3/2

and β2 =
µ′4

[µ′2]2
.

If α = 1 then Z ∼ N(0, 1). We obtain that κ11 = κ13 = κ15 = κ17 = 0, κ12 = 1,
κ14 = 3, κ16 = 15, κ18 = 105 and κ21 = κ23 = κ25 = κ27 = 0, from which we
obtain √

β1(T ) =
4γ(11γ2 + 6)

(5γ2 + 4)3/2
and β2(T ) = 3 +

6γ2(93γ2 + 40)

(5γ2 + 4)2
,

which coincides with the results obtained by Ng, Kundu & Balakrishnan (2003)
and Johnson, Kotz & Balakrishnan (1995) for the classical BS model.

3.1. Maximum Likelihood Estimators

The estimation of the BS(α, β) model parameters has been directed in sev-
eral ways. Birnbaum & Saunders (1969a) use EMV to estimate α and β, while
Ng et al. (2003) study the estimators via modified moments. From & Li (2006)
approach the estimation of the parameters of the model BS(α, β) using some un-
conventional methods by using order statistics. Castillo & Hadi (1995) use the
elemental percentile method, while Cisneiros, Cribari-Neto & Araújo (2008) use
the technique of maximum likelihood profiled, and Farias, Moreno-Arenas & Pa-
triota (2009) present an overview of these estimation methods. Other inferential
results of the estimation process MLE in the BS model have been given by Engel-
hardt, Bain & Wright (1981), Lemonte et al. (2007) and Barros, Paula & Leiva
(2008). Bias correction for maximum likelihood estimation (MLE) is discussed in
Ng et al. (2003) and has been further investigated in Lemonte et al. (2007) where
O(n−1) bias corrected estimators are derived.

Estimation by the modified method of moments (MME) and maximum likeli-
hood (MLE) are commonly used for the parameter estimation for the BS model.
The MME estimators are given by

β̂M =
√
sr, α̂M =

√
2

(√
s

r
− 1

)
.
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where s = n−1
∑n
i=1 ti and r =

(
n−1

∑n
i=1

1
ti

)−1

.

We now discuss the MLE for the parameter vector θ = (γ, β, α)> in PHBS
model. Given n observations t1, t2, . . . , tn, with Ti ∼ PHBS(γ, β, α), except for a
constant, the log-likelihood function can be written as

`(θ) = n

[
log(α)− log(γ)− 1

2
log(β)

]
+

n∑
i=1

log(ti + β)− 3

2

n∑
i=1

log(ti)

− 1

2γ2

n∑
i=1

[
ti
β

+
β

ti
− 2

]
+ (α− 1)

n∑
i=1

log(1− Φ(ati)). (9)

The score function leading to the maximum likelihood estimators are given by
n∑
i=1

a2
ti − (α− 1)

n∑
i=1

ati
φ(ati)

1− Φ(ati)
= n, α = −n−1

n∑
i=1

log{1− Φ(ati)} and

n∑
i=1

β

β + ti
− β

2γ2

n∑
i=1

[
1

ti
− ti
β2

]
+

α− 1

2γβ1/2

n∑
i=1

ti + β

t
1/2
i

φ(ati)

1− Φ(ati)
=
n

2

The solution to the system of equations has to be obtained by numerical proce-
dures such as the Newton-Raphson or quasi-Newton. These can be implemented
using software statistical R.

Numerical approaches are required to solve the above system of equations.
Hence, the maximum likelihood estimator for θ can be obtained by implementing
the following iterative procedure:

θ̂(k+1) = θ̂(k) + [J(θ̂(k))]−1U(θ̂(k)), (10)

where J(θ) = − ∂2`(θ)

∂θ ∂θ>
is the observed information matrix. There are however,

other numerical procedures based on the expected (Fisher) information matrix.
To initialize the MLE approach, the modified moments estimators (MME) of

the BS distribution can be used. For α, when Z = at and modified moments
estimators are γ and β we obtain that

Ẑ =
1

λ̂M

√ T

β̂M
−

√
β̂M
T

 ,

where λ̂M and β̂M are the MME. Hence, using the elemental percentile approach,
see Castillo & Hadi (1995), the percentiles estimator of α for the i-th order statistic
t(i) is given by

α̂(i) =
log((n− i) + 1)− log(n+ 1)

log
(

1− Φ
(
Ẑ
)) .

Then, calculating this estimator for m order statistics, t(1), t(2), . . . , t(m), we get
m estimates of this parameter, so a robust statistic such as the median, median
least squares or the truncated mean can be used to obtain an estimate of α.
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3.2. Observed and Expected Information Matrices

The elements of the observed information matrix are defined as minus the
second derivative of the log-likelihood function with respect to the parameters,
i.e.,

kθjθj′ = − ∂2`(θ)

∂θj∂θj′
, j, j′ = 1, 2, 3,

with θ1 = γ, θ2 = β and θ3 = α.

These are written as:

kγγ = − n

γ2
+

3

γ2

n∑
i=1

a2
ti +

α− 1

γ2

n∑
i=1

atiCti [2 + atiBti ]

kβγ =
1

γ3

n∑
i=1

[
ti
β2
− 1

ti

]
+

α− 1

2β3/2γ2

n∑
i=1

ti + β

t
1/2
i

Cti [1− atiBti ] ,

kββ = − n

2β2
+

n∑
i=1

1

(ti + β)2
+

1

λ2β3

n∑
i=1

ti

+
α− 1

4β5/2γ

n∑
i=1

Cti

[
3ti + β

t
1/2
i

− (ti + β)2

β1/2γt
Bti

]
,

kαγ = − 1
γ

∑n
i=1 atiCti , kαβ = 1

2β3/2γ

∑n
i=1

ti+β

t
1/2
i

Cti , kαα = n
α2 , where Ct =

φ(at)
1−Φ(at)

and Bt = at − Ct.
The Fisher (expected) information matrix follows by computing the expected

values of the above second derivatives. This means that in this matrix α = 1, and,
T ∼ BS(γ, β). Therefore,

I(θ) =


2
γ2 0 − 0.5956

γ

0 γ−2β−2
(

1 + γq(γ)√
2π

)
D1(t)

− 0.5956
γ D1(t) 1

 ,

where D1(t) = E
(
t+β
t1/2

Ct

)
, q(γ) = γ

√
2
π −

π exp2/γ2

2 erfc
(

2
γ

)
, with erfc(x) =

2√
π

∫∞
x

exp−t
2

dt being the complementary error function, see Gradshteyn & Ryzhik
(2007). It can be shown that |I(θ)| 6= 0, so that the Fisher information matrix is
not singular at α = 1.

Hence, for large samples, the MLE θ̂ of θ is asymptotically normal, that is

θ̂
A→ N3(θ, IF (θ)−1).

The result is that the asymptotic variance of the θ̂ is the inverse of I(θ). Confidence
intervals for model parameters can be obtained from the above results.
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Ng et al. (2003) propose Jackknife estimators (Efron 1982), to estimate the
parameters of a classic Birnbaum-Saunders distribution. This same idea can be
used in the PHBS distribution. Even in the classic case, the idea is to remove
observation tj in the random sample T = {t1, t2, . . . , tn}. This estimates the
parameters based on n − 1 observations, following Ng et al. (2003) and nam-
ing ui = log{1 − Φ(ati)}, wi =

φ(ati )

1−Φ(ati )
, mti = (ti+β)

t
1/2
i

, atw =
∑n
i=1 n

−1atiwi,

mtw =
∑n
i=1 n

−1mtiwi, k(β) = n
[∑n

i=1(β + ti)
−1
]−1, i = 1, . . . , n. We have

the following expressions for α, γ and β in the PHBS model: α(j) = − 1
u(j)

with u(j) = 1
n−1

n∑
i=1,i6=j

ui − 1
n−1uj =

nu−uj
n−1 , γ(j) =

{
s(j)
β(j)

+
β(j)
r(j)
−2

1+(α(j)−1)(atwt)(j)

}1/2

with (atwt)(j) =
natwt−atjwtj

n−1 , s(j) =
ns−tj
n−1 , and r(j) =

[
nr−1−t−1

j

n−1

]−1

even so,

β(j) =

{
2γ(j)k(j)(β)−r(j)−1

γ2
(j)
−s(j)−(α(j)−1)(htwt)(j)

}1/2

where k(j)(β) =
[
nk−1(β)−(β+tj)

−1

n−1

]−1

and

(htwt)(j) =
nhtwt−htjwtj

n−1 .

Thus the Jackknife estimators are: αJK = n−1
∑n
i=1 α(j), λJK = n−1

∑n
i=1 λ(j)

and βJK = n−1
∑n
i=1 β(j). In this paper we study statistic properties of the MLE

and Jackknife.

4. Log-PHBS Model

The sinh-normal model was introduced by Rieck & Nedelman (1991), and was
based on a nonlinear transformation of a normal variable. This model is also known
as a log-BS model, since the logarithm of a random variable with BS generates
a sinh-normal variable. Different extensions of this model have been performed
assuming certain types of distributions, for example, the sinh-normal model using
an asymmetric setup was studied in Leiva et al. (2010), which developed a skew-
sinh-normal model. Some other asymmetric extensions of the sinh-normal models
are reported in Lemonte (2012) and Santana, Vilca & Leiva (2011), which report
a study on influence of observations.

4.1. The Proportional Hazard Sinh-Normal Model

As in the log-Birnbaum-Saunders model (commonly known as sinh-normal
model, see Rieck & Nedelman (1991)), the log-proportional hazard Birnbaum-
Saunders model comes from the transformation, Y = arcsinh(γZ/2)σ + µ with
Z ∼ PHN(α) where γ ∈ R+ is shape parameter, α ∈ R+ is a parameter of asym-
metry, µ ∈ R is a location parameter and σ > 0 is a scale parameter. The density
function of Y is given by
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ϕ(y) = α

2
γ cosh

(
y−µ
σ

)
σ

φ

(
2

γ
sinh

(
y − µ
σ

)){
1− Φ

(
2

γ
sinh

(
y − µ
σ

))}α−1

. (11)

We denote Y ∼ PHSN(γ, µ, σ, α). Notice that when α = 1, we have the sinh-
normal model. Figure 4 shows the behavior of the PHSN density for some values
of the parameters.
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Figure 4: PHSN density for µ = 0 and σ = 1 (a) α = 1.5 and γ = 0.75 (dashed and
dotted line), 1.5 (dotted line), 2.5 (dashed line) and 5 (solid line), (b) γ = 3.5
and α = 0.75 (dashed and dotted line), 1.25 (dotted line), 2.5 (dashed line)
and 5 (solid line).

We can observe big values of γ in Figure 4 and that the PHSN distribution can
adjust data with bimodal behavior.

The cumulative density function of Y ∼ PHSN(γ, µ, σ, α) is given by

F(y) = 1−
{

1− Φ

[
2

γ
sinh

(
y − µ
σ

)]}α
. (12)

By the inversion methods we can obtain

Y = µ+ σ
[
arcsinh

{γ
2

Φ−1(1− (1− U)1/α)
}]

,

where U ∼ U(0, 1), is distributed according to the PHSN distribution with param-
eters γ, µ, σ and α.

It can be shown that if Y ∼ PHSN(γ, µ, σ, α) then the random variable Z =
2(Y−µ)
γσ , converges in distribution to a random variable with distribution PHN(α),

when γ −→ 0.
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Theorem 4 is a generalization of the Theorem 1.1, as shown in Rieck & Nedel-
man (1991), which relates the sinh-normal model with the BS distribution. This
theorem is very important in extending the log-linear BS model to the case of
hazard proportional family distributions.

Theorem 4. If T ∼ PHBS(γ, β, α), then log(T ) ∼ PHSN(γ, log(β), 2, α).

4.2. Log-Proportional Hazard Birnbaum-Saunders Model

We will now we define the log-proportional hazard Birnbaum-Saunders, linear
regression model. Based on same considerations in Rieck & Nedelman (1991), and
assuming that Yi = log(Ti), and that the distribution of Ti is independent of a set
of p explanatory variables, and can be denoted by xi = (xi1, xi2, . . . , xip)

> and
θ = (θ1, θ2, . . . , θp), it is a p-dimensional vector of unknown parameters. We can
define the following regression model as

yi = x>i θ + εi, i = 1, . . . , n, (13)

where εi ∼ PHSN(γ, 0, 2, α), for i = 1, . . . , n and yi is the log-survival for the
i-th individual. This model can be denoted by LPHBS(γ, θ1, θ

∗
2 , α), where θ∗2 is a

vector of p− 1 parameters. When α = 1 is the log-BS model, LBS(γ, θ1, θ
∗
2), then

the LPHBS model is more flexible than the LBS model in terms of asymmetry
and Kurtosis.

We assume that the explanatory variables are independent of the shape parame-
ters. Then, given the above results, we can conclude that Yi ∼ PHSN(γ,x>i θ, 2, α)
for i = 1, . . . , n. It can be shown that E(Yi) 6= x>i θ, so that the intercept has to
be corrected so that Yi becomes unbiased for its expectation.

Therefore, making θ∗1 = θ1 + 2w1(γ, α), where

w1(γ, α) = α

∫ ∞
−∞

arcsinh
(γz

2

)
φ(z) {1− Φ(z)}α−1

dz,

we obtain E(yi) = x>i θ
∗, so that a linear estimator for θ∗ = (θ∗1 ,θ

∗>
2 )> can be

obtained using the ordinary least squares approach, with the solution given by

θ̂∗ = (X>X)−1X>Y ,

and covariance matrix

Cov(θ̂∗) = 4w2(λ, α)(X>X)−1,

with w2(λ, α) = V ar(ε)/4.

For the vector (θ>, γ, α)>, the log-likelihood function corresponding to the
random sample y1, y2, . . . , yn is:

`(θ>, γ, α) = n log(α) +

n∑
i=1

log(ξi1)− 1

2

n∑
i=1

ξ2
i2 + (α− 1)

n∑
i=1

ξi3, (14)
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where ξi1 = 2γ−1 cosh (zi), ξi2 = 2γ−1 sinh (zi) and ξi3 = log
[
1− Φ

{
2γ−1 sinh (zi)

}]
,

with zi =
yi − x>i θ

2
, i = 1, 2, . . . , n.

The score function is given by

U(α) =
n

α
+

n∑
i=1

ξi3, U(γ) = −n
γ

+
1

γ

n∑
i=1

ξ2
i2 +

α− 1

γ

n∑
i=1

∆iξi2,

U(βj) =
1

2

n∑
i=1

xij

(
ξi1ξi2 −

ξi2
ξi1

)
+
α− 1

2

n∑
i=1

xij∆iξi1, j = 1, 2, . . . , p,

where ∆i = φ(ξi2)/ (1− Φ(ξi2)) .Maximum likelihood estimators for θ1, θ2, . . . , θp,
α and γ are the solutions to the equations U(βj) = 0, j = 1, 2, . . . , p, U(α) = 0
and U(γ) = 0, which require numerical procedures.

The information matrix can be obtained as minus the second derivative of the
log-likelihood function.

5. Generalized PHBS Distribution

We now we extend the BS model to the PHF family, which is achieved assuming
that the given random variable (1), Z ∼ PHF(α). Then, the density function is of
the form

ϕT (t) = αf(at) {1− F (at)}α−1
At, t > 0, (15)

with at and At as defined above. We use the notation T ∼ GPHBSF (γ, β, α).
Some particular cases of the GPHBSF , which are asymmetric-type distributions
for some widely known elliptic models, are given below.

5.1. Proportional Hazard Logistic BS Distribution

The proportional hazard logistic BS distribution, denoted by PHBSL(α), is
defined by the probability density function

ϕL(t;α) = αAt exp(at)

{
1

1 + exp(at)

}α+1

. (16)

5.2. Proportional Hazard t-Student BS Distribution

The proportional hazard t-student BS distribution is defined by the probability
density function

ϕT (t;α, v) =
αΓ( v+1

2 )

(vπ)1/2Γ( v2 )

[
1 +

a2t
v

]−(v+1)/2

{1− FT (at)}α−1At, (17)

where FT is the cumulative distribution function of the t-student distribution and
v is the number of degrees of freedom. The notation we use is PHBST (v, α). When
v = 1 gives the proportional hazard Cauchy BS, distribution follows.
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5.3. Proportional Hazard Pearson Type VII BS Distribution

The density function for the proportional hazard Pearson type VII BS distri-
bution with parameters (q, r), denoted by PHBSPVII, is given by

ϕ(t;λ, β, α, q, r) = α
Γ(q)√

rπΓ(q − 1/2)

[
1 +

1

rλ2

(
t

β
+
β

t
− 2

)]−q
×

× {1− FPVII(at)}α−1 t
−3/2[t+ β]

2λβ1/2
, (18)

with q > 1/2, r > 0, where FPVII is the cumulative distribution function of the
Pearson type VII distribution with parameters (q, r), see Nadarajah (2008).

6. Numerical Illustrations

The distribution presented in this paper will be illustrated with the data an-
alyzed by Birnbaum & Saunders (1969a). This relates to life cycles × 10(−3)

6061-T6 of parts cut at an angle parallel to the direction of rotation, and with the
rate of 18 cycles per second varied at maximum pressure of 21,000 psi.

Descriptive statistics for the data set are: n = 101, t = 1400.91, S2 = 1529.10,√
b1 = 0.142 and b2 = 2.81 where

√
b1 and b2 represent the asymmetry and kurtosis

coefficients of the distribution of the data. The results were obtained using a nlm
function in the statistical package R.

There is indication of slight asymmetry and that the kurtosis exceeds that of
normality, see Castillo et al. (2011), which might be an indication that the PHBS
model can fit the data in a better way. As such we propose the PHBS model as an
alternative to analyze the set of data. We also adjust the log-normal model (LN)
which has been widely used for this type of situation.

To compare the PHBS model with the LN model, we use the AIC, see Akaike
(1974), namely AIC = −2ˆ̀(·) + 2k, where k is the number of parameters. The
best model is the one with the smallest AIC.

For a better justification of using the PHBS model instead of the BS model, we
consider the hypothesis test of no difference for the PHBS model with the normal
BS model. This is, the hypothesis

H0 : α = 1 vs. H1 : α 6= 1,

which compares the BS model to PHBS model. To perform this test we use the
likelihood ratio statistic based on

Λ =
LBS(γ̂, β̂)

LPHBS(γ̂, β̂, α̂)
.

We can therefore obtain that −2 log(Λ) = −2(−751.332 + 747.9702) = 6.723,
which is a greater value than the percentile of the chi-squared distribution with
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one degree of freedom in 95%, the hose value of which is 3.84. Thus, we conclude
that the PHBS model we set is better than the BS model of normality.

Table 1 shows the estimated values for the PHBS model, compared with the
classical BS model parameters. According to the AIC criterion, the PHBS model
fits better than the BS and LN models.

Table 1: MLE for LN, BS and PHBS models.

parameter LN BS PHBS
µ 7.202(0.030) - -
σ 0.304(0.021) - -
γ - 0.310(0.021) 0.880(0.001)
β - 1336.563(40.757) 7443.259(0.201)
α - - 45.945(4.593)

AIC 1505.104 1506.664 1501.940

Similarly, Figure 5(a) shows that the PHBS model is much more flexible than
the LN and BS models. The empirical cumulative density function of the variable
under study that was and obtained from the estimated parameters for each fitted
model is shown in Figure 5(b), in which we can see that the model fits PHBS
better than the set of observations.

 

t

D
en

si
ty

500 1000 1500 2000 2500

0e
+
00

2e
−
04

4e
−
04

6e
−
04

8e
−
04

1e
−
03

(a)

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

(b)

Figure 5: (a) Graphs for PHBS models, (solid line), BS (dashed line), and LN (dotted
line) (b) empirical cdf (solid line), cdf to PHBS model (dashed line), BS
model (dotted line) and LN model (dashed and dotted line).

7. Application of the LPHBS Model

The following data consists of times to failure (T ) in rolling contact fatigue
of ten hardened Steel specimens tested at each of the four contact stress points
(x) values. The data were obtained using a 4-ball rolling contact test rig at the
Princeton Laboratories of the Mobil Research and Development Co.
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Chan, Ng, Balakrishnan & Zhou (2008) considers the regression model

Yi = β0 + β1 log(Xi) + εi, i = 1, . . . , 40.

For this data set we adjust the models log-BS (LBS), log-skewed BS (LSBS)
of Lemonte (2012) and log-proportional hazard BS (LPHBS) distributions.

The maximum likelihood estimates of the parameters of the proposed models
are given in Table 2.

Table 2: MLE for LBS, LSBS and LPHBS models.

Parameters LBS LSBS LPHBS
γ 1.279(0.143) 2.011(0.313) 0.727(0.002)
β0 0.097(0.170) -0.961(0.166) -1.742(0.002)
β∗
0 0.165 0.228

β1 -14.116(1.571) -13.870(1.602) -13.816(0.016)
α -0.932(0.174) 0.084(0.013)

AIC 129.235 125.360 122.720

According to the AIC criterion, we can conclude that the regression model
with LPHBS error distribution provides a better fit than the regression model
with LSBS error distribution.

We also check the hypothesis that there are differences between the LBS and
LPHBS with models the test

H0 : α = 1 Vs H1 : α 6= 1

using the likelihood ratio statistics (models are nested)

Λ1 =
LLBS(θ̂)

LLPHBS(θ̂)
.

Numerical evaluations indicate that

−2 log(Λ1) = −2(−59.95 + 57.36) = 5.18,

which is greater than the 5% critical value 3.84. We can therefore that the LPHBS
model fits the data better than the LBS model; that is, the LBS model fails to
adjust the errors of the model proposed by asymmetry or kurtosis outside the
range allowed by the sinh-normal distribution.

The good fit of the models studied is verified by plotting the transformed
standardized residual scale Zi = (2/γ) sinh(Yi − x>θ)/2 for the distribution of
the estimated errors. The transformation performed, takes to the distribution of
the random variable Z, which is normal for the LBS model, Skew-normal for the
LSBS model and PHN for the LPHBS model.

Figure 6 depicts the distribution for the scaled residuals Z for the set of models
with the corresponding theoretical distributions.

It can be seen that the LPHBS model better fits the tails of the distribution
of errors, achieving a better fit than the LBS and LSBS models.
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Figure 6: Q-qplots for the scaled residuals Z, from the fitted models. (a) LBS, (b)
LSBS and (c) LPHBS.

8. Concluding Remarks

In this paper we have defined a new family of distributions. We have discussed
several of its properties and an estimation of parameters has been done via max-
imum likelihood. This is supported with two real data illustrations in which we
show that the LPHBS model consistently provides better fits than the LBS and
LSBS models. The outcome of this practical demonstration shows that the new
family is very flexible and widely applicable.[
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