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Abstract

This article addresses various properties and different methods of esti-
mation of the unknown Transmuted Rayleigh (TR) distribution parameters
from a frequentist point of view. Although our main focus is on estima-
tion, various mathematical and statistical properties of the TR distribution
(such as quantiles, moments, moment generating function, conditional mo-
ments, hazard rate, mean residual lifetime, mean past lifetime, mean devi-
ation about mean and median, the stochastic ordering, various entropies,
stress-strength parameter, and order statistics) are derived. We briefly de-
scribe different methods of estimation such as maximum likelihood, method
of moments, percentile based estimation, least squares, method of maximum
product of spacings, method of Cramér-von-Mises, methods of Anderson-
Darling and right-tail Anderson-Darling, and compare them using extensive
simulations studies. Finally, the potentiality of the model is studied using
two real data sets. Bias, standard error of the estimates, and bootstrap per-
centile confidence intervals are obtained by bootstrap resampling.
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Resumen

Este articulo se aborda las varias propiedades y diferentes métodos para
la estimacion de los desconocidos parametros de Transmuted Rayleigh (TR)
distribucién desde el punto de vista de un frequentist. Aunque la tema
principal de este articulo es estimacién, varias propiedades matemaéticas y
estadisticas de TR distribucién (como cuantiles, momentos, una funcién que
genera momentos, momentos condicionales, la tasa de peligro, la media vida
residual, media vida pasada, la desviacion media por media y mediana, or-
ganizacion stochastic, entropias varias, parametros de tension-fuerza y es-
tadisticas de orden) estdn derivadas. Describimos brevemente los diferen-
tes métodos de estimacion, como méxima probabilidad, método de momen-
tos, estimacién basada por percentil, minimos cuadrados, método de maxi-
mos productos de espacios, el método de Cramér-von-Mises, los métodos de
Anderson-Darling y right-tail Anderson-Darling, y compararlos con exten-
sos estudios de simulaciones. Por tltimo, la potencialidad del modelo esté
estudiando con dos conjuntos de datos reales. El margen de error, el prome-
dio de error de las estimaciones y el percentage bootstrap de los confianza
intervalos estan derivido por bootstrap remuestro.

Palabras clave: momentos distributivos, estadisticas de orden, la estimacién
de parametros, riesgo de tipo de funcién, rayleigh transmutada.

1. Introduction

Rayleigh distribution was introduced by Rayleigh (1880) and relates to a prob-
lem in the field of acoustics. This distribution has been extensively used in various
fields such as communication engineering, the life-testing of electro vacuum devices,
reliability theory, and survival analysis. An important characteristic of this distri-
bution is that its failure rate is a linear function of time. The reliability function
of the Rayleigh distribution decreases at a much higher rate than the reliability
function of exponential distribution. This distribution relates to a number of dis-
tributions such as generalized extreme value, Weibull and Chi-square distributions
and, hence, its applicability in real life situations is significant. Estimations, pre-
dictions, and inferential issues for one parameter Rayleigh distributions have been
extensively studied by several authors. Interested readers may refer to Johnson,
Kotz & Balakrishnan (1995) for on excellent insight into the Rayleigh distribution,
and also see Dey & Das (2007), Dey (2009) for some references.

The construction of the transmuted distribution is rather simple and was
first proposed by Shaw & Buckley (2007). Since then, transmuted distributions
have been widely studied in statistics, and many authors have developed various
transmuted-type distributions based on some well known distributions. See, for
example, the transmuted extreme value distribution with applications by Alkasas-
beh & Raqgab (2009a); the transmuted Lindley distribution by Merovci (2013b);
the transmuted generalized Rayleigh distribution by Merovei (2013a); the trans-
muted exponentiated exponential distribution by Merovci (2013 ¢); the transmuted
Fréchet distribution by Mahmoud & Mandouh (2013); the transmuted generalized
inverse Weibull distribution by Merovci, Elbatal & Ahmed (2014); the transmuted
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Linear exponential distribution by Tian, Tian & Zhu (2014); and the transmuted
Pareto distribution by Merovci & Puka (2014), etc. Hence, efficient estimation of
these parameters is extremely important.

We know that the maximum likelihood estimation (MLE) and the method of
moments estimation (MME) are traditional methods of estimation. Although MLE
is advantageous in terms of its efficiency and has good theoretical properties, there
is evidence that it does not perform well, especially in the case of small samples.
The method of moments is easily applicable and often gives explicit forms for
estimators of unknown parameters. There are, however, cases where the method of
moments does not give explicit estimators (e.g., for the parameters of the Weibull
and Gompertz distributions). Therefore, other methods have been proposed in
the literature as alternatives to the traditional methods of estimation. Among
them, the L-moments estimator (LME), least squares estimator (LSE), generalized
spacing estimator (GSE), and percentile estimator (PCE) are often suggested.
Generally, these methods do not have good theoretical properties, but in some
cases they can provide better estimates of the unknown parameters than the MLE
and the MME. This paper considers ten different frequentist estimators for the
transmuted Rayleigh distribution and evaluates their performance for different
sample sizes and different parameter values. Simulations are used to compare the
performance as it is not possible to compare all estimators theoretically (see Gupta
& Kundu 2001, Gupta & Kundu 2007).

The uniqueness of this study comes from the fact that we provide a comprehen-
sive description of the mathematical and statistical properties of this distribution
with the hope that they will attract wider applications in lifetime analysis. Also,
to the best of our knowledge thus far, no attempt has been made to compare all
these estimators to the two-parameter TR distribution along with mathematical
and statistical properties. Comparisons of estimation methods for other distribu-
tions have been performed in the literature: Kundu & Ragab (2005) for generalized
Rayleigh distributions, Alkasasbeh & Ragab (2009b) for generalized logistic distri-
butions, Mazucheli, Louzada & Ghitany (2013) for weighted Lindley distribution,
Teimouri, Hoseini & Nadarajah (2013) for the Weibull distribution, Akram &
Hayat (2014) for Weibull distribution, and Dey, Dey & Kundu (2014) for two-
parameter Rayleigh distribution. There are some works found in the literature
on transmuted Rayleigh distribution and its variants such as the slashed Rayleigh
distribution Iriarte, Gomez, Varela & Bolfarine (2015) and its exponential variant
Salinas, Iriarte & Bolfarine (2015).

The transmuted Rayleigh (TR) distribution was introduced by Merovci (2013¢).
He only studied moments and the maximum likelihood estimation of the unknown
parameters.

A random variable X is said to have a transmuted Rayleigh distribution if its
cumulative distribution function(cdf) is given by

G(:v,c)c,)\):1—67‘”2 (1—>\+>\67QI2>; z>0,a>0,]A <1 (1)
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with corresponding pdf
g(z,a,\) = 2axe T (1 -+ 2/\e_o””2>; x>0, a>0,A<1, (2
and the survival function is given by

S(x,oz,)\):e_m72 (1—)\—1—)\6_0“2); x>0,a>0,|A <1. (3)

The distribution studied in this paper is a re-parameterization of the the version
proposed by Merovci (2013¢) with o = (202)71. Note that the classical Rayleigh
distribution is a special case for A = 0. Figure [1] illustrates some of the possible
shapes of the pdf of a transmuted Rayleigh distribution for selected values of the
parameters A and «. This distribution has a unimodal pdf and increasing hazard
rates. The latter may seem unrealistic at first in real life situation. However,
in several situations, only increasing hazard rates are used or observed: Maeda
& Nishikawa (2006) state that “Ruling parties in presidential systems face an
increasing hazard rate in their survival”; Woosley & Cossman (2007) observe that
drugs during clinical development have increasing hazard rates; Saidane, Babali,
Aguir & Korbaa (2010) suppose that the demand interval in spare parts inventory
systems has increasing hazard rates; Tsarouhas & Arvanitoyannis (2007) show that
machines involved in bread production display increasing hazard rates; Koutras
(2011) finds that software degradation times have increasing hazard rates; and
Lai (2013) investigates the optimum number of minimal repairs for systems under
increasing hazard rates; etc.
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F1cURE 1: Probability density function of the TR distribution for different values of
parameters « and A.

5

The principal motivation of the paper is two fold: one is empirical and shows
that the studied transmuted Rayleigh distribution outperforms at least two two-
parameter distributions with respect to a real data set; the other is to show how
different frequentist estimators of this distribution perform for different sample
sizes and different parameter values, and to develop a guideline to choose the
best estimation method for the transmuted Rayleigh distribution, which we think
would be of interest to applied statisticians.

The paper is organized as follows: Various mathematical, statistical and relia-
bility properties of the TR distribution (like shapes, quantiles, moments, moment
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generating function, hazard rate function, mean residual lifetime, and conditional
moments, etc.) are derived in Sections 1 and 2. In Section 3, ten most frequent
methods of estimations are discussed. Inference with simulation and two real data
applications for the TR distribution are discussed in Section 4 and 5. In the last
section, we draw some conclusions about the information contained in this article.

1.1. Shape

The study of shapes is useful to determine if a data set can be modeled by the
TR distribution. Here, we discuss the shapes of the pdf g.

Theorem 1. The probability density function, g, is unimodal.

Proof. Notice that g is a smooth function. To prove it is unimodal, we shall first
show that there is one and only one z* € R, such that ¢’(z*) = 0, and ¢’ > 0 for

z<z* & g <0for x> z* Letting u= e*‘”Q, we have
g (x) = 2ae 2 [e“ (A —1)(2u — 1) + (2 — 8u)\]..

Since 0 < u < 00, ¢’ >,=,< 0 depends on whether e*(A —1)(2u — 1) + (2 —
8u)A\ >, =, < 0, respectively. Now ¢'(x) = 0 implies that

e“'A—1)2u—1)+(2—8u)A=0.

Case I: (A = 1.) This implies v* = 1/4, and hence z* = ﬁ

Now, for x > a*,i.e. u* > 1/4, we have e*(A—1)(2u—1)+(2—8u)\ = 2—8u < 0
and, hence, ¢’ < 0. Similarly, for x < z* we obtain ¢’ > 0.

Case II: (A # 1.) In this case, we have Q(u) := % = 2;. Note that Q is a

A—
strictly increasing, continuous function of u on (0, %) and (i, 00). Since ﬁ < %

and ) has range (%, o0) on (0, i) and range (—o0,00) on (%, 00), there is a unique
u* € (3,00) such that Q(u*) = 52;. Hence there is a unique 2* > 5= such that

A1 2o
g'(x7) =0.

Now, for u > u* > 1/4, 1/4 < u < v* and 0 < u < 1/4 < u*, one can easily
show that ¢’ < 0, > 0 and > 0, respectively. Hence g is unimodal. O

2. Statistical and Mathematical Properties

In this section, we provide some important statistical and mathematical mea-
sures for the TR distribution such as quantiles, moment generating functions,
moments, hazard rate and mean residual life functions, mean past lifetime, con-
ditional moments, Stochastic ordering, mean deviation about mean and median,
Shannon and Rényi entropy, order statistics, and stress strength parameters.

The quantile function x = Q(p) = G~(p), for 0 < p < 1, of the TR distribution
is obtained from ; it follows that the quantile function is
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“7[;ln<(A_l)+\/(A;A1)2+4A(1_p)>r' @

In particular, the median of the TR distribution can be written as

1
2

Md(X) = Mg = |- N (5)

_1ln<()\—1)+\/)\2+1>

We hardly need to emphasize the necessity and importance of the moments in
any statistical analysis, especially in applied work. Some of the most important
features and characteristics of a distribution can be studied through moments
(e.g., tendency, dispersion, skewness, and kurtosis). If the random variable X is
distributed T'R(«, A), then its nth moment around zero can be expressed as

E(X") = Qa/ " exp (—axQ) (1 —X+2X\exp (—amQ)) dz.
0
On simplification, we get
B(X") = a "?T(1 + g) (1 A )\2_”/2) (6)

The variance, skewness, and kurtosis measures can now be calculated using the
following relations

Var(X) = E(X?) — E*(X),

E(X3) - 3E(X)E(X?) +2E3(X)
Var3/2(X) ’

Skewness(X) =

B(X*) — 4E(X)E(X?) + 6E(X?)E*(X) — 3B4(X)
Var?(X) '

Kurtosis(X) =
Figures [2 and [3 illustrate their variations.

2.1. Moment Generating Function

Many of the interesting characteristics and features of a distribution can be
obtained via its moment generating function and moments. Let X denote a random
variable with the probability density function . By definition of the moment
generating function of X and using , we have

Mx () = E(e!®) = /Ooo et g(z)dz

4@ — 27 — Dtedn (Erf(ﬁ) + 1) + VMt (Erf(ﬁ) + 1) (7)
i/a
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FIGURE 2: (a) Expectation and (b) Variance of TR distribution for A =
~1,-0.9,-0.8,---,1 and a = 0.2,0.4,0.6, . .., 3.

FIGURE 3: (a) Skewness and (b) Kurtosis of TR distribution for A =
~1,-0.9,-0.8,...,1 and a = 0.2,0.4,0.6, ..., 3.

2.2. Stochastic Ordering

Stochastic ordering is a tool used to study structural properties of complex
stochastic systems. For example, it is useful to control congestion in information-
transfer over the Internet, to define treatment-related trends in clustered binary
data, and order expected welfare income under different mechanisms of allocating
rewards. There are different types of stochastic orderings, which are useful in
ordering random variables in terms of different properties. Here we consider four
different stochastic orders, namely, the usual, the hazard rate, the mean residual
life, and the likelihood ratio order for two independent TR random variables under
a restricted parameter space. If Xand Y are independent random variables with
CDFs Fx and Fy, respectively, then X is said to be smaller than Y in the

e stochastic order (X <4 Y) if Fx(x) > Fy(z) for all
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e hazard rate order (X <p, Y) if hx(x) > hy(z) for all =

e mean residual life order (X <,,,,; Y) if mx(z) > my () for all x

e likelihood ratio order (X <. Y) if ;’;g; decreases in x.

The following results due to Shaked & Shanthikumar (1994) are well known
for establishing stochastic ordering of distributions.

X <ir Y =X <ur Y =X <iri Y (8)

4
XSstY

The TR is ordered with respect to the strongest “likelihood ratio” ordering as
shown in the following theorem. It shows the flexibility of the two parameter TR
distribution.

Theorem 2. Let X~ TR(a1,A1) and Y~ TR (g, X2). If a1 = s = « and
A1 > Ao, then X <5, Y and, hence, X <p, Y, X < Y and X <54 Y.

Proof. The likelihood ratio is

Ix(z) alxe_o‘””z(l -\ + 2)\16_0‘1’”2)

fy(z)  agme=2e®(1 — Ay + 2\ge—2227)

Ix(x) 4a1x)\16*°‘1"”2

B (1= Ay + 2\ e—12?)
4042:0\26’“2“”2

(1 — Ao+ 2)\2670‘212) '

d x(x
Thus,— lo,
dz 08 fy(z)

—2(a1 — ag)x —

Now, if ;7 = as = a and A1 > A, then d%log ;’;Eg < 0, which implies that

X <5, Y and, hence, X <;,. Y, X <,y Y and X <, Y.

2.3. Hazard Function

The hazard rate function of the transmuted Rayleigh distribution is given by

_ f@) 20wl X420
S 1-F(x) (LA demos®) (9)

h(z)

Figure {] illustrates some of the possible shapes of h. Even though, in Figure
[ it apparently looks like that the hazard rate function of the TR distribution
is always increasing, it can be noted that for some parameter values, the hazard
function decreases. For example if & = 0.2 and A = 0.92, h decreases in the interval
(4,4.4).
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5 30
— ¢=02,1=-10 — =05,1=-05
4} — 0=021=-05 1 B 4c1021--05
a=02,1= 05 @=20,1=-05
20f
3 — a=02,1= 1.0 ~ — 0=30,1=-05

(b)
FIGURE 4: Hazard Function of TR distribution for different values of parameters o and
A

2.4. Mean Residual Life Function

The mean residual life MRL is the expected remaining life, X — x, given that
the item has survived to time z. Figure [f] illustrates some of the possible shapes
of u.

pwr)=EX —z|X >x)

/ y 9(y)dy
TG
20w’ [ [2(1 = A) Erfe(z/a) + V2X Erfc(zv2a)]

4o (A4 (1= N)eas?) '

One can easily show that lim,_, ., p(z) = 0.

— T

30 T T T T T

> — =02,1=-10 ] — 4=05,1=-05
— 0=02,1=-05 — 4=10,1=-05

2or 1 1op 1
=02,1=05 . =20, 1= -05
1sf — 0=02,1=10 ] — 4=30,1=-05

10

05F

ool . n n — ool

Ficure 5: MRL function of TR distribution for different values of parameters a and .

2.5. Mean Past Lifetime (MPL)

In a real life situation, where systems are often not monitored continuously,
one might be interested in inferring more about the history of the system e.g.
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when the individual components have failed. Now assume that a component with
lifetime X has failed at or some time before x, x > 0. Consider the conditional
random variable x — X | X < z. This conditional random variable shows, in fact,
the time elapsed from the failure of the component, given that its lifetime is less
than or equal to . Hence, the mean past lifetime (MPL) of the component can
be defined as

Jo F(t)dt e Jo tf(t)dt

_VE(V2EA Erfc(\/ﬁ\/iz\;;2()\—1) Erfe(yaz)) + (A —1)z (_e_wz) I Agpe—20e? e

(1= ) (L4 Ae=)

k(z)=E[z—X | X <z]=

One can easily show that k(z) — oo as z — 0, co. Figure |§| illustrates some of the
possible shapes of k.

— =02,1=-10 — =05,1=-05

— =02,1=-05 — =10,1=-05
@=02,1=05 @=20,1=-05

— a=02,1=1.0 = a=30,1=-05

(a) (b)

Figure 6: MPL function of TR distribution for different values of parameters a and .

2.6. Conditional Moments

For lifetime models, it is also of interest to know what E(X™ | X > z) is. It
can be easily seen that

EX"| X >x)= S(lx)/oox”f(x)dx

In particular

ga? <ﬁ(ﬁAErfc(ﬁ\/im\Z;ﬂ/\—l)Erfc(\/E:c)) o209 ()\ - 1)e‘”2))

E(X|X>z)= Y
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2(A — l)e‘”’2 (a? +1) = X (202 + 1)

2 _
BXT[X>w) = 20 (A = 1)e=® — X)

12y/7(\ — 1)e2%” Erfe (yax) — 3v/2m A2 Erfe (V2yaz)

3 —
4/ ax (2()\ —1)e>’ (2aa® + 3) — A (4az? + 3))

" 1603/2 (A — 1)ea®® — X)
and
B(XY| X > ) = 2\ — 1)60”‘/’2 (@2 + 2a2? + 2) — X (2022* + 202? + 1)

202 (A — 1)ea*® — \)

The mean residual lifetime function is E(X | X > x) — .

2.7. Mean Deviation

The mean deviations of the mean and the median can be used as measures of
spread in a population. Let 4 = F(X) and M be the mean and the median of the
transmuted Rayleigh distribution, respectively. The mean deviations about the
mean and of the median can be calculated as

51(X) = / Tle—plg(e) de 6y(X) = / e - Mlg(z) dz, (10)

respectively.

E(IX —ml]) = /OOO & — mlg() do

= /m(m —2)g(z)dx + /oo(x —m)g(z)dx

B 0 m
:2m/0 g(x)dxfm—E(X)qLQ/m zg(x) dzx
:2mF(m)+2/ zg(z) de — E(X) —m
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Therefore, since we have y = \/E((\/f——\/;)/\-s-z) and M = \/(1, log (ﬁ)v
51(X) =2uF (p) — 2p + 2/ xg(x) dx
m
1 1
= m\/% [\/ﬁ)\ Erfc <2ﬁ(—\/§A+A+\/§)) (11)

42(1 - \) Erfe (i\/%((\/i—z) )\+2)>}7

Bx) =2 [ °° 2g(@)de —

VAZ+T+A-1
=2 \V2anErf <\/2 log (

= i [4\/04 log (2)\> +2(1 = MVard + AV 2ar

(12)
2\
\//\2+1+/\—1>>

—4y/am(1 — \)Erf <\/Iog (\/)\27_‘_?/\_’_)\_1)>] :

2.8. Entropies

An entropy provides an excellent tool to quantify the amount of information (or
uncertainty) contained in a random observation regarding its parent distribution
(population). A large value of entropy implies greater uncertainty in the data.
The concept of entropy is important in different areas such as physics, probability
and statistics, communication theory, and economics, etc. Several measures of
entropy have been studied and compared in the literature. If X has the probability,
distribution function f(-) then the Shannon entropy Shannon (1948) is defined by

H(z) = —E (ng(x))
— | g@)nglo)is
0

= — /000 g(z)In |:204I67a12 (1 - A+ 2/\670“2)} dx

= —i ( —2(log(a) + Alog(2) + ) + 4log(2a) + 2(A — 2)

(13)

=22+ (A= 1)2(=1og(1 — X)) + (A + 1)%log(X + 1))
+ 5 .

Rényi entropy (Renyi 1961) can be expressed as

L ln(/oogﬁ(as)dgc>7 B8>0,8+#1
0

Hp(z) = -
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Then Hg(z) can as simplified as follows: for —1 <\ < £,

1 B+1 1 >, /8 2 \"* _ap

)~

for} <A<1,-n2-Inya+i;ln {2;‘;0 (f){zkAk(lA)ﬁka%“(mk
Ga (25, (k+ A Zy) + 27RO~ NR28 - k)ﬂél(r(ﬁ;l)_

Ga (22,28 - m ) )], and for 3 = 1 3wz - ya - g

+InT (%), where Ga(a,z) = f;o t*~le~tdt. It can be noted that, when 3 — 1,

the Rényi entropy converges to the Shannon entropy. For further details, see Song
(2001).

2.9. Order Statistics

Moments of order statistics play an important role in quality control testing
and reliability to predict the failure of future items based on the times of few early
failures. Thus, the kth order statistic of a sample is its kth smallest value. For a
sample of size n, the nth order statistic (or largest order statistic) is the maximum,
that is,

X(n) = max{Xl, cen ,Xn}.

The sample range is the difference between the maximum and minimum. It is
clearly a function of the order statistics:

range{Xl, ce ,Xn} = X(n) — X(l)

We know that if X(l) <. < X(n) denotes the order statistic of a random sample
X1,..., X, from a continuous population with c¢df G x () and pdf gx (x), then the
pdf of X(; is given by

9x; (X) = (j_l;fng(x) (Gx(2)) " (1= Gx ()",

for 57 = 1,...,n. The pdf of the jth order statistic for a transmuted Rayleigh
distribution is given by

. n' —(X$2 —Oé$2
gX(j) (Z’) —m2a$e (1 — )\ + 2)\6 )
j—1

e (1o akaees))

<[ (1 aee)]"
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Therefore, the pdf of the largest order statistic X, is

2 2
9x,, (¥) =2naze”*" (1 — A+ 2Xe™ )
2 2 n—1
x{l—e ax (1—)\—1—)\6 ”)} ,
and the pdf of the smallest order statistic Xy is

gX(1) ((E) = 2”0&$67aw2 (1 -+ 2)\€*az2> )

2.10. Distribution of Minimum, Maximum and Median

Let X1, Xo,..., X, be an independently identically distributed order random
variables from the TR distribution having first, last, and median order probability
density functions, which are given by the following

gim(2) = n[l — Gz, ®)]" " g(z, D)
= 2noza:efo‘x2 (1 — A+ 2)\670@2) (14)

2 2\ 171
X [e*‘m (1 — A+ e )} ,

Gun(@) = 1[Gy, ®)] " g(2(m), @)
2 2 n—1
= 2nax [1 —e T (1 — A+ e )} (15)

x e (1 I 2)\6_‘“2),

and
gnirn(® = E2E L G (1 - G@) )
m ! 22 2\1™
= Lm!—;j) {1 —e (1 — A+ e )}

2 2 m
X {e_‘” (1 — A+ e )}
x 2aze— % (1 — A+ 2Ae*a12),

where & = (a, A).

2.11. Stress Strength Parameter

In reliability theory, the stress-strength model describes the life of a compo-
nent or item which has a random strength X; that is subjected to a random stress
Xs5. The component fails instantaneously when the stress applied to it surpasses
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the strength, and the component will function satisfactorily /acceptably whenever
X1 > Xs. So, R = Pr(X; > X») is a measure of component reliability. Its appli-
cability is found in many spheres especially in engineering fields such as structures,
deterioration of rocket motors, fatigue failure of aircraft structures, and the ag-
ing of concrete pressure vessels, etc. Extensive work on estimation of reliability
of stress-strength models has been undertaken for the well known standard dis-
tributions. However, there are still some distributions (including generalizations
of the well-known distributions) for which the form of R has not been investi-
gated. Here, we derive the reliability R when X; and X5 are independent random
variables distributed with parameters (v, A1) and (@2, A2), then

R = /gl(x)GQ(x) dx
0

= /Qalxe_alm2(1 M+ 2)\16_0‘“2)[1 - e“”mz(l — A2+ /\28_0‘2””2)} dz (17)
0
(%) (OZ%(2 - )\1)(1 + )\2) + a1a2(5 + )\2 - )\1(2 - )\2)) + 20[%)
(Oq + 012)(20t1 + 012)(041 + 2@2)

If 1 = as = «, then

- A A
po3-Mth (18)
6
and if A\ = Ay = A, then
R Qs (oz% (—)\2+)\+2)—|—a1a2 (/\2_)\—|—5)—|—20¢§). (19)

(a1 4+ 2) (20 + ag) (a1 + 2a2)

3. Methods of Estimation

In this section, we describe ten methods to estimate the parameters, a and
A, the TR distribution. We assume throughout that = (x1,---z,,) is a random
sample of size n from the TR distribution; both parameters a and A are unknown.

3.1. Method of Maximum Likelihood Estimation

The ML method is the most frequently used method of parameter estimation
(Casella & Berger 1990). Its success stems from its many desirable properties
including consistency, asymptotic efficiency, invariance property as well as its in-
tuitive appeal. Let x1,...,x, be a random sample of size n from , the likelihood
function of the density (2) is given by
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n

Lo, A\jx) = H g(zi,a, \)
i=1

(20)

n

= 2"y" exp <_a i $22> ﬁxl H (1 o 2)\670@?> )
=1

=1 i=1

The log-likelihood function without constant terms is given by
f(a, A CU) = log L(O[7 A; ;(;)
= logw) + nloga —a Yo + - log (14 + 227T).
i=1 — —

For ease of notation, we will denote the first partial derivatives of any function
f(z,y) by fz, and f,, and its second partial derivatives by fue, fyy, foy, and fyz.
Now setting

lo,=0 and £, =0,

we have
n " " r2e— T
by = — — Y 2 -2\ d =0, 21
« o ; i ;(17)\4»2)\67&1’12) ( )
and
n 2
e — 1
ly = —— =0. 22
DD vy 22)

The MLE 0 = (&, A) of = (@, \) is obtained by solving this nonlinear system of
equations. It is usually more convenient to use nonlinear optimization algorithms
such as the quasi-Newton algorithm to numerically maximize the sample likelihood

function given in .

3.2. Method of Moment Estimation

The MMEs of the two-parameter TR distribution can be obtained by equating
the first two theoretical moments of 1' with the sample moments %Z?:l x; and
LS~ | @2 respectively,

S
i=1

and

%Zx? =a ' (1-Xx+A271). (24)
=1
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3.3. Method of Least-Square Estimation

The least square estimators and weighted least square estimators were pro-
posed by Swain, Venkatraman & Wilson (1988) to estimate the parameters of
Beta distributions. In this paper, we apply the same technique for the TR distri-
bution. The least square estimators of the unknown parameters a and A of TR
distribution can be obtained by minimizing

n

> {F(Xm) %H

j=1

2

with respect to unknown parameters o and .

Suppose F'(X(;)) denotes the distribution function of the ordered random vari-
ables X(1) < X(2) < --- < X(y), where {X;, Xy,---, X, } is a random sample of
size n from a distribution function F(-). Therefore, in this case, the least square
estimators of o and A, say &rsg and A LsE respectively, can be obtained by mini-
mizing

n

—ocmz- —OLI'Q- j 2
E 1—ce <1>(1—)\+)\e <!>)—
n—+1

j=1

with respect to o and A.

The weighted least square estimators of the unknown parameters can be ob-
tained by minimizing
n . 2
J
w; | F(X) —
; ]|: ( (J)) n—l—l}

with respect to a and A. The weights w; are equal to V&(_)) =
J

(n+1)*(n+2)

J(n—j+1)
Therefore, in this case, the weighted least square estimators of a and A, say éwrsg
and Ay rsp respectively, can be obtained by minimizing

n

D2(n+2 ]
ZW{le‘O‘m?w (1—A+Ae“”?i>)f J }
= n—j+1 n+1

with respect to o and A.

3.4. Method of Percentile Estimation

If the data comes from a distribution function which has a closed form, then we
can estimate the unknown parameters by fitting a straight line to the theoretical
points obtained from the distribution function and the sample percentile points.
This method was originally suggested by Kao (1958, 1959) and it has been used for
Weibull distribution and for generalized exponential distribution. In this paper,
we apply the same technique for the TR distribution. Since,

Gz, \) =1— e_axz (1 -2+ )\G_QIQ)Q
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therefore,

2\

. l_lln (Ol)WQDQHA(lp))r'

Let X(;y be the jth order statistic, i.e, X(1) < X(g) < -+ < X(). If p; denotes
an estimate of G(z(;);, A), then the estimate of o and A can be obtained by
minimizing

> (w0 - [;hl((k—lw¢<A;;>2+4A<1—pj>>r

j=1

with respect to o and A. The estimates of & and A can be obtained by solving the
following nonlinear equations

A—1+44/X2422—dxp, +1 _ 22
n 108 ( 2X > + \/&x(j)\/log <)\—1+\/x\2+2/\—4)\pj+1>
Z a2 =0
j=1

<A+,/A2+2A—4Ap]»+1—1
log N
(VIF2X =Dy 1+ A2p -1 = 1) | \ - _ — 0
> o,
i=1
2 — . 2 — . _ . 2
VEMN/AEFAE — dp;) T 1 (/\ + VAT F2N—dap; +1 1) ng <HW2+2A74API7+171)

respectively. We call the corresponding estimators the percentile estimators or
PCE’s. Several estimators of p; can be used in this case, see, for example, Mann,

Schafer & Singpurwalla (1974). In this paper, we consider p; = ﬁ

3.5. Method of L-Moments Estimation

In this section, we provide the L-moments estimators, which can be obtained
as the linear combinations of order statistics. The L-moments estimators were
originally proposed by Hosking (1990), and it is observed that the L-moments
estimators are more robust than the usual moment estimators. The L-moment es-
timators are also obtained in the same way as the ordinary moment estimators, i.e.
by equating the sample L-moments with the population L-moments. L-moment
estimation provides an alternative method of estimation that is analogous to con-
ventional moments. It has the advantage that it exists whenever the mean of the
distribution exists, even though some higher moments may not exist, and it is rel-
atively robust to the effects of outliers (Hosking 1994). Hosking (1990) states that
the L-moment estimators are reasonably efficient when compared to the maximum
likelihood estimators for distributions such as the normal distribution, the Gumbel
distribution, and the GEV distribution.
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In this case, the L-moments estimators can be obtained by equating the first
two sample L-moments with the corresponding population L-moments. The first
two sample L-moments are

1

n
1=

1o 2
lh=— : lg = ——
T Zx(l)’ > an—1)
=1
and the first two population L-moments are
A = E(X11) = E(X) (25)

— o V2T (1 + % (1 a4+ )\2—1/2>

A2 = = [E(Xa:2) — E(X24)], (26)

DN | =

where

B(X22) = 4a /Ooo e (1= A+ 27 ) [1- e (1= A2 )| do
_ VT((B+3v2-4Vv3) N +4(3-3V2+V3) A +3(V2-4))
B 12/a :

and

E(X12) = 4o /OOO 2o (1= A+ 26707 ) (1= A+ A" do

VT (A ((B+3v2-4V3) A - 6v2+4V3) +3V2)
12y '

The L-moments estimators ar g and XL mE of the parameters o and A can be
obtained by numerically solving the following equations:

A1 (aLME,XLME) =11, A (aLMEH/):LME) =la. (27)

3.6. Method of Maximum Product of Spacings

Cheng & Amin (1979, 1983) introduced the maximum product of spacings
(MPS) method as an alternative to MLE for the estimation of parameters of
continuous univariate distributions. Ranneby (1984) independently developed the
same method as an approximation for the Kullback-Leibler measure of information.

Using the same notations in subsection [3.4] the uniform spacings of a random
sample from the TR distribution are defined as:

Di(a,\) = F (i | 0y A) — F (i—1n | , N, 1=1,2,...,n,

where F(zo., | a,A) = 0 and F(2n410 | @, A) = 1. Clearly "' Di(a, \) = 1.
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Following (Cheng & Amin 1983), the maximum product of spacings estimators
ayps and Aypg, of the parameters «, and ), are obtained by maximizing, with
respect to a and )\, the geometric mean of the spacings:

n+1 n+1
G(a,\) = lH Di(e, )\)1 , (28)

or, equivalently, by maximizing the function

1 n+1
H (o M) = — > “log Dj(a, A). (29)
i=1

The estimators ay/pg and XM ps of the parameters « and A\ can be obtained
by solving the nonlinear equations

OH (a, \ 1
(a,X) _ (A (@i | 0 A) — Ar (@it |0, A)] =0, (30)

Oa n+1 & Di(a, \)
) 1 &1
2 H(a ) = Ao(2im | @A) — Ao(zi 1o |, \)] =0, (31
A N = 3 3y atein [ 0:) ~ Bafaiin [ )] =0, 61
where , , ,
Ay (Tig | 0, N) = 22, e7 i — g2 ™ Tin 4 2\x? e” i, (32)
and , ,
Ao (Tisn | , ) = €7 *itn — 7200 (33)

Cheng & Amin (1983) showed that maximizing H as a method of parameter
estimation is as efficient as MLE estimation and the MPS estimators are consistent
under more general conditions than the MLE estimators.

3.6.1. Method of Cramér-Von-Mises

To motivate our choice of Cramér-von-Mises type minimum distance estima-
tors, (Macdonald 1971) provided empirical evidence that the bias of the estimator
is smaller than the other minimum distance estimators. Thus, The Cramér-von-
Mises estimates that acarp and Aoag of the parameters o and A are obtained by
minimizing, with respect to a and A, the function:

1 " 2 —1\°
Cla\) = 7~ + > <F (@in | 0, A) = = > : (34)
=1

These estimators can also be obtained by solving the non-linear equations:

n

3 (F (i | 0, ) — 2= 1) Ar (im0 2) =0,

. 2n
=1

n

21 —1
Z (F (Tin |y A) — ZQn )AQ (Tim | a, A) = 0,

i=1

where Ay (. | @, \) and Ay (. | @, A) are given by and , respectively.
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3.6.2. Methods of Anderson-Darling and Right-tail Anderson-Darling

The Anderson-Darling test was developed in 1952 by Anderson & Darling
(1952) as an alternative to other statistical tests for detecting sample distribu-
tions departure from normality. Specifically, the AD test converges very quickly
towards the asymptote (Anderson & Darling 1954, Pettitt 1976, Stephens 2013).

The Anderson-Darling estimators @ pg and h) ApEg of the parameters o and A
are obtained by minimizing, with respect to a and A, the function:

n

A(a,\) = —n— % Z (20 — 1) {log F (zimn | o, A) +10g F (Tn41-im | @, A)}. (35)
i=1

These estimators can also be obtained by solving the non-linear equations:

n
ZQi—l

i

At (T | @, N) A1(n+lm|a,)\) 0
F(xln | 0[,)\) F(xn-&-l—z.n ‘ aa)‘) ’
)
)

Asg (mi:n | 047/\) . AV ($n+l—z:ﬂ, | a, A
F(‘Tiin | OZ,)\) F(xn+1fi:n ‘ a, A

1
(26 —1)
1

n

where Ay (- | @, \) and Ay (- | @, A) are given by and , respectively.

The Right-tail Anderson-Darling estimates a@rrapr and XRT ApEg of the pa-
rameters o and A\ are obtained by minimizing, with respect to a and A, the func-
tion:

n n

Rlo,N) = 5~ 23 F (i | 0 ) - %Z (2 — 1)10g F (11 im |, ). (36)

=1 i=1

These estimators can also be obtained by solving the non-linear equations:

Al LL'Z n | 6] )\) 1 i . A1 (x'n+l—f‘77 Oé’)\)

9 =57 (20— 1) S =0,
Z JUzn|O‘ )‘) +n;( ' ) F(xn+1*itn|aa)‘)
AQ Ti:m | « )\) 1 « . Ay (xn+17ri-n | a7/\)

-2 + — 21 —1) = - = Oa
ZF.Z‘“.L|/\O') n;(z )F(xn+1_m|oz,/\)

where Ay (- | o, A) and As (- | &, A) are given by and (33), respectively.

4. Simulation

We conduct Monte Carlo simulation studies to compare the performance of
the estimators discussed in the previous sections. We evaluate the performance of
the estimators based on bias, root mean squared error, the average absolute differ-
ence between the theoretical and empirical estimate of the distribution functions,
and the maximum absolute difference between the theoretical and empirical dis-
tribution functions. Methods are compared for sample sizes n = 20, 50, 100, and
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200. 10,000 independent samples of size n are first generated from the transmuted
Rayleigh (TR) distribution with parameters o = 0.5,1,3,5,10 and A = 0.7. We
observed that 10,000 repetitions were sufficiently large provide have stable results.
For all the methods considered in this study, we first estimated the parameters
using the method of maximum likelihood. For all other methods, the maximum
likelihood estimates were used as the initial values. Also, the same randomly gen-
erated samples were used to compare all the estimation methods. The results of
the simulation studies are reported in Tables

The pseudo-random numbers were generated from the Transmuted Rayleigh
distribution using the following function:

L [_iln<(>\1)+\/()\1)2+4>\(1u)>r’ (37

2\

where u ~ UNIF(0,1)

For each estimate we calculate the bias, root mean-squared error, and the av-
erage absolute difference between the theoretical and empirical estimate of the
distribution functions, and the maximum absolute difference between the theo-
retical and empirical distribution functions. The statistics are obtained using the
following formulae.

P o1
Bias(&) = & Z(ai —a), Bias(\) = 7 (38)
=1
(39)
F(wi5]a, A)| (40)
1 & .
Dmax (&) = = Z max |F(2ij]a, \) — F(a]da, )| (41)

Simulated bias, RMSE, and D,j,q, Dmax for the estimates are presented in
Tables The row indicating > Ranks shows the partial sum of the ranks. A
superscript indicates the rank of each of the estimators among all the estimators
for that metric. For example, Table [1| shows the bias of MLE(&) as 0.295'° for
n = 20. This indicates, that the bias of &, obtained using the method of maximum
likelihood ranks was 10" among all other estimators. Table |§| shows the partial
and overall rank of the estimators; it is used to find the overall performance of
estimation techniques.
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The following observations can be drawn from the Tables

1.

All the estimators show the property of consistency, i.e. the RMSE decreases
as the sample size increases.

. The bias of & decreases with an increasing n for all the method of estimations.

. The bias of A decreases with an increasing n for all the method of estimations.

The bias of & generally increases with an increasing alpha for any given alpha
and n and for all methods of estimation.

. In terms of RMSE;, all the methods of estimation produce smaller RMSE for

& compared to that of A

D,1,q is smaller than Dy, for all the estimation techniques. Again, these
statistics get smaller with a a sample size increase.

In terms of performance of the methods of estimation, we found that max-
imum product spacing (MPS)estimators is the best method as it produces
the least estimate biases with the least RMSE for most of the configurations
considered in our studies. The next best method is the percentile estimators
(PCE), followed by right tailed Anderson-Darling estimators. The weighted
lest squared estimation (WLS) method ranked 4th while MLE ranked 5th.
Method of Cramér-von-Mises ranked 10th among the ten method of estima-
tion.

. While MPS uniformly performed the best for all values of n and «, the PCE

and WLS method performed the best for a < 5. Their performance was
degraded for o« = 10.

The overall positions of the estimators are presented in Table 6, from which
we can confirm the superiority of MPS and PCE.
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TABLE 6: Partial and overall ranks of all the methods of estimation for A = 0.7 and

various a.
a n MLE MME LME LSE WLS PCE MPS CVM AD RAD
0.5 20 6 10 7 4 3 2 1 8 5 9
50 6 9 7 7 3 2 1 10 4 5
100 3 6 8 9 5 2 1 10 7 4
200 3 5 8 9 6 1 1 10 7 4
1 20 7 10 9 4 4 2 1 8 3 6
50 8 10 7 6 5 3 1 9 2 4
100 5 7 8 9 6 2 1 10 2 4
200 5 6 8 9 7 2 1 10 3 4
3 20 5 10 9 4 3 2 1 7 8 6
50 5 10 9 4 3 2 1 7 8 5
100 5 9 10 4 3 2 1 7 8 6
200 3 8 10 5 4 2 1 7 9 6
5 20 4 10 9 5 3 2 1 7 8 6
50 4 10 7 6 3 2 1 9 7 5
100 4 9 8 6 3 2 1 9 7 5
200 3 6 10 7 4 2 1 9 8 5
10 20 8 4 5 3 10 7 1 2 9 6
50 9 5 6 2 10 7 1 3 7 3
100 8 2 3 7 10 6 1 9 5 4
200 7 2 3 9 8 4 1 10 6 5
> Ranks 108 148 151 119 103 56 20 161 123 102
Overall Rank 5 8 9 6 4 2 1 10 7 3

5. Real Data Analysis

In the following section, for illustrative purposes we present two applications
for the proposed TR distribution to real data for illustrative purposes. These ap-
plications will show the flexibility of the TR distribution in modeling positive data.
For the purpose of comparison, we also fit one Rayleigh parameter, Weibull, and
Gamma distributions for the same data. We use the fitdistrplus R package to
fit the distributions. The fits of these four distributions are presented in the sub-
sequent sections. We present a comparative density plot, plots of the distribution
functions, and Q-Q and P-P plots for all four distributions. For example, Figure 7]
shows the comparative density, distribution, g-q, and p-p plots for the guinea pig
data which we discussed in Section [.11

Classical goodness of fit of a given distribution can be assessed via the density
plot and the CDF plot. The Q-Q an P-P plots may provide additional information
in some cases. In particular, the Q-Q plot may provide information about the
lack-of-fit at the tails of the distribution, whereas the P-P plot emphasizes the
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lack-of-fit at the center of the Muller and Dutang distribution (Delignette-Muller
& Dutang 2014).

To evaluate the performance of the candidate distributions that best fit the
data, we calculate the log-likelihood of the fitted models based on numerically ob-
tained maximum likelihood estimations via the fitdist () function, available in
the fitdistrplus R package. We then obtain the values of AIC and BIC. Addi-
tionally, we test for goodness of fit for the candidate models using the Kolmogorov-
Smirnov (K-S) test, Anderson-Darling’s (AD) test, and the Cramér-von-Mises
(CVM) test. Note that, the K-S test requires unique items for us to obtain exact
p-values. Therefore, we made sure to break the ties by adding a tiny random noise,
which is uniform between 0.001 and 0.01, to each duplicate observation. Adding
this small noise did not affect the statistical properties of the data. The two data
sets considered in this study include tied observations. As such, we removed ties
for both data sets using the process outlined above. We present a descriptive sum-
mary of original data as well as for the data after ties were broken. This shows
a minor difference between the original and modified data sets. It should also be
mentioned that removal of duplicate observations is necessary for the MPS method
of estimation.

5.1. Example 1: Guinea Pig Data

Our first data set contains survival times (in days) of guinea pigs injected with
different doses of tubercle bacilli and is given in Table The data has been
analyzed by Kundu & Howlader (2010) and by Singh, Singh & Sharma (2013).
We present the data after breaking the ties.

TABLE 7: Survival times (in days) of guinea pigs injected with different doses of tubercle
bacilli.

0.012 0.015 0.022 0.024 0.032 0.033 0.034 0.038 0.043 0.044 0.048 0.052
0.053 0.054 0.055 0.056 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.065
0.067 0.068 0.070 0.072 0.073 0.075 0.076 0.081 0.083 0.084 0.085 0.087
0.091 0.095 0.096 0.098 0.099 0.109 0.110 0.121 0.127 0.129 0.131 0.143
0.146 0.175 0.211 0.233 0.258 0.263 0.297 0.341 0.376 0.030 0.036 0.043
0.061 0.060 0.063 0.063 0.063 0.072 0.081 0.153 0.181 0.260 0.347 0.074

5.1.1. Finding a suitable distribution for guinea pig data

We compare the fit of Rayleigh, Weibull, Gamma, and Transmuted Rayleigh
distribution for the guinea pig data set. The data contains tied observations,
and, therefore, we modified the data as discussed above to remove the ties. The
summary of original data set, as well as the modified one, is presented in Table
We do not observe any noticeable difference in the calculated statistics for the
modified data set compared to the original one.
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TABLE 8: Summary of Guinea Pig data: Original vs Modified.

Data Min Q1  Median Mean Q3 Max
Original 0.01200  0.05475 0.07000 0.09982 0.11280 0.37600
Ties broken  0.01200 0.05575 0.07177 0.10080 0.11280  0.37600

Next, we present the fit statistics for four distributions for the guinea pig data.
The log-likelihood statistic, the AIC, the BIC, and the tests statistics along with
the p-values for K-S, AD, and CVM goodness of fit tests are presented in Table 9]
Results show that the transmuted Rayleigh distribution best fits the guinea pig
data having the largest log-likelihood, smallest AIC, and smallest BIC among all
four candidate distributions. Graphical check for the model fitting is shown in
Figure[7] From the histogram and theoretical density plots, transmuted Rayleigh
distribution shows reasonably good fit especially in the right tail area. Fitting
right tail area is particularly important for many life testing reliability problems.
From the Q-Q plot, we find that the TR model is reasonably a good fit at the
lower tail of the distribution as well. However, Weibull and gamma seems to be
fitting the data in the middle of the distribution. We made our decision of finding
the best fitting model based on the largest log-likelihood value and smallest AIC
and BIC values. Based on these criteria, TR fits the guinea pig data best.

TABLE 9: (Guinea pig data) Fitting distributions to find the best fit model.

Distribution ~ LogLik AIC BIC K-S(p) AD(p) CVM(p)
Rayleigh 91.48  —178.96 —174.41 0.25 (.000) 6.15 (.000)  1.28 (.001)
Weibull 99.83  —195.66 —191.10 0.15 (.088) 2.36 (.059)  0.41 (.067)
Gamma 102.83 —201.66 —197.11 0.99 (.000) 781.60 (.000)  23.99 (.000)
TRayleigh 111.37 —218.73 —214.18 0.48 (.000)  46.29 (.000)  6.52 (.000)

5.1.2. Bootstrap Estimates (Guinea Pig Data): Bias and Standard
Errors

Since the transmuted Rayleigh distribution best fits the data, we carry out ordi-
nary nonparametric bootstrap resampling to obtain bias, standard error, and 95%
bootstrap percentile confidence intervals for the parameters o and A of the trans-
muted Rayleigh distribution. In ordinary nonparametric resampling, repeated
samples are drawn from the original data with replacements. In addition, to the
original data set, we draw 999 bootstrap samples to obtain the estimators bias
and standard error of the estimators. Results are shown in Table [0l We note
that moments based methods have estimates for a that are around 53 while the
estimates for A\ are around 0.58. For &, WLS produces the least biased estimate
while MPS a has higher bias. For 5\, all the methods produce a small bias and
standard error.
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FIGURE 7: (Guinea pig data) Comparison of fit for the four distributions of the guinea

pig survival time data.

TABLE 10: (Guinea pig data) Estimated bias and standard error of the estimates & and

X and their 95% percentiles of the lower and upper confidence limits based

on 999 bootstrap samples.

Method & A

Est. Bias SE LCL UCL Est. Bias SE LCL UCL
MLE 46.642 1.703 8.889 33.72 69.84 0.647 —0.002 0.053 0.544 0.751
LSE 77.284 —2.983 10.602 55.22  96.51 0.587 0.068 0.144 0.508 1.000
WLS 75.952  —0.030 12.727 52.65 101.29 0.570 0.020 0.059 0.532 0.757
PCE 43.992 1.398 9.374 30.62 66.27 0.582 0.000 0.020 0.544 0.622
MPS 44.364 —37.897 6.020 3.76 25.76 0.654 0.285 0.151 0.387 1.000
CVM 76.546 —3.044 10.610 54.99 96.46 0.600 0.074 0.153 0.509 1.000
RAD 55.178 0.867 12.452 33.80 81.31 0.657 —0.001 0.047 0.565 0.751
LME 51.856 1.964 10.834 36.23 76.86 0.552 —0.006 0.034 0.535 0.552
MME 52.467 1.185 10.417 35.60 77.82 0.578 0.008 0.020 0.578 0.595
MMM  52.566 0.959 10.429 36.74 T77.25 0.593 —0.006 0.006 0.577 0.594
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5.2. Example 2: Fibre Strength Data

The second data set consists of 100 measurements on breaking stress of carbon
fibres (in Gba). The data in Table [11]is taken from Cordeiro, Ortega & Popovi¢
(2014). The data was also used in Nadarajah, Cordeiro & Ortega (2013). We
present the data after the ties broker.

TABLE 11: Breaking strengths of carbon fibres (in Gba).

039 081 08 098 1.08 1.12 1.17 1.18 122 1.25
1.36 141 147 157 159 161 169 171 173 1.80
1.84 1.87 1.89 1.92 200 203 205 212 217 235
238 241 243 248 250 253 255 256 259 267
2.73 274 276 277 279 281 282 283 285 287
2.88 293 295 296 297 3.09 311 3.15 3.19 3.22
327 328 331 333 339 351 356 3.60 3.65 3.68
3.70 3.75 420 438 442 470 490 491 5.08 5.56
1.58 1.60 1.61 1.70 185 2.04 217 217 248 2.5
282 298 311 316 3.19 323 331 339 3.68 3.69

5.2.1. Finding a suitable distribution for fibre data

Similar to the guinea pig data, we compare the fits of Rayleigh, Weibull,
Gamma, and transmuted Rayleigh distribution for the fibres data set. There were
20 tied observations in the data set. We prepared the data by breaking the ties
following the procedure discussed earlier. The summary of the original and the
modified data (after breaking ties) is shown in Table We notice that the mod-
ified data has nearly the same descriptive characteristics as those in the original
data set.

TABLE 12: Summary of Fibres data: Original vs Modified.

Data Min Q1 Median  Mean Q3 Max
Original 0.390 1.840 2.700 2.621  3.220 5.560
Ties broken  0.390 1.847 2.700 2.622  3.221  5.560

For the fibres data, we present fit statistics of Rayleigh, Weibull, Gamma,
and transmuted Rayleigh distribution in Table [I3] these show that the trans-
muted Rayleigh distribution best fits the data ans has the largest log—likelihood
(—105.39), the smallest AIC (214.77), and the smallest BIC (219.99) among all
four candidate distributions. A histogram with theoretical density curves super-
imposed over the data is shown in panel (a) of Figure |8l The cdf, Q-Q, and P-P
plots also show evidence that the TR is a good candidate model.
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TABLE 13: (Fibres strength data) Fitting distributions to find the best fit model.

Distribution = LogLik AIC BIC K-S(p) AD(p) CVM(p)
Rayleigh —144.50 293.00 29821 0.11 (.157) 1.66 (.143)  0.314 (.123)
Weibull ~141.53  287.05 292.26 0.06 (.868)  .0.41 (.836)  0.06 (.797)
Gamma ~143.24 29049 29570  0.96 (.000) 490.87 (.000)  32.74 (.000)
TRayleigh ~ —105.39 21477 219.99 0.17 (.014)  4.82 (.003) 0.854 (.005)
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Ficure 8: Comparison of fit of several distributions for the fibres strength data.

5.2.2. Bootstrap Estimates (fibres data): Bias and Standard Errors

Since transmuted Rayleigh distribution best fits the fibres data, were obtain
bootstrap biases and standard errors of the estimates of the parameters of the TR
distribution using different methods of estimation. Results are shown in Table
We find that the MLE and all the moment-based methods are nearly unbiased for
the parameter «. The worst performing method for this data set is the MPS, which
produces a relatively large bias (0.325) for the estimate. The bootstrap percentile
confidence intervals for A shows that the lower limit is actually at the lower bound
for the parameter. Also, note that the moment-based methods produce confidence
intervals for A, the lower limit of which falls outside the bound of the parameter,
which is —1.
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TABLE 14: (Fibres Data) Estimated bias and standard error of the estimates & and A
and their 95% percentiles of the lower and upper confidence limits based on
999 bootstrap samples.

Method a A

Est. Bias SE LCL UCL Est. Bias SE LCL UCL
MLE 0.184 —0.000 0.015 0.153 0.216 —0.919  0.009 0.110 —1.000 —0.626
LSE 0.178 —0.001 0.014 0.151 0.205 —0.895 0.032 0.153 —1.000 —0.476
WLS 0.189 —0.002 0.015 0.154 0.216 —1.000  0.075 0.125 —1.000 —0.588
PCE 0.180  0.001 0.156 0.151 0.213 —0.884  0.004 0.130 —1.000 —0.546
MPS 0.178  0.325 3.535 0.130 0.238 —0.851 0.101 0.204 —-0.852 —0.246
CVM 0.181 —0.002 0.014 0.152 0.208 —0.923  0.035 0.129 —1.000 —-0.572
RAD 0.188 —0.005 0.017 0.151 0.221 —1.000  0.089 0.135 —1.000 —0.525
LME 0.186  0.001 0.017 0.157 0.221 —0.945 —0.011 0.159 -1.261 —0.641
MME 0.188  0.001 0.016 0.157 0.222 —0.961 —0.009 0.161 —1.263 —0.653
MMM  0.187 0.001 0.018 0.156 0.227 —0.950 —0.002 0.161 —1.234 —-0.623

6. Conclusion

In this article, we have provide explicit expressions for the quantiles, moments,
moment generating function, conditional moments, hazard rates, mean residual
lifetime, mean past lifetime, mean deviation about mean and median, the stochas-
tic ordering, various entropies, stress-strength parameter, and order statistics. The
model parameters are estimated by ten methods of estimation, namely, maximum
likelihood, moments, L-moments, percentile, least squares, weighted least squares,
maximum product of spacing, Cramer-von Mises, Anderson-Darling, and right
tailed Anderson-Darling. We have performed an extensive simulation study to
compare these methods. We have compared estimators with respect to bias, root
mean-squared error, the average absolute difference between the theoretical and
empirical estimate of the distribution functions, and the maximum absolute dif-
ference between the theoretical and empirical distribution functions. We have also
compared estimators wing two real data applications.

The simulation results show that maximum product spacing (MPS) estimators
is the best performing estimator in terms of biases and RMSE. The next best
performing estimator is the percentile estimator (PCE), followed by the right tailed
Anderson-Darling estimators. The real data applications show that the maximum
product of spacing estimator gives the shortest confidence intervals for the alpha
for Guinea Pig data set and the LSE for Fibre strength data set. Hence, we
can argue that the percentile estimators, least squares estimators, right tailed
Anderson-Darling estimators and the maximum product spacing estimators are
among the best performing estimators for TR distribution.
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