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Abstract

In this paper, the calibration approach is revisited in order to allow new
calibration weights that are subject to the restriction of multiple calibra-
tion equations on a vector of ratios, means and proportions. The classical
approach is extended in such a way that the calibration equations are not
based on a vector of totals, but on a vector of other nonlinear parameters.
We stated some properties of the resulting estimators and carry out some
empirical simulations in order to asses the performance of this approach.
We found that this methodology is suitable for some practical situations like
vote intention estimation, estimation of labor force, and retrospective stud-
ies. The methodology is applied in the context of the Presidential elections
held in Colombia in 2014 for which we estimated the vote intention in the
second round using information from an election poll, taking the results from
the first round as auxiliary information.

Key words: Calibration, Survey sampling, Ratio estimation, Nonlinear es-
timation, Monte Carlo simulation.

Resumen

En este artículo se aborda la metodología de calibración que reproduce
pesos nuevos sujeto la restricción de las ecuaciones de calibración múltiple
sobre un vector de razones, medias o proporciones. Se extiende la calibración
clásica de tal forma que las ecuaciones de calibración no estén basados solo
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un vector de totales, sino un vector de parámetros no lineales. Se dan al-
gunas propiedades de los estimadores resultantes y se llevan a cabo algunas
simulaciones empíricas para verificar el desempeño de este enfoque. Encon-
tramos que este es apropiado para algunas situaciones prácticas tales como
la estimación de la intención de voto, estimación de fuerza laboral y estudios
retrospectivos. La metodología es aplicada en el contexto de las elecciones
presidenciales de Colombia en el 2014, donde estimamos la intención de voto
en la segunda vuelta utilizando datos provenientes de una encuesta electoral
tomando los resultados de la primera vuelta como información auxiliar.

Palabras clave: calibración, encuestas por muestreo, estimación de razón,
estimadores no lineales, simulación Monte Carlo.

1. Introduction

Consider a finite population U as a set of N units labeled as {1, . . . , N}. The
size of the population U is not necessarily known. There are a vector of vari-
ables xk = (x1k, . . . , xQk)′ and a variable yk associated with every unit k in the
population. Likewise, assume that a random sample s of size n is drawn from U
according to a (usually complex) sampling design p(s). Let πk = Pr(k ∈ s) be
the first-order inclusion probability, and πkl = Pr(k, l ∈ s) the second-order in-
clusion probability. If the purpose of the study is to unbiasedly estimate the total
of y in the finite population given by ty =

∑
k∈U yk, then the Horvitz-Thompson

estimator (HT) can be used, which is defined as:

t̂y,π =
∑
k∈s

yk
πk

=
∑
k∈s

dkyk (1)

Where dk = 1/πk is known as the sampling weight. The unbiased estimator of
the variance of the HT estimator is obtained by the following expression:

V̂ (t̂y,π) =
∑
k∈s

∑
l∈s

∆kl

πkl

yk
πk

yl
πl
,

where ∆kl = πkl − πkπl. It is well known that the use of auxiliary information
is important in survey sampling theory, not only in the design stage, but also
in the estimation step. One of the most plausible ways to incorporate auxiliary
information is by using calibration estimators, where the calibration equations
only involve totals of auxiliary variables. Deville & Särndal (1992) proposed a
class of linear estimators of population totals in the following form:

t̂y,cal =
∑
k∈s

wkyk, (2)

where wk (k ∈ s) is the calibrated weight of unit k, induced by the use of auxiliary
information in the form of a vector of population totals tx = (tx1

, . . . , txQ)′. The
aim of calibration weights is to satisfy the following calibration equations:∑

k∈s

wkxk = tx (3)
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In the classical approach, the calibration weights are defined in order to min-
imise a pseudo-distance Φs from the design weights dk = 1

πk
that are subject to

the calibration equation (3). In this perspective, the calibration weights are given
by:

wk = dkFk(x′kλ) (4)

For example, by minimising the chi-squared distance, Φs =
∑
s ck(wk−dk)2/dk,1

the calibration weights can be expressed as

wk = dk + (tx − t̂x,π)′

(∑
k∈s

dkckxkx
′
k

)−1
ckdkxk. (5)

Särndal (2007) reviews the calibration approach and the use of auxiliary infor-
mation. Note that the estimated variance of the calibration estimator (2) under
the chi-squared distance is

V̂ (t̂y,cal) =
∑
k∈s

∑
l∈s

(∆kl/πkl)(wkek)(wlel), (6)

where ek = yk − x′kB̂ and

B̂ =

(∑
k∈s

wkckxkx
′
k

)−1∑
k∈s

wkckxkyk. (7)

Other approaches to variance estimation of calibration estimators are provided
by Kim & Park (2010). Note that many weight systems may satisfy (3). For
example, Estevao, Särndal & Sautory (2000) found that by taking into account a
set of instrumental variables zk, the calibration weights become:

wk = dk + (tx − t̂x,π)′

(∑
k∈s

ckzkx
′
k

)−1
ckzk (8)

Observe that dim(zk) must be equal to dim(xk). Kott (2004) and Estevao
& Särndal (2004) indicated that the optimal instrumental vector is given when
zk = πk

∑
l∈s(

1
πkπl

− 1
πkl

)xl. A deeper view of instrumental calibration may be
found in Kott (2003), Kim & Park (2010), and Park & Kim (2014). Estevao
et al. (2000) and Estevao & Särndal (2006) also considered the following set of
calibration weights:

wk = t′x

(∑
k∈s

ckzkx
′
k

)−1
ckzk (9)

1Where ck is a constant unrelated to the sampling weights. As Deville & Särndal (1992) state,
the choice ck = 1 dominates many applications. However, other choices induce changes in the
functional form of the calibration estimator.
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In particular, when zk = xk, the calibration weights are given by:

wk = t′x

(∑
k∈s

ckxkx
′
k

)−1
ckxk (10)

As we can see, there are many choices when calibrating on known totals, but not
all of them are efficient. However, it should be mentioned that calibrating on totals
is not always suitable because current totals are not frequently available. Note that
this situation is more dramatic in developing countries where censuses are not
carried out regularly. The nature of totals is dynamic and it changes over time,
most of the times they increase year after year. However, in an official statistics
context, ratios, means and proportions are more stable over time. Following the
findings of Krapavickaite & Plikusas (2005), Plikusas (2006) and Lesage (2011),
when a population ratio R is accurately known, it is possible to compute new
calibration weights that are subject to this new benchmark constraint:∑

k∈s wkyk∑
k∈s wkxk

= R (11)

Note that we do not necessarily know ty or tx. Moreover, with this approach
we can simultaneously estimate the totals that define the ratios while maintaining
their structural relation. Nevertheless, from a methodological perspective, we
can extend the restriction to a vector of ratios, means and proportions. This
paper deals with this issue and it can be considered a fallow an to Lesage’s (2011)
suggestion, who claimed that it would be interesting to determine the practical
cases in which the use of complex parameters in the calibration improves the
precision of the parameters of interest. He also examined calibration in terms
of ratio, median and variance of auxiliary variables. Kim, Sungur & Heo (2007)
proposed a calibration approach to estimate the population mean in stratified
sampling by defining the calibration equation in terms of the population mean of
one auxiliary variable.

In this article, we extend the ratio calibration approach to the multivariate
case, that is, we propose a calibration methodology based on more than one ratio.
We also present the variance estimation based on Taylor’s linearization. This
paper split up into the following section: after a brief introduction, Section 2
describes the estimation of total by using the calibration approach with a vector
of known ratios along with some interesting properties and some specific scenarios.
Section 3 reports a Monte Carlo simulation, the results of which show that, in some
scenarios, the approach could be more efficient than calibrating known totals. In
Section 4, the proposed methodology is applied in an electoral surveys context
to estimate voting intention in a possible second round. Since the voting in the
second round is influenced by the first round, we had the possibility to calibrate
the sample weights using known first round ratios, which substantially improved
the estimation of the second round voting intention. Section 5 concludes with a
brief discussion on the use of this approach.

Revista Colombiana de Estadística 39 (2016) 281–305



Multivariate Calibration on Ratios, Means and Proportions 285

2. Multivariate Calibration Over Ratios

Let consider a different approach to calibration. Assume that kth population
element is associated with vectors xk and yk = (y1k, . . . , yQk)′. For the elements
k ∈ s, we observe both yk and xk. The population ratios Rq =

tyq
txq

(q = 1, . . . , Q)

are assumed to be known (even when tyq and txq remain unknown). As such, the
goal is to estimate all of the population totals tyq =

∑
k∈U yqk and txq =

∑
k∈U xqk,

through the estimators t̂yq =
∑
k∈s wkyqk and t̂xq =

∑
k∈s wkxqk, where new

weights wk satisfy the following constraints:∑
k∈s wkyqk∑
k∈s wkxqk

= Rq, with q = 1, . . . , Q

Equivalently, the calibration equations are defined by:

R̂cal = R (12)

Where R = (R1, . . . , RQ)′ and

R̂cal = (R̂1, . . . , R̂Q)′ =

(∑
k∈s wky1k∑
k∈s wkx1k

, . . . ,

∑
k∈s wkyQk∑
k∈s wkxQk

)′
The following result furthers the Lesage’s (2011) idea:

Result 1. Assume that we have access to a vector of known ratios defined by:

R = (R1, . . . , RQ)′ (13)

where,

Rq =
tyq
txq

∀q = 1, . . . , Q. (14)

Then, to calibrating overR is equivalent to calibrating over the following vector

tz = (tz1 , . . . , tzQ)′ (15)

where,
tzq =

∑
k∈U

zqk =
∑
k∈U

(yqk −Rqxqk) = 0 ∀q = 1, . . . , Q. (16)

That is, to calibrating over R is equivalent to calibrating over tz = 0

Proof . First, notice that, from the calibration equations, we have:

t̂z,cal = tz

⇔
∑
k∈s

wkzk =
∑
k∈U

zk

⇔
∑
k∈s

wk (y1k −R1x1k, . . . , yQk −RQxQk)
′

=
∑
k∈U

(y1k −R1x1k, . . . , yQk −RQxQk)
′

⇔
(
t̂y1,cal −R1t̂x1,cal, . . . , t̂yq,cal −Rq t̂xq,cal

)
= (0, . . . , 0)
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In this way, for every q = 1, . . . , Q,

0 = t̂yq,cal −Rq t̂xq,cal

⇔ Rq =
t̂yq,cal

t̂xq,cal

⇔ Rq = R̂q =
t̂yq,cal

t̂xq,cal
(17)

Then, the calibration equations t̂z,cal = 0 and R̂cal = R are equivalent. �

Note that even though Rq is known, the totals ty and txq are not necessarily
known. This condition ensures the flexibility of the approach because we can use
this methodology not only to calibrate over ratios but to estimate other parameters
of interest while maintaining the restriction on the calibrated weights on ratios.

Result 2. Suppose that a total of interest ty is estimated by means of the approach
given in result 2.1. As such, an asymptotically unbiased estimator of ty is

t̂y,calr =
∑
k∈s

wkyk, (18)

where the set of weights wk satisfies the calibration restriction (12) over the aux-
iliary ratios.

Proposition 1. For every q = 1, . . . , Q, the expectation of calibration estimators
for totals performs according to the following expression:

E(t̂yq,cal) = RqE(t̂xq,cal). (19)

The variance of calibration estimators for totals is based on the following rela-
tion:

V ar(t̂yq,cal) = R2
qV ar(t̂xq,cal). (20)

The coefficient of variation of calibration estimators for totals derives from this
relation:

CV (t̂yq,cal) = CV (t̂xq,cal), (21)

and the relative bias of calibration estimators for totals follows the expression:

RB(t̂yq,cal) = RqB(t̂xq,cal) (22)

Proof . The demonstration of equations (19) and (20) are straightforward. For
the coefficient of variation, it should be noted that:

CV (t̂yq,cal) =

√
V ar(t̂yq,cal)

t̂yq,cal
=

√
R2
qV ar(t̂xq,cal)

Rq t̂xq,cal
=

√
V ar(t̂xq,cal)

t̂xq,cal
= CV (t̂xq,cal)
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With respect to the relative bias

RB(t̂yq,cal) =
E(t̂yq,cal − tyq )

tyq
=
E(Rq t̂xq,cal −Rqtxq )

Rqtxq
= RqB(t̂xq,cal)

�

2.1. Some Particular Cases

When our parameters of interest are means or proportions, they can be esti-
mated as particular cases of the proposed methodology. In the case of means, the
corresponding calibration equation is:

ȳcal = (ȳ1,cal, . . . , ȳQ,cal)
′

=

(
t̂y1,cal

N̂
, . . . ,

t̂yQ,cal

N̂

)′

=

(∑
k∈s wky1k∑
k∈s wk

, . . . ,

∑
k∈s wkyQk∑
k∈s wk

)′
= (ȳ1, . . . , ȳQ)′ = ȳ

That is

ȳcal = ȳ⇔ t̂z,cal = tz (23)

Where, for every q = 1, . . . , Q,

zqk = yqk − ȳq (24)

In the case of proportions, the corresponding calibration equation is:

P̂cal = (P̂1,cal, . . . , P̂Q,cal)
′

=

(
N̂1,cal

N̂
, . . . ,

N̂Q,cal

N̂

)′

=

(∑
k∈s wkδ1k∑
k∈s wk

, . . . ,

∑
k∈s wkδQk∑
k∈s wk

)′
= (P1, . . . , PQ)′ = P

That is,

P̂cal = P⇔ t̂z,cal = tz (25)

Where, for every q = 1, . . . , Q,

zqk = δqk − Pq (26)
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2.2. Another Perspective to Post-Stratification

Now, suppose that the population is partitioned into Q subgroups called post-
strata. If ratios for those particular population subgroups are known, we should
find weights satisfying the following constrains:

R̂cal = (R̂1,cal, . . . , R̂Q,cal)
′ = (R1, . . . , RQ)′ = R (27)

Note that if population ratio is known, it is also possible to impose the following
constraint on the calibration equations: R̂cal = RU . Where, for every q = 1, . . . , Q,

zqk =

{
yqk −Rqxqk if k ∈ sh.
0 Otherwise.

(28)

Now, if means are known for the population subgroups, for example, in post-
stratification, the proper constrains are as follows:

ȳcal = (ȳ1,cal, . . . , ȳQ,cal)
′ = (ȳ1, . . . , ȳQ)′ = ȳ (29)

Consider that if population ratios are known, it is also possible to impose the
following constraint to the calibration equations: ȳcal = ȳ. Where, for every
q = 1, . . . , Q,

zqk =

{
yqk − ȳq if k ∈ sh.
0 Otherwise.

(30)

Now, if proportions are known for population subgroups, for example, in post-
stratification, the proper constrains are as follows:

P̂cal = (P̂1,cal, . . . , P̂Q,cal)
′ = (P1, . . . , PQ)′ = P (31)

Note that if population proportions are known, it is also possible to impose the
following constraint on the calibration equations: P̂cal = P̂U . Where, for every
q = 1, . . . , Q,

zqk =

{
δqk − Pq if k ∈ sh.
0 Otherwise.

(32)

2.3. Extending the Approach

Note that the calibration estimator proposed can be extended, in the sense
that we can consider the situation in which we want to estimate the population
totals by means of the calibration estimators t̂∗yq =

∑
k∈s w

∗
kyqk with q = 1, · · · , Q

where the weights w∗k satisfy the calibration equations∑
k∈s w

∗
kỹqk∑

k∈s w
∗
kx̃qk

= R∗q , with q = 1, · · · , Q∗,
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where ỹqk is any other variable, as well as x̃qk. In a special case, these variables
could represent the same characteristic of interest measured at a previous period.
For example, this estimator can be useful when estimating unemployment rates
for a particular period of time restricted to the calibration over the previous un-
employment rate. Moreover, in runoff elections, we can calibrate using the results
from the first round election in order to estimate the voting intention in the second
round. As such is, Q∗ may be different from Q.

Then, the aim is to find new weights w∗k that satisfy the following calibration
equations:

R̂∗cal = (R̂∗1,cal, · · · , R̂∗Q∗,cal)
′ = (R∗1, · · · , R∗Q∗)′ = R∗

Note that for every q∗ = 1, · · · , Q∗

z∗qk = ỹqk −R∗q x̃qk

3. Empirical Simulation

In this section some simulation experiments were carried out in order to com-
pare the performance of the estimation of a total of interest ty by using the cali-
bration estimator on auxiliary ratios (CALR). This is given by (18), the classical
calibration estimator on auxiliary totals (CAL), which is given by (2), and the
Horvitz-Thompson (HT) estimator, which is given by (1).

A finite population of size N = 10000 was simulated from a superpopulation
model ξ. It was supposed that the relationship between yk and xk can be described
through a general model ξ, such as yk = x′kβ+εk. This model may adopt different
forms throughout this section. The values of the vector of auxiliary information
were generated from a uniform distribution and it was assumed that the εk values
were independent and distributed as N(0, σ2), where σ2 was suitably allocated to
allow different values of the R-squared of the model.

In each run, random samples according to a simple random design without
replacement (SI design) were drawn. We considered two sample sizes: n = 400
and n = 2000. The parameter vector β was estimated by (7) with ck = 1. This
process was repeated M = 1000 times. The simulation was written in the sta-
tistical software R 3.1.1. (R Development Core Team 2007). In the simulation,
the performance of an estimator t̂y was tracked by means of the Relative Bias
(RB), Coefficient of Variation (CV ) and the Relative Efficiency (RE). The RB
was given by:

RB(t̂y) = M−1
M∑
m=1

t̂y,m − ty
ty

, (33)

where t̂y,m is computed in the mth simulated sample, m = 1, . . . ,M . The CV was
given by:

CV (t̂y) = M−1

√
MSE(t̂y)

ty
, (34)
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where Mean Square Error (MSE) is defined as

MSE(t̂y) = M−1
M∑
m=1

(t̂y,m − ty)2. (35)

Finally, we computed the RE between the CALR and the CAL estimators as:

RE(t̂y) =
MSE(t̂y,cal)

MSE(t̂y,calr)
(36)

As such, if the RE takes values higher than unity, it is concluded that the CALR
estimator outperforms the CAL one. The fist two simulations dealt with super
population models for the entire population. However, the remaining scenarios
dealt with models involving super population groups or post-strata. In those cases,
we simulated H = 3 with groups of the following sizes: N1 = 5000, N2 = 2500,
and N3 = 2500. In other words, population U was divided into three unequal
groups U1, U2 and U3.

3.1. Simple Regression Model

This first scenario deals with a single regression model:

yk = β0 + β1xk + εk (37)

We assumed that εk ∼ N(0, σ2). The values of Xk were obtained from the
distribution U(10, 20), the values of the regression coefficients were set at β0 = 180,
β1 = −2 and we chose convenient values for σ in order to get a predetermined R-
squared.

For the CAL estimator, we assumed that the vector of auxiliary totals tx =
(N, tx)′ was known, and it was used in computing this estimator. Note that
tx =

∑
k∈U xk is the population total of the variable x. However, for the CALR

estimator, it was assumed that the auxiliary ratio R =
ty
tx

was known, and it
was used when computing this estimator. Also, note that ty =

∑
k∈U yk is the

population total of the variable y. Tables 1 and 2 show the performance of the
estimators that were considered.

Table 1: Performance of the sampling estimators for model (37) for a sample size of
n = 400: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 −5.49 0.08 18.94 18.21 7.24 6.33
0.2 −2.43 −0.64 9.28 8.07 4.65 3.00
0.4 −1.47 −0.65 6.57 4.89 3.13 2.45
0.6 −0.99 −0.53 5.37 3.27 2.19 2.25
0.8 −0.6 −0.37 4.62 2.01 1.37 2.14
0.95 −0.28 −0.18 4.18 0.92 0.64 2.08

Revista Colombiana de Estadística 39 (2016) 281–305



Multivariate Calibration on Ratios, Means and Proportions 291

Table 2: Performance of the sampling estimators for model (37) for a sample size of
n = 2000: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 2.06 0.88 7.80 7.64 3.10 6.06
0.2 0.91 0.62 3.74 3.38 2.02 2.82
0.4 0.55 0.41 2.61 2.05 1.35 2.32
0.6 0.37 0.28 2.12 1.37 0.93 2.16
0.8 0.23 0.17 1.83 0.84 0.58 2.09
0.95 0.10 0.08 1.67 0.39 0.27 2.05

In this scenario, we found that all of relative biases are negligible, and the
lower coefficient of variation is that induced by the CALR estimator. Likewise,
the relative efficiency of the CALR estimator is higher that the ones obtained in
all other scenarios. When the R-squared increases, the efficiency of the CALR
estimator decreases. One explication is that when the R-squared increases, the
correlation between x and y also increases, and the variance of the CAL estimator
gets smaller, decreasing faster than the variance of the CALR estimator. The
simulations show a similar performance when the sample size increases.

3.2. Multiple Regression Model

The second scenario deals with the multivariate linear regression model:

yk = β0 + β1x1k + β2x2k + β3x3k + εk, (38)

with εk ∼ N(0, σ2). The values of Xk,1, Xk,2 and Xk,3 were obtained from the
distributions U(10, 20), U(100, 150) and U(1, 1.8), respectively and the values of
the regression coefficients were set at β0 = 400, β1 = −2, β2 = −0.8 and β3 = 50.
We chose a convenient value for σ in order to obtain a predetermined R-squared.

For the CAL estimator, it was assumed that the vector of auxiliary totals
tx = (N, tx1

, tx2
, tx3

)′ was known, and it was used in the computation of this
estimator. Note that txq =

∑
k∈U xqk is the population total of the variable xq for

q = 1, 2, 3. Moreover, for the CALR estimator it was assumed that the auxiliary

vector of ratios R =
(
ty
tx1
,
ty
tx2
,
ty
tx3

)′
was known, and it was used under computing

this estimator. Tables 3 and 4 show the performance of the estimators that were
considered.

Table 3: Performance of the sampling estimators for model (38) for a sample size of
n = 400: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 −3.09 0.25 10.81 10.49 3.76 7.79
0.2 −1.42 −0.12 5.45 4.82 2.87 2.83
0.4 −0.87 −0.27 3.86 2.95 2.10 1.96
0.6 −0.58 −0.28 3.16 1.98 1.53 1.66
0.8 −0.36 −0.23 2.73 1.21 0.99 1.50
0.95 −0.16 −0.13 2.48 0.55 0.47 1.42
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Table 4: Performance of the sampling estimators for model (38) for a sample size of
n = 2000: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 1.16 0.53 4.48 4.38 1.57 7.81
0.2 0.53 0.44 2.23 2.02 1.22 2.71
0.4 0.33 0.32 1.57 1.23 0.90 1.86
0.6 0.22 0.22 1.27 0.83 0.65 1.59
0.8 0.13 0.13 1.10 0.51 0.42 1.45
0.95 0.06 0.06 1.00 0.23 0.20 1.39

In this scenario, we found that all of relative biases are negligible, and the
lower coefficient of variation is that induced by the CALR estimator. In the same
way, the relative efficiency of the CALR estimator is higher that those in all other
scenarios. When the R-squared increases, the efficiency of the CALR estimator
decreases. The simulations show a similar performance when the sample size
increases.

3.3. Poststratified Calibration Over Ratios

This scenario deals with a poststratified ratio model, given by:

ykh = βhxkh + εkh h = 1, 2, 3. − k = 1, . . . , Nh. (39)

where εkh ∼ N(0, σ2
h) and x1k, x2k and x3k are obtained independently from the

distribution U(1000, 2000). Besides, we defined β1 = 1, β2 = 0.3 and β3 = 0.5.
Also, N1 = 5000, N2 = N3 = 2500. We chose a convenient value for σ2

h in order
to obtain a predetermined R-squared.

For the CAL estimator, we assumed that the vector of auxiliary totals tx =
(t1x, t

2
x, t

3
x)′ was known, and it was used when computing this estimator. Note that

thx =
∑
k∈Uh xk is the total of the variable x for the subpopulation Uh. Also, take

into account that the population total of x over U is defined to be tx =
∑3
h=1 t

h
x.

Moreover, for the CALR estimator, it was assumed that the auxiliary vector of

means R =
(
t1y
t1x
,
t2y
t2x
,
t3y
t3x

)′
was known, and was used in the computation of this

estimator. Here, thy =
∑
k∈Uh yk is the total of the variable y for the subpopulation

Uh, and the population total of y over U is ty =
∑3
h=1 t

h
y . Tables 5 and 6 show

the performance of the estimators considered in this scenario.

In this scenario, we found that all of relative biases are negligible, the lower
coefficient of variation is that induced by the CALR estimator. Also, the relative
efficiency of the CALR estimator is higher than those achieved in other scenarios.
When the R-squared decreases, the efficiency of the CALR estimator increases.
The simulations show a similar performance when the sample size increases.
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Table 5: Performance of the sampling estimators for model (39) for a sample size of
n = 400: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 5.67 10.32 99.13 98.44 23.59 17.42
0.2 2.08 10.36 49.17 45.07 23.67 3.63
0.4 0.94 10.34 35.35 28.17 23.69 1.41
0.6 0.30 10.29 29.01 18.67 23.71 0.62
0.8 −0.18 10.12 25.54 11.50 23.72 0.24
0.95 −0.60 9.02 23.90 5.35 23.71 0.05

Table 6: Performance of the sampling estimators for model (39) for a sample size of
n = 2000: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 −14.27 −0.75 42.54 41.62 9.61 18.74
0.2 −6.75 −0.74 21.49 19.38 9.65 4.04
0.4 −4.22 −0.75 15.18 11.89 9.66 1.52
0.6 −2.88 −0.76 12.39 7.94 9.66 0.68
0.8 −1.83 −0.79 10.74 4.87 9.67 0.25
0.95 −0.93 −0.98 9.88 2.24 9.67 0.05

3.4. Poststratified Calibration Over Means

This scenario deals with a poststratified mean model, given by:

ykh = βh + εkh h = 1, 2, 3. − k = 1, . . . , Nh. (40)

with εkh ∼ N(0, σ2) and β1 = 50, β2 = 100 and β3 = 150. Also, N1 = 5000,
N2 = N3 = 2500. We chose a convenient value for σ in order to get a predetermined
R-squared.

For the CAL estimator we assumed that the vector of auxiliary totals tx =
(N1, N2, N3)′ was known, and it was used when computing this estimator. More-
over, for the CALR estimator, it was assumed that the auxiliary vector of means

ȳ =
(
t1y
N1
,
t2y
N2
,
t3y
N3

)′
was known, and it was used when computing this estimator.

Tables 7 and 8 show the performance of the estimators considered in this scenario.

Table 7: Performance of the sampling estimators for model (40) for a sample size of
n = 400: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 −2.45 0.97 8.80 8.60 2.01 18.31
0.2 −1.14 0.98 4.47 4.01 2.04 3.86
0.4 −0.70 0.98 3.18 2.46 2.05 1.45
0.6 −0.47 0.98 2.6 1.64 2.05 0.64
0.8 −0.29 0.99 2.26 1.01 2.06 0.24
0.95 −0.13 0.99 2.09 0.47 2.06 0.05

In this scenario, we observed that all of relative biases are negligible. We also
found that the relative efficiency of the CALR estimator is higher than the one
obtained when the R-square is lower than 0.4. When the R-squared decreases,
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Table 8: Performance of the sampling estimators for model (40) for a sample size of
n = 2000: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 0.98 0.15 3.74 3.61 0.83 19.06
0.2 0.46 0.15 1.92 1.68 0.84 4.02
0.4 0.28 0.14 1.37 1.03 0.84 1.50
0.6 0.19 0.14 1.12 0.69 0.84 0.66
0.8 0.11 0.14 0.96 0.42 0.85 0.25
0.95 0.05 0.14 0.88 0.20 0.85 0.05

the efficiency of the CALR estimator increases. The simulations show a similar
performance when the sample size increases.

3.5. Poststratified calibration over proportions

This scenario deals with a poststratified model, given by:

ykh ∼ Bernoulli(βh) h = 1, 2, 3and k = 1, . . . , Nh. (41)

Note that in this scenario, the variable y is not continuos but discrete, taking
only two values: one and zero. As such, ykh = 1 if the element k has a certain
characteristic of interest and ykh = 0 otherwise. Besides, N1 = 5000, N2 = 2500
and N3 = 2500. Values of βh were chosen conveniently in order to obtain a suitable
R-squared.

For the CAL estimator, we assumed that the vector of auxiliary totals tx =
(N1, N2, N3)′ was known, and it was used when computing this estimator. More-
over, for the CALR estimator, it was assumed that the auxiliary vector proportions

P =
(
N1

N1
, N

2

N2
, N

3

N3

)′
was known, and it was used when computing this estimator.

Note that Nh =
∑
Uh
ykh and bear in mind that Nh is the size of the population

subgroup Uh. As such, even though
∑3
h=1Nh = N ,

∑3
h=1N

h 6= N . Tables 9 and
10 show the performance of the estimators that were considered in this scenario.

Table 9: Performance of the sampling estimators for model (41) for a sample size of
n = 400: 10000×RB (relative bias), 1000× CV (coefficient of variation).

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 26.71 −43.72 106.29 105.06 34.72 9.16
0.2 11.15 −54.13 74.01 67.52 43.99 2.36
0.4 −15.16 −57.79 59.03 46.59 47.87 0.95
0.6 −2.27 −59.37 49.05 31.76 49.67 0.41
0.8 −0.47 172.24 43.49 19.92 145.93 0.02
0.95 −2.19 7284.13 46.82 10.47 443.52 0.0005

In this final scenario, we found that all of relative biases are negligible, and that
the relative efficiency of the CALR estimator is higher that when the R-square is
lower than 0.4 and when the sample size is large. When the R-squared decreases,
the efficiency of the CALR estimator increases.
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Table 10: Performance of the sampling estimators for model (41) for a sample size of
n = 2000. The relative bias have been multiplied by 10000, the unit of CV
is %.

R-squared RB(t̂y,cal) RB(t̂y,calr) CV (t̂y,π) CV (t̂y,cal) CV (t̂y,calr) RE
0.05 −24.48 −1.61 43.53 42.50 10.01 18.02
0.2 −13.68 −2.89 30.42 27.17 13.84 3.86
0.4 6.73 −3.37 24.23 19.18 15.44 1.54
0.6 0.21 −3.39 20.18 13.42 16.18 0.69
0.8 −1.05 2.96 18.21 8.44 16.53 0.26
0.95 1.57 2541.63 19.27 4.42 423.12 0.0002

3.6. Calibration Over Any Set of Ratios

In this section we show the results of some empirical simulations when cali-
brating over a vector of known ratios R∗. Generally speaking, the results obtained
with a sample size of 400 are very similar to those of 1000; so we only show the
results relating sample size of 400. Furthermore, the relative bias of the estima-
tors are very small (negligible), so we just show the relative efficiency between the
estimators. RHTC denotes the relative efficiency between the HT estimator and the
CAL estimator, RHTR denotes the relative efficiency between the HT estimator and
the CALR estimator and RCR denotes the relative efficiency between the CALR
estimator and the CAL estimator.

3.6.1. Simple Regression Model

We first consider a simple regression model that relates the variable ỹk to x̃k.
As such, ỹk = β0 + β1x̃k + εk with εk ∼ N(0, σ2): the values x̃k were simulated
from the distribution U(10, 20). The values of the regression coefficients were set
to β0 = and β1 = −2, and we chose convenient values for σ2 in order to get a
predetermined R-squared.

In order to create the variable of interest yk, we assumed that yk = γ0 +γ1ỹk+
εk, with εk ∼ N(0, 102). We varied γ1 to get different coefficients of correlation
(ρ) between yk and ỹk. The results of this empirical study are shown in Table 11.

Table 11: Relative efficiency of the sampling estimators for the simple regression model
considering a sample size of n = 400.

R2 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

RHTC RHTR RCR RHTC RHTR RCR RHTC RHTR RCR RHTC RHTR RCR
0.05 1.06 1.04 0.99 1.24 1.18 0.96 1.66 1.49 0.90 3.02 2.26 0.74
0.2 1.05 1.03 0.98 1.22 1.14 0.93 1.62 1.40 0.86 2.84 1.93 0.68
0.4 1.04 1.03 0.98 1.21 1.13 0.94 1.62 1.41 0.87 2.80 1.97 0.70
0.6 1.04 1.03 0.99 1.20 1.14 0.95 1.58 1.41 0.89 2.86 2.16 0.76
0.8 1.03 1.02 0.99 1.18 1.15 0.97 1.58 1.47 0.93 2.79 2.38 0.85
0.95 1.03 1.03 1.00 1.17 1.16 0.99 1.55 1.51 0.98 2.80 2.64 0.94

We can observe that the performance of the classic calibration CAL estimator
improves as the correlation between yk and ỹk increases, which is well known. With
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respect to the proposed CALR estimator, we can conclude that the performance
of the CAL estimator is the same as the CALR estimator for lower correlation
coefficients. We emphasise that the proposed CALR is useful when there are no
population totals available for the variable ỹ, which prevents the classical calibra-
tion estimator from being used. In these situations, if we know population ratios,
we can use the CALR estimator. Note that the CALR estimator is always better
than the Horvitz Thomson estimator and is as efficient as the classical calibration
estimator when the coefficient of correlation is low.

3.6.2. Multiple Regression Model

We now consider a simple regression model that relates to the variable ỹk to
xk. As such, we consider the following model ỹk = β0 +β1x̃1k+β2x̃2k+β3x̃3k+εk
with εk ∼ N(0, σ2). The values of x̃1k, x̃2k and x̃3k were simulated from the
distributions U(10, 20), U(100, 150) and U(1, 1.8), respectively. The values of the
regression coefficients were set to β0 = 400, β1 = −2, β2 = −0.8 and β3 = 50.
Convenient values for σ2 were proposed in order to get a predetermined R-squared.

In order to create the variable of interest yk, we assumed that yk = γ0+γ1ỹk+εk
with εk ∼ N(0, 102), γ0 = 100 and we varied γ1 to get a different coefficient of
correlation between yk and ỹk. For the CAL estimator, the calibration is made
over the population total tỹ, while for the CALR estimator, the calibration is

defined over population ratios R =
(
tỹ
tx̃1
,
tỹ
tx̃2
,
tỹ
tx̃3

)′
. The results of this simulation

are shown in Table 12.

Table 12: Relative efficiency of the sampling estimators for the multiple regression
model considering a sample size of n = 400.

R2 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

RHTC RHTR RCR RHTC RHTR RCR RHTC RHTR RCR RHTC RHTR RCR
0.05 1.05 1.04 0.99 1.21 1.18 0.97 1.62 1.51 0.93 2.94 2.37 0.81
0.2 1.05 1.03 0.99 1.21 1.14 0.94 1.62 1.37 0.85 2.93 1.86 0.64
0.4 1.05 1.03 0.98 1.22 1.14 0.94 1.62 1.35 0.83 2.89 1.79 0.62
0.6 1.05 1.04 0.99 1.21 1.15 0.95 1.61 1.39 0.87 2.87 1.93 0.67
0.8 1.05 1.04 0.99 1.21 1.17 0.97 1.60 1.47 0.92 2.83 2.23 0.79
0.95 1.05 1.05 1.00 1.21 1.20 0.99 1.59 1.55 0.97 2.80 2.60 0.93

Note that the results of this table are very similar to those shown in the previous
simulation. The proposed CALR estimator is always better than the Horvitz-
Thompson estimator, so it is a good option when there are no population totals
available to perform the classical calibration estimator.

4. Estimation of Vote Intention

In a runoff election, a candidate wins in the first round if he obtains an abso-
lute majority of the votes. If no candidate wins in the first round, then a second
round must be held between the two candidates who managed to obtain the ma-
jority of the votes in the first round. The winner of that round wins the election
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(Bouton & Gratton 2015). This system is used around the world for the election of
presidents in Afghanistan, Argentina, Austria, Brazil, Bulgaria, Cape Verde, Chile,
Colombia, Costa Rica, Croatia, The Czech Republic, Cyprus, Dominican Republic,
Ecuador, Egypt, El Salvador, Finland, French, Ghana, Guatemala, India, Indone-
sia, Liberia, Peru, Poland, Portugal, Romania, Senegal, Serbia, Slovakia, Slovenia,
Timor-Leste, Turkey, Ukraine, Uruguay and Zimbabwe.

In Latin America, as stated by Pérez-Liñán (2006), over the last two decades
a majority of Latin American countries have adopted presidential runoff elections
in order to strengthen the legitimacy of their elected presidents. During 2014, out
of the 20 countries in Latin America, 7 had presidential elections, while 5 of them
had to use the runoff elections mechanism. Table 13 shows the elections dates for
the first and the second rounds in 2014 that were held in these nations, as well as
the winners of these second rounds.

Table 13: Latin American presidential elections held in 2014.

Country
Date of
the first
round

Second
round

Date of
the second
round

Winner

Bolivia October 5 No Evo Morales
Brazil October 5 Yes October 26 Dilma Rousseff
Colombia May 25 Yes June 15 Juan M. Santos
Costa Rica February 2 Yes April 6 Luis Guillermo Solís
El Salvador February 2 Yes March 9 Salvador Sánchez Cerén
Panam May 4 No Juan Carlos Varela
Uruguay October 26 Yes November 30 Tabaré Ramón Vázquez

Now, let us assume that after the first round elections, we perform a survey to
a sample s of n citizens who are able to participate in the second round election.
In that very survey, we ask the following estimations: for a) the vote intention in
the second round; b) whether they had vote in the first round, and c) for which
candidate they voted in the first round. Note that the estimates of the survey may
be calibrated in order to improve the estimation of the results in the runoff by
including auxiliary information from the results officially cast in the first round.

To do this, we must understand that for k ∈ s there are four variables of
interest that address the problem of vote intention. For the first round we define:

vk =

{
1 If k -th individual voted in the first round,
0 Otherwise.

And, assuming that Q candidates (blank vote included) were contending in the
first round, we define for every q = 1, . . . , Q,

xqk =

{
1 If k -th individual voted for the q-th candidate in first round,
0 Otherwise.

For the second round, assuming that the intention of vote in the second round
is going to be measured for only two candidates and a blank vote, we define the
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following:

uk =

{
1 If the k -th element will vote in the second round,
0 Otherwise.

Finally, assuming that M (blank vote included) from Q candidates remain in
the second round, we define for every m = 1, . . . ,M ,

ymk =

{
1 If k -th individual has the intention to vote for the m-th candidate,
0 Otherwise.

Note that, as the survey is carried out between the first and the second rounds,
the vector of total votes in the first round tx = (tx1

, . . . , txQ)′ is already known.
By defining tv =

∑
k∈U vk as the amount of voters in the first round, the vector

of ratios per candidate in the the first round is:

R′ = (R1, R2, . . . , RQ) =

(∑
k∈U x1k∑
k∈U vk

, . . . ,

∑
k∈U xQk∑
k∈U vk

)
=

(
tx1
tv
, . . . ,

txQ
tv

)

The approach in this paper addresses the construction of new weights wk that
areobtained by calibrating over the vector of population ratiosR. If the objective is
to exactly reproduce the percentage of voters in the first round, then the calibration
ratio estimators present in this paper should be used. As such, in order to create
the weights wk, it is necessary to define the following calibration equations:

R̂ =

(∑
k∈s wkx1k∑
k∈s wkvk

, . . . ,

∑
k∈s wkxQk∑
k∈s wkvk

)
= R (42)

Applying the methodology proposed in this article, we define proper variables
zqk, so that for every q = 1, · · · , Q, we obtain:

zqk =

{
xqk −Rqvk If the k-th element voted for the q-th candidate in the first round
0 Otherwise

Therefore, we also may address the estimation of the percentage of potential
voters per m-th candidate in the second round by defining the following estimator:

R̂m,cal =
t̂ym,cal

t̂u,cal
=

∑
k∈s wkymk∑
k∈s wkuk

(43)

Note that, in order to solve the calibration problem, if we use the chi-square
distance, the estimator t̂yq,cal adopts the following form:

t̂ym,cal = t̂ym,π + (tz − t̂z,π)′B̂yz = t̂y,π − t̂′z,πB̂yz (44)
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where

B̂yz =

(∑
s

zkz
′
k

πk

)−1(∑
s

zkyk
πk

)
.

Where z′k = (z1k, . . . , zQk). In the same way we can define t̂u,cal as it follows:

t̂u,cal = t̂u,π + (tz − t̂z,π)′B̂uz

= t̂u,π − t̂′z.πB̂uz,

where

B̂uz =

(∑
k∈s

zkz
′
k

πk

)−1(∑
k∈s

zkuk
πk

)
,

and the ratio estimator takes the following form:

R̂m,cal =
t̂ym,π − t̂′z,πB̂yz

t̂u,π − t̂′z,πB̂uz

(45)

4.1. Variance Estimator

We propose a variance estimator for R̂q,cal by using a Taylor’s approximation
(see Särndal, Swensson & Wretman (2003) for detailed information). Then, the
ratio estimator R̂q,cal can be approximated by:

R̂m,cal ≈ Rm + a1(t̂ym,π − tym) + a2(t̂u,π − tu) + a′3(t̂z,π − tz) (46)

And

a1 =
∂Rm,cal

∂t̂ym,π

∣∣∣
t̂ym,π=tym;t̂u,π=tu;t̂z,π=0

=
1

tu

a2 =
∂Rq,cal

∂t̂u,π

∣∣∣
t̂ym,π=tym;t̂u,π=tu;t̂z,π=0

= − tym
t2u

a3 =
∂Rq,cal

∂t̂z,π

∣∣∣
t̂ym,π=tym;t̂u,π=tu;t̂z,π=0

=
tymBuz − tuByz

t2u

Where Byz and Buz are the population counterparts of B̂yz and B̂uz, respec-
tively. As such, the variance estimator for R̂cal is:

V ar(R̂m,cal) ≈ V ar(a1t̂ym,π + a2t̂u,π + a′3t̂z,π)

= V ar

(
a1
∑
k∈s

ymk
πk

+ a2
∑
k∈s

uk
πk

+ a′3
∑
k∈s

zk
πk

)

= V ar

(∑
k∈s

1

πk
(a1ymk + a2vk + a′3zk)

)
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Let Ek = (a1ymk + a2vk + a3zqk), then

V ar(R̂m,cal) ≈ V ar

(∑
k∈s

Ek
πk

)
=
∑
k∈U

∑
k∈U

∆kl
Ek
πk

El
πl
,

which can be estimated by

ˆV ar(R̂m,cal) =
∑
k∈s

∑
l∈s

∆kl

πkl

ek
πk

el
πl
,

where ek = (â1ymk + â2vk + â′3zk), and â1 =
1

t̂u,π
, â2 = − t̂ym,π

t̂2u,π
and â3 =

B̂uzt̂ym,π − B̂yzt̂u,π

t̂2u,π
.

4.2. Presidential Elections Held in Colombia (2014)

Presidential elections are the electoral mechanism through which citizens deter-
mine who will be the president of Colombia for a four year period (Blais, Massicotte
& Dobrzynska 1997). One candidate gets elected in the first round when he or
she obtains 50% of the total voters plus one (an absolute majority). If none of the
candidates obtain the absolute majority, it is necessary to conduct a second round
of voting: a runoff election. This will include the two candidates who obtained
the most votes in the first round, as stated in Article 190 of the 1991 Colombian
Constitution. Of the six presidential elections held since 1991, the second round
mechanism has been used on four occasions: in 1994, 1998, 2010, and, recently, in
2014. The exceptions occured in 2002 and 2008 when the most popular politician
in recent years, Álvaro Uribe Vélez, obtained on absolute majority in the first
round with 53.04% and 62.35%, respectively. In Table 14, we show the results in
the second rounds since 1991. We can conclude that the two candidates achieved
quite similar numbers in all the second rounds, with the exception of 2010 when
the candidate of the Colombian Green Party, Antanas Mockus, lost with 27.47%
despite his popularity among young voters. Furthermore, the estimation of vote
intention in the second round is also important because the candidates who do
go on to the second round ally with those who did not. These partnerships are
important as they try to get the most votes of these potential voters for they are
the ones who will define the victor of the second round.

Table 14: Second round results in Colombia.
Year Winner (Vote) Loser (Vote)
1994 Ernesto Samper (50.57%) Andrés Pastrana (48.45%)
1998 Andrés Pastrana (50.39%) Horacio Serpa (46.53%)
2010 Juan M. Santos (69.13%) Antanas Mockus (27.47%)
2014 Juan M. Santos (50.99%) Oscar Zuluaga (44.99%)

We applied the proposed methods in this article to the results of a survey to
estimate the voting intention in the second round of the presidential elections held
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in Colombia in 2014. This information must be conducted between the first and
the second rounds by selecting a probability sample of voters made by a sampling
design. Therefore inclusion probabilities must be included, which allows us to
make estimations about the population of potential voters in the second round.

In this section we applied the proposed estimator to the Colombian presidential
runoff election held in 2014. The first round was held on May 25th, 2014. The
results of this first round are shown on Table 15.

Table 15: Results of the first round of the Colombian Presidential Elections held in
2014.

Candidate % Votes Total votes
Oscar Zuluaga 29.25 3759971
Juan M. Santos 25.69 3301815
Martha Ramírez 15.52 1995698
Clara López 15.23 1958414
Enrique Peñalosa 8.28 1065142
Blank Vote 5.99 770610
Total 12851650

These results indicate that if Colombia used the simple majority system, the
president would have been Zuluaga and not Santos, who, in fact, is the current
president of Colombia. As stated above, the candidates involved in the second
round were Santos and Zuluaga. The population of interest were the voters who
cast a valid vote in the first round, including votes that did not choose any can-
didate. This way, N = 12.851.650, of which 94% voted for a candidate while the
other 6% did not vote for any candidate. Our goal was to estimate the number
of people who planned on voting for Santos, Zuluaga or no candidate. The way
to compute this estimation is by constructing new weights wk, which are created
using the voting rates for each candidate and the no vote in the first round as
auxiliary information.

We also used the results of one survey carried out between the first and the
second electoral rounds. This sample contains the opinion for n = 2594 potential
voters. We present the summary information of this survey in Table 16. Note that
the first round results are based on the real voting of the respondents, whereas the
second round results are based on their intentions.

Table 16: Results from the survey carried out with a total of 2594 persons.

Second round

First
round

Juan M. Santos Oscar Zuluaga Blank Total
López 172 65 64 301
Peñalosa 47 22 28 97
Juan M. Santos 849 23 5 877
Ramírez 48 105 49 202
Oscar Zuluaga 8 696 6 710
Blank 87 86 234 407
Total 1311 997 386 2594
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In order to estimate the vote intention in the second round, and simultane-
ously calibrate over the known ratios of the first round, we defined the following
calibration equations:

R̂ =

(∑
k∈s wkx1k∑
k∈s wkvk

, . . . ,

∑
k∈s wkx6k∑
k∈s wkvk

)
= R

= (0.2925, 0.2569, 0.1552, 0.1523, 0.0828, 0.0599)

Where the weights wk are used to compute the proposed estimator for the
total votes and the corresponding proportions given in equations (44) and (45),
respectively. Additionally, it is also possible to calibrate by using the number of
in the first round. That is, we computed the classic calibration estimator (CAL)
using the calibration equation given by:

t̂x =

(∑
k∈s

w∗kx1k, . . . ,
∑
k∈s

w∗kx6k

)
= tx

= (3759971, 3301815, 1995698, 1958414, 1065142, 770610)

We computed the Horvitz-Thompson (HT) estimator, the proposed estima-
tor (CALR) and the classic calibration estimator (CAL), and we found the new
weights2 wk and w∗k using the function calib from the package sampling (Tillé &
Matei 2013). The dataset and the computational codes are available upon request
from the main author.

Table 17 presents the results of the estimation of potential voters per candidate
for the second round using the new weights. We can see that all three estimators
considered Santos to be the winner of the election: this was the actual reality.
However, the HT estimator gives much more percentage of a vote for no candidate
than the other two estimators. The results of the CAL and CALR estimators, in
this particular dataset, are similar. However, the proposed estimator in this paper
does calibrate over the known ratios in the first round.

5. Discussion

In this paper, we have proposed a ratio calibration estimator considering sev-
eral ratios, inducing calibration constraints. From the empirical research, we found
that the proposed estimator has a smaller variance than the Horvitz & Thompson
estimator and even a smaller one than the classic calibration estimator for most
simulation scenarios considered in this article. Furthermore, the proposed esti-
mator has the ability to estimate the population totals with negligible empirical
bias.

2Note that weights w∗
k are different from wk because they are induced by different calibration

constraints.
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Table 17: Estimations for the second round of the Colombian presidential elections
held in 2014: estimated vote intention, proportion of estimated votes and its
corresponding standard error (SE).

Candidate CALR CAL HT Real votes

Juan M. Santos
Total 5770076 6334436 4504076 7839342

Proportion 44.89% 44.92% 45.05% 50.99%
SE 3.99% 3.86% 3.31% -

Oscar Zuluaga
Total 5618616 6093813 3920092 6917001

Proportion 43.71% 43.21% 39.21% 44.99%
SE 4.83% 5.07% 3.84% -

Blank Vote
Total 1462958 1674619 1572545 618759

Proportion 11.39% 11.87% 15.74% 4.02%
SE 6.46% 6.85% 6.20% -

We illustrated the particular usefulness of the proposed methodology in the
runoff election system to estimate the vote intention in the second round. Despite
the good performance of the proposed estimator, we noted that the estimated
total number of voters is by far smaller than the real one, and that the estimation
of vote for no candidate is too high. For future research, one way to estimate
the voting intention in the second round could be by attempting to estimate the
abstention percentage.

The proposed estimator can also be useful in other survey studies. For example,
by taking into account the auto correlation and seasonal behaviour of macroeco-
nomic variables, we can use the unemployment rate of a particular month of the
year as auxiliary information in order to estimate the current value.

In order to keep the model-consistency and design-unbiasedness of the calibra-
tion estimators, Brewer (1999) argued that the proper choice of ck, as in equation
(5), should be dk−1. For further work, the appropriateness of these scalars should
be investigated. In terms of consistency, this approach can also be used jointly,
from a model-based perspective.

Further work on using this approach in the presence of non-response and frame
imperfections is necessary. This methodology could also be used in surveys with
multiple frames such as in the work of Elkasabi, Heeringa & Lepkowski (2015), its
applicability, statistical properties and effect of misclassified domains are of great
interest in further investigations.[
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