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Abstract

Determining the extent of a disparity, if any, between groups of people,
for example, race or gender, is of interest in many �elds, including public
health for medical treatment and prevention of disease or in discrimination
cases concerning equal pay to estimate the pay disparities between minority
and majority employees. The Peters-Belson (PB) regression is a form of
statistical matching, akin in spirit to Bhattacharya's bandwidth matching
which is proposed for this purpose. In this paper, we review the use of PB
regression in legal cases from Bura, Gastwirth & Hikawa (2012). Parametric
and nonparametric approaches to PB regression are described and we show
that in nonparametric PB regression a suitable kernel function can improve
results, i.e. by selecting the appropriate kernel function, we can reduce bias
and variance of estimators, also increase the power of tests.

Key words: Kernel function; Local linear regression; Welch's approxima-
tion.

Resumen

Determinar el alcance de una disparidad, si la hubiere, entre grupos de
personas, por ejemplo, raza o género, es de interés en muchos campos, in-
cluida la salud pública para el tratamiento médico y la prevención de enfer-
medades o en casos de discriminación en relación con la igualdad salarial para
estimar las disparidades salariales entre los empleados minoritarios y mayo-
ritarios. La regresión de Peters Belson (PB) es una forma de coincidencia
estadística, similar en espíritu a la coincidencia de ancho de banda de Bhat-
tacharya que se propone para este propósito. En este trabajo, repasamos
el uso de la regresión del PB en casos legales de Bura et al. (2012). Se
describen los enfoques paramétricos y no paramétricos de la regresión del
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PB y demostramos que en la regresión no paramétrica del PB una función
de kernel adecuada puede mejorar los resultados, es decir, seleccionando la
función de kernel apropiada, podemos reducir el sesgo y la varianza de los
estimadores, también aumentan el poder de las pruebas.

Palabras clave: Aproximación de Welch; función kernel; regresión lineal
local.

1. Introduction

In disparate treatment and equal pay discrimination cases, the salaries of mi-
nority/disadvantaged group (DG) members should be compared to those of sim-
ilarly quali�ed majority/advantaged group (AG) employees. The PB regression,
as well as ordinary regression with an indicator representing group status, have
been accepted by courts (Gray 1993). As Bura et al. (2012) point out �the PB
method o�ers some advantages compared to standard regression with a dummy
or indicator variable. First, the method is intuitive and comparatively easy to
understand for a general audience (e.g., judges, juries, etc.). For example, in the
context of sex discrimination cases, PB regression estimates the salary equation
for the male group (AG) incorporating related covariates and then takes the di�er-
ence between the female group's (DG) actual salary and the estimated salary that
the DG employee would have received if s/he were paid according to the equation
for AG employees. Moreover, the estimated pay di�erential obtained from the
PB approach is individualized for each member of the protected group. In con-
trast, ordinary least squares linear regression with an indicator variable estimates
a common overall e�ect of being DG, after adjusting for the relevant covariates.
This approach assumes that any di�erential is the same across the entire range of
covariate values. Another advantage of the PB method is that the females whose
salaries are higher than predicted and were not discriminated against are readily
identi�able�.

The PB regression method was �rst introduced by Peters (1941) and Belson
(1956) for conducting treatment-control comparisons that accounted for relevant
covariates by creating statistical matches for the treatment group observations.
Blinder (1973) and Oaxaca (1973) used this idea to decompose the di�erence be-
tween the means of the two groups into components. Gastwirth & Greenhouse
(1995) applied the PB method to salary data as well as to logistic regression for
binary responses in order to analyze the data arising from a case involving promo-
tion decisions (Capaci v. Katz and Bestho�1). Furthermore, Nayak & Gastwirth
(1997) extended the method to generalized linear models. Hikawa, Bura & Gast-
wirth (2010a) introduced nonparametric PB in regressions with a binary response
as an alternative to logistic regression. Hikawa, Bura & Gastwirth (2010b) intro-
duced the local linear regression in PB. They considered the unknown functions
for modeling the mean response in the two groups. Then they used Epanech-
nikov kernel to estimate unknown functions (for details about linear and nonlinear
regression see Achcar & Lopes, 2016).

1Capaci v. Katz and Bestho� 711 F. 2d 647, 5th Cir., 1983
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In this paper, we review the use of PB regression in legal cases from Bura
et al. (2012). We suggest using another kernel functions and show that choose an
appropriate kernel function can improve the results. The layout of the paper is as
follows: In Section 2, we review parametric PB regression, based on parametric
ordinary linear regression. Section 3, introduces a recent nonparametric version
from Hikawa et al. (2010b) that increases the applicability of the PB approach. In
Section 4, we apply all of the methods outlined to data from a sex discrimination
case, and Section 5 contains the simulation study. We present the conclusion in
Section 6.

2. Parametric Peters-Belson Regression

In this section, we review parametric PB regression. Like the study of Bura
et al. (2012), we assume that the salaries (Y ) are determined by a set of covari-
ates (e.g., seniority, education, etc.) plus normally distributed random errors (ε).
Suppose the salaries for minority and majority employees are given, respectively,
by

Minority(DG) : Y1i = XT
1iβ1 + ε1i, i = 1, . . . , n1

Majority(AG) : Y2j = XT
2jβ2 + ε2j , j = 1, . . . , n2

X denotes the covariate vector and β the corresponding coe�cient vector. The
errors, in each equation, are assumed to be normally distributed with mean zero
and variance σ2

1 and σ2
2 , respectively. If β1 = β2, there is no unjusti�able pay

di�erential and the di�erence of salaries is due to random variability. A meaningful
measure of pay di�erential against the minority employee with a given value of the
covariate is:

δi = XT
1iβ1 −XT

1iβ2

If δi is negative, the i-th minority employee is underpaid compared to a major-
ity employee with the same covariate values. In parametric PB, a linear regres-
sion model is �tted to the data for the majority employees. Then each minority
member's salary is predicted by XT

1iβ̂2, where X1i is the covariate vector for the

i-th minority member and β̂2 is the least squares estimate of β2. The di�erence,
Di = Y1i−XT

1iβ̂2, between the actual and predicted salaries is the estimate of the
pay di�erential of the i-th minority employee relative to a similarly quali�ed ma-
jority employee. Thus, Di is the parametric PB estimate of δi. When the model
is correct, Di is unbiased for δi and the corresponding unbiased estimator for the
average disparity overall minority employees

δ =
1

n1

n1∑
i=1

[XT
1iβ1 −XT

1iβ2] = X̄T
1 (β1 − β2)

is equal to

D̄ =
1

n1

n1∑
i=1

Di =
1

n1

n1∑
i=1

[Y1i −XT
1iβ̂2],
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where X̄1 is the mean vector of the minority covariate values. The variance of D̄
is

V ar(D̄) =
σ2
1

n1
+ σ2

2X̄
T
1 (XT

2 X2)−1X̄1, (1)

where X2 = (X21, X22, . . . , X2n2)T is the usual design matrix of the majority
group. When we assume σ2

1 = σ2
2 = σ2, the test statistic

t =
D̄√

σ̂2[1/n1 + X̄T
1 (XT

2 X2)−1X̄1]
(2)

can be used to test the null hypothesis δ = 0. Gastwirth (1989) suggested that
majority observations be used to estimate the common variance σ2 because under
the hypothesis of no discrimination both majority and minority are supposed to be
paid under the same system and hence the variances are supposed to be the same
as well. If we use σ̂2 = σ̂2

2 , under the null hypothesis of δ = 0, the test statistic
in (2) is t-distributed with n2 − p2 degrees of freedom, where p2 is the number of
parameters (coe�cients) in the majority model.

Gastwirth (1989) discusses the form of the variance of D̄ in simple regression
and the hypothesis testing for δ. Nayak & Gastwirth (1997) focus on a slightly
di�erent version of δ and its estimator and derive its distributional properties.

When the error variances are assumed to be di�erent, we can approximate the
distribution of the test statistic by using Welch's approximation approach (Welch
(1949); Sche�e (1970); Nayak & Gastwirth (1997)). Under this approximation,
the test statistic distribution under the null is approximated by a t distribution
with degrees of freedom:

df =

(
σ2
1

n1
+ X̄T

1 (XT
2 X2)−1X̄1σ

2
2

)2
σ4
1/[n

2
1(n1 − p1)] + σ4

2/(n2 − p2)X̄T
1 (XT

2 X2)−1X̄1X̄T
1 (XT

2 X2)−1X̄1
(3)

Since σ2
1 and σ

2
2 are unknown, the degrees of freedom are estimated by substituting

σ̂2
1 and σ̂2

2 in (3). For more details see Hikawa (2009).

Note 1. The measure of average pay di�erential δ was used by Gastwirth (1989)
with the particular intention to analyze the data arising from pay discrimination
cases where the two underlying mean salary lines do not cross each other in the
range of covariate values that are of interest. When the two mean lines cross each
other, some values of δi become negative and others become positive; as a result,
taking the average will cancel out these negative and positive values and d will
no longer be a meaningful measure of pay di�erential. Therefore, δ should be
used only for the cases where the two mean lines do not cross. While this is a
theoretical possibility, but this situation does not happen in practice. Therefore,
we recommend that the regression lines be plotted and if they cross, try to �nd
out why; perhaps a variable has been omitted. After considering all the necessary
variables, we probably can be run the PB method.
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3. Local Linear Peters-Belson Regression

In this section, we review the local linear regression technique to estimate the
expected minority responses from the majority data in the PB approach (Bura
et al. 2012). Then, we express the role of the kernel function in �tting the local
linear regression model.

Hikawa et al. (2010b) mentioned two problems an analyst of pay discrimina-
tion data often encounters. The �rst is the di�culty in estimating the salary
equation when it does not appear to follow any usual parametric forms (e.g., lin-
ear, quadratic). The second problem pertains to determining who the relevant
male/majority employees are to be compared against female/minority employees
of interest. Including too many irrelevant majority employees in the comparisons
(e.g., male employees who are too senior compared to the target female employees)
may introduce serious bias in the estimated disparity (Greiner 2008).

To address these problems, Hikawa et al. (2010b) introduced the local linear
regression in PB. Local linear regression �ts a linear regression in the neighborhood
of the covariate values of each minority member. The method is well suited for
equal pay cases since the estimation/prediction of the salary of a minority employee
is based on majority employees whose quali�cations are closest to those of the
minority employee and thus should receive the greatest weight. Furthermore, the
similarity of this method to matched-pairs is expected to make the results more
understandable to judges and juries. Local linear regression is similar in spirit
to bandwidth matching introduced by Bhattacharya (1989). However, the weight
given to each majority observation decreases with the distance of the covariate
values from the target minority member.

Like the study of Bura et al. (2012), suppose we have d covariates and the data
consist of n1 minority observations, (X11, Y11), . . . , (X1n1

, Y1n1
), and n2 majority

observations, (X21, Y21), . . . , (X2n2
, Y2n2

), where X is a vector of d �xed covariate
values. The response values of minority and majority members are generated by
the following equations:

Minority : Y1i = m1(X1i) + ε1i, i = 1, . . . , n1

Majority : Y2j = m2(X2j) + ε2j , j = 1, . . . , n2

where m1(X1i) = E(Y1|X = X1i) and m2(X2j) = E(Y2|X = X2j). Also ε1i's and
ε2j 's are iid N(0, σ2

1) and N(0, σ2
2), respectively. The only assumption we make

on the unknown functions modeling the mean response in the two groups, m1(X)
and m2(X), is that they are twice di�erentiable.

As in the parametric PB de�nition of disparity, the pay disparity for the i-th
minority member is

δi = m1(X1i)−m2(X1i),

and the average disparity of all minority members is

δ =
1

n1

n1∑
i=1

[m1(X1i)−m2(X1i)].
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Let

Zi =


1 (X211 −X11i) . . . (X2d1 −X1di)

1 (X212 −X11i) . . . (X2d2 −X1di)
...

...
...

1 (X21n2 −X11i) . . . (X2dn2 −X1di)


and Wi = diag(W (||X2j − X1i||/h)), where W is a kernel weight function and
||.|| is a norm. Denoting the elements of the �rst row of (ZTi WiZi)

−1ZTi Wi by
Si1, Si2, . . . , Sin2

, the �tted value for the design point X1i is given by

m̂2(X1i) =

n2∑
j=1

SijY2j .

The estimated pay di�erential for the i-th minority member is

Di = Y1i − m̂2(X1i) = Y1i −
n2∑
j=1

SijY2j .

The estimated average pay di�erential against all minority members and its vari-
ance are

D̄LOC =
1

n1

n1∑
i=1

Di =
1

n1

n1∑
i=1

Y1i − n2∑
j=1

SijY2j

 ,

var(D̄LOC) =
1

n21

n1σ2
1 +

n1∑
i=1

n2∑
j=1

S2
ijσ

2
2 +

n1∑ n1∑
i 6=l

n2∑
j=1

SijSljσ
2
2

 .

Since σ2
1 and σ2

2 are usually unknown, the estimated variance of D̄LOC can be
obtained by using estimates σ̂2

1 and σ̂2
2 which can be obtained from the residuals

of the separate local linear regression models within each group. Details of the
estimation approach are given in Hikawa (2009) and Hikawa et al. (2010b). The
estimated variance of D̄LOC is given by

v̂ar(D̄LOC) =
1

n21

n1σ̂2
1 +

n1∑
i=1

n2∑
j=1

S2
ij σ̂

2
2 +

n1∑ n1∑
i 6=l

n2∑
j=1

SijSlj σ̂
2
2

 .

Cleveland & Devlin (1988) showed that, under the assumption of normal errors and
negligible bias of m̂i(X), the distribution of (η2j σ̂

2
j )/(κjσ

2
j ) can be approximated

by a χ2 distribution with degrees of freedom η2j /κj , where

ηj = tr(I − Sj)(I − Sj)T

κj = tr[(I − Sj)(I − Sj)T ]2

for j = 1, 2. Let Sj be the nj × nj matrix whose (i, k)th element is Sik obtained
from �tting a separate smooth curve for the minority and majority groups (i.e.,
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separately estimating m1(Xi) for i = 1, . . . , n1 and m2(Xj) for j = 1, . . . , n2). The
test statistic for testing for lack of disparity (H0 : δ = 0 vs. H1 : δ 6= 0) is de�ned
to be

t =
D̄LOC√

v̂ar(D̄LOC)
. (4)

When the two variances are equal (i.e., σ2
1 = σ2

2 = σ2), we estimate the common
variance by the majority variance estimate σ̂2 = σ̂2

2 ; see Gastwirth (1989). The
estimated variance of D̄LOC becomes

v̂ar(D̄LOC) =
σ̂2

n21

n1 +

n1∑
i=1

n2∑
j=1

S2
ij +

n1∑ n1∑
i6=l

n2∑
j=1

SijSlj

 .

Therefore, under the assumption of equal variances, the test statistic for group

disparity is t distributed with η2

κ degrees of freedom, where η = η2 and κ = κ2.

When the two variances are assumed to be di�erent, as in parametric PB, we
can apply Welch's approximation approach to �nd the approximate distribution
of the test statistic. The expression of the variance of D̄LOC can be expressed as

var(D̄LOC) =
σ2
1

n1
+
σ2
2

n21

 n1∑
i=1

n2∑
j=1

S2
ij +

n1∑ n1∑
i 6=l

n2∑
j=1

SijSlj


= σ2

1C1 + σ2
2C2.

When H0 is true, the test statistic (4) is approximately t distributed with the
degrees of freedom

df =
(σ2

1C1 + σ2
2C2)2

σ4
1κ1/η

2
1C

2
1 + σ4

2κ2/η
2
2C

2
2

. (5)

Since σ2
1 and σ2

2 are unknown in most practical situations, the degrees of freedom
are approximated by plugging σ̂2

1 and σ̂2
2 into (5).

The nearest neighbor bandwidth that �xes the fraction of data that contribute
to the estimation (Cleveland & Devlin (1988); Loader (1999)) is used in �tting
the local linear regression model. Hikawa et al. (2010b) is used Epanechnikov
kernel as the weight function, but we recommend to use another kernels. The
kernel function W (u) is a non-negative real-valued integrable function satisfying
the following requirements:

(i) W (u) ≥ 0 for all u;

(ii)
∫∞
−∞W (u)du = 1;

(iii) W (.) is symmetric about zero;
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In Table 1 some samples of kernels are given. In these kernels, u = ||X2j −
X1i||/h and h is the bandwidth. Epanechnikov kernel is the optimal kernel in the
sense that roughly both the asymptotic mean squared error and the mean inte-
grated squared error are minimized (Fan & Gijbels 1996). Loader (1999) suggests
scaling the vector norm.

Table 1: Some Kernel Functions.

Kernel W(u)

Epanechnikov 3
4

(1− u2)I(|u| ≤ 1)

Normal 1√
2π

e
−u2

2

Logistic 1
eu+e−u+2

Laplace 1
2
e−|u|

We use

||X2j −X1i||2 =

d∑
k=1

(
X2kj −X1ki

Sk

)2

,

where

Sk =

√∑n2

j=1(X2kj −X1ki −
∑n2

j=1(X2kj −X1ki)/n2)2

n2 − 1
.

Since X1ki is �xed, Sk is simply the sample standard deviation of X2k about X1ki

for the majority members for the k-th covariate.

But using Epanechnikov kernel cannot be optimized, since in Epanechnikov
kernel if |u| ≤ 1 then W (u) = 0, while in practice, there may be some values of |u|
that exceed from 1 and thus this kernel doesn't have correctly results to estimate
of these values. Therefore, we recommend using the kernel functions that values
of u belong to real numbers. We used Normal kernel, Logistic kernel, and Laplace
kernel and we concluded these kernels reduce bias and variance of estimators and
increase the power of the test. In this paper, we will call these real kernels.

4. Application: Re-analysis of Data from EEOC v.

Shelby County Government

In this section, we display the role of kernel functions in local linear PB regres-
sion by using data set from the pay discrimination case, EEOC v. Shelby County

Government. This data set reported and analyzed by Bura et al. (2012). In 1983,
a female clerical employee of Shelby County Criminal Court brought a charge of
salary discrimination. The data, presented in Table 2, consist of salaries per pay
period as the response and seniority measured in months since hired as the covari-
ate with 16 male and 15 female clerical employees as of February 1, 1984. Fitting
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a ordinary regression to each gender separately yields:

Ŷf = 885.103 + 4.328Xf (6)

Ŷm = 913.897 + 5.953Xm (7)

where the subscripts m and f stand for male and female. The estimated variances
of the error terms are σ̂2

m = 7494.5 and σ̂2
f = 8757.1, and the sample means and

variances of seniority are: X̄m = 81, S2
m = 1603.3, X̄f = 69.3, and S2

f = 2195.5.
Table 3 summarizes the ANOVA tables for both the male and female models.

Table 2: Shelby County pay discrimination case data.

Male Female

Salary (Y2) Seniority (X2) Salary (Y1) Seniority (X1)

1666 125 1474 128

1666 124 1474 96

1666 124 1403 121

1666 120 1403 117

1548 117 1403 114

1548 116 1336 89

1548 113 1336 97

1548 95 1157 105

1548 73 1000 64

1306 69 1000 51

1157 51 1000 13

1157 47 1000 17

1157 46 929 13

1157 18 929 8

1000 41 929 6

1000 17

Table 3: ANOVA tables for male and female models from the Shelby County data.

Male Female

Sources SS DF MS F SS DF MS F

Seniority 852412 1 852412 113.74* 575666 1 575666 65.74*

Error 104924 14 7495 113842 13 8757

Total 957336 15 689508 14

R2 = 0.89 R2 = 0.83

*P-value was smaller than .0001.

Since the sample sizes of 16 males and 15 female are too small to �t a local
linear regression model, we augmented the data set following the method used by
Bhattacharya (1989) and Bhattacharya & Gastwirth (1999), where they analyze
data from Berger v. Iron Workers Local 201. Fitting a Gamma distribution
to the seniority data yielded Gamma(4, 20) for males and Gamma(2, 33) for
females. Then, we consider two scenarios for enhancing observations. The �rst,
we generate additional salary data for 34 males and 35 females according to the
�tted models in (6) and (7) and other, we generate additional salary data for 84
males and 85 females according to the �tted models in (6) and (7). Therefore,
in two scenarios sample sizes of male and female are same and equal to 50 and
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100, respectively. The error variances were set equal to σ̂2
m = 7494.5 and σ̂2

f =
8757.1 in order to match the estimated variances of the error terms from the �tted
regression models. The data were simulated based on unequal variances for males
and females. Consequently, we compute the variance of D̄ based on the assumption
of unequal variances and approximate the degrees of freedom of the test statistics
using the Welch's approximation approach. Tables 4 and 5 summarize the results
from applying the �ve methods: (1) Parametric PB, (2) Local Linear PB with
Epanechnikov kernel, (3) Local Linear PB with Normal kernel, (4) Local Linear
PB with Logistic kernel and (5) Local Linear PB with Laplace kernel.

In Tables 4 and 5, the negative values of D̄ indicate that female employees were
underpaid on average compared to their similarly quali�ed male counterparts. The
bias and standard error of the average pay di�erential estimated. In Table 4, value
of D̄ of the local linear PB with Epanechnikov kernel is di�erent with other meth-
ods and its variance is greater than the other local linear methods. However, the
parametric PB has the minimum variance. In Table 5, the results of methods are
similar, but parametric PB still has the least variance and among nonparametric
methods, the real kernels have fewer variances. These results demonstrate using
the appropriate kernel can be e�ective in reducing bias and standard error. How-
ever, from a single example, one cannot make general conclusions. Therefore, we
conducted a further simulation study, discussed in the next section.

Table 4: Analysis of the augmented Shelby County Pay Discrimination data (n = 50).

Parametric PB Local PB Local PB Local PB Local PB

(Epanechnikov) (Normal) (Logistic) (Laplace)

D̄ -133.979 -129.116 -133.029 -133.206 -133.833

Bias 4.572 9.435 5.522 5.345 4.718√
v̂ar(D̄) 16.203 21.349 19.893 18.707 18.954

D̄/
√

v̂ar(D̄) -8.267 -6.048 -6.687 -7.121 -7.061

P-value <.001 <.001 <.001 <.001 <.001

Table 5: Analysis of the augmented Shelby County Pay Discrimination data (n = 100).

Parametric PB Local PB Local PB Local PB Local PB

(Epanechnikov) (Normal) (Logistic) (Laplace)

D̄ -125.542 -122.019 -122.364 -122.480 -123.732

Bias 1.500 5.023 4.678 4.562 3.310√
v̂ar(D̄) 11.625 15.625 14.373 13.791 14.017

D̄/
√

v̂ar(D̄) -10.799 -7.809 -8.513 -8.879 -8.827

P-value <.001 <.001 <.001 <.001 <.001

Since the estimated amount of pay di�erential from all the methods is quite
large, the p-values of all test statistics are very small. Hence, all methods would
reject the null hypothesis of no pay di�erential and con�rm the court's conclu-
sion that the female employees were discriminated in their pay with an average
di�erential about $129-134 ($122-125) per pay period for sample size 50 (100).
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5. Simulation

In this section, we display the role of kernel functions in local linear PB regres-
sion by using simulated data. It should be noted that the simulation models were
chosen from Bura et al. (2012). Consider a company that has three stores with
employees of both sexes. In the �rst, amount of pay is same for two group (male
and female). The data of this store simulated from equation (8).

yi = 20000 + 200xi + εi. (8)

In the stores 2 and 3, amount of pay are di�erent for two group and women are
underpaid relative to comparable men in both stores but the system leading to
the disparity di�er in the two stores. In the second store, men and women start
at the same salary but men receive better raises over time, while in the third store
men start at a slightly higher salary and also receive higher raises over time. The
data of these two stores simulated from equations (9) and (10), respectively.

yi =

{
20000 + 200xi + ε1i when i is female

20000 + 250xi + ε2i when i is male.
(9)

yi =

{
20000 + 200xi + ε1i when i is female

20500 + 250xi + ε2i when i is male.
(10)

The values of the seniority predictor variable for females and males were generated
from the Gamma distribution with scale parameters 3 and 2 for females and males,
respectively, and shape 2 for both sexes. To sum up, the simulations run according
to 3 choices for sample sizes of two groups. The �rst, we choose in all three stores,
the number of males is 40 and the number of females is 30, in the second choice,
we consider the number of males is 80 and the number of females is 60 and the
last scenario is based on 60 males and 80 females. The error variances were the
same and errors generated from the normal distribution with mean 0 and standard
error 300. Ten thousand replicates were used in the simulation and the signi�cant
level of α = 0.05 considered.

Table 6 reports the results of the �rst choice for sample sizes. In the �rst
store, where amount of pay is equal for two group, by using parametric PB the
null hypothesis δ = 0 is rejected 5.75% of the times, But by using local PB with
Epanechnikov kernel the null hypothesis is rejected 5.96% of the times and by real
kernels Normal, Logistic and Laplace the null hypothesis is rejected 5.35%, 5.28%
and 5.34% of the times, respectively. Therefore, the size of all tests is close to
nominal level 5%. In store 2, by using parametric PB the null hypothesis δ = 0
is rejected 95.22% of the times, But by using local PB with Epanechnikov kernel
the null hypothesis is rejected 81.97% of the times and by real kernels Normal,
Logistic and Laplace the null hypothesis is rejected 86.40%, 93.47% and 93.09% of
the times, respectively. The comparison of the power of the local linear tests shows
that tests based on Logistic and Laplace kernels have the high powers followed by
the Normal kernel, and Epanechnikov kernel, respectively. In store 3, by using
parametric PB the null hypothesis δ = 0 is rejected 100% of the times, But by
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using local PB with Epanechnikov kernel the null hypothesis is rejected 98.46%
of the times and by real kernels Normal, Logistic and Laplace the null hypothesis
is rejected 99.25%, 100% and 100% of the times, respectively. The comparison of
the power of tests show that all tests have good powers. Furthermore, in all three
stores, the standard error of local PB with Epanechnikov kernel is more than other
methods.

Table 6: Analysis of the simulated data (Scenario 1).

Parametric Local PB Local PB Local PB Local PB

PB (Epanechnikov) (Normal) (Logistic) (Laplace)

Store 1

D̄ -0.286 -1.235 1.342 -0.038 -0.038

Bias -0.286 -1.235 1.342 -0.038 -0.038

Std. Dev. 81.129 109.472 101.126 84.725 85.438

Size 0.0575 0.0596 0.0535 0.0528 0.0534

Store 2

D̄ -300.692 -301.495 -298.997 -300.368 -300.386

Bias -0.539 -1.342 1.155 -0.215 -0.233

Std. Dev. 81.054 107.611 100.987 84.592 85.291

Power 0.9522 0.8197 0.8640 0.9347 0.9309

Store 2

D̄ -799.564 -801.386 -798.246 -799.610 -799.584

Bias 0.460 -1.362 1.778 0.415 0.441

Std. Dev. 81.090 106.392 100.198 84.627 85.328

Power 1 0.9846 0.9925 1 1

Tables 7 and 8 show the results of two other choices for sample sizes. The
�ndings of these two tables are similar to the previous table. The size of all tests
is close to nominal level 5%, and tests based on real kernels have the good powers.
Also, using local PB with Epanechnikov kernel causes the bias and larger standard
error.

Table 7: Analysis of the simulated data (Scenario 2).

Parametric Local PB Local PB Local PB Local PB

PB (Epanechnikov) (Normal) (Logistic) (Laplace)

Store 1

D̄ 0.254 -4.472 -0.033 0.147 0.123

Bias 0.254 4.472 -0.033 0.147 0.123

Std. Dev. 56.892 78.072 63.938 58.313 58.614

Size 0.0546 0.0503 0.0521 0.0513 0.0514

Store 2

D̄ -299.598 -302.356 -299.417 -299.658 -299.620

Bias 0.243 -2.514 0.425 0.183 0.221

Std. Dev. 56.850 76.537 64.224 58.318 58.628

Power 0.9995 0.5765 0.9833 0.9988 0.9986

Store 2

D̄ -800.173 -797.535 -799.796 -800.214 -800.214

Bias 0.021 2.659 0.398 -0.019 -0.019

Std. Dev. 56.852 78.295 64.217 58.285 58.591

Power 1 0.8831 0.9997 1 1
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Table 8: Analysis of the simulated data (Scenario 3).

Parametric Local PB Local PB Local PB Local PB

PB (Epanechnikov) (Normal) (Logistic) (Laplace)

Store 1

D̄ 0.613 3.658 1.571 0.567 0.605

Bias 0.613 3.658 1.571 0.567 0.605

Std. Dev. 58.661 85.658 68.744 60.673 61.062

Size 0.0551 0.0434 0.0522 0.0528 0.0525

Store 2

D̄ -301.931 -304.083 -300.321 -301.715 -301.647

Bias -1.610 -3.761 0.0003 -1.393 -1.325

Std. Dev. 58.732 83.029 68.777 60.725 61.122

Power 0.9985 0.5303 0.9671 0.9965 0.9957

Store 2

D̄ -800.018 -802.577 -799.363 -800.007 -800.026

Bias 0.167 -2.390 0.822 0.178 0.159

Std. Dev. 58.766 84.116 69.087 60.809 61.201

Power 1 0.8433 0.9993 1 1

6. Conclusion

In this paper, we show that by selecting an appropriate kernel, we can use local
linear PB regression and the results of this method are similar to the parametric
method. Therefore in most cases, due to the constraints of parametric PB regres-
sion, we can be used local linear PB regression. According to the results of data
from EEOC v. Shelby County Government and simulation study we concluded
that the use of local linear PB regression be e�ective in determining the extent of
a disparity between groups and in local PB method using real kernels can reduce
the bias and variance of the estimators and also increase the power of the test. By
comparing the three real kernel functions we deduced Logistic and Laplace kernels
have better results. By using these kernels the bias is the lowest and variance of
the estimator is relatively small. Moreover, the power of the test is acceptable.
But, the Normal kernel compared to two other real kernels has weaker results.
However, all three real kernel in comparison with the Epanechnikov kernel have
better performances. It should be noted that we investigate the performance of
some other kernels like Triangular and Cosine and have concluded that results of
these kernels are similar to the Epanechnikov kernel. Therefore, we recommend
using real kernels in local linear PB regression.

Acknowledgement

The author would like to thank the reviewer for their valuable suggestions and
comments.

[
Received: January 2017 � Accepted: January 2018

]
Revista Colombiana de Estadística 41 (2018) 235�249



248 Mohammad Bolbolian Ghalibaf

References

Achcar, J. A. & Lopes, S. R. C. (2016), `Linear and Non-Linear Regression
Models Assuming a Stable Distribution', Revista Colombiana de Estadística

39(1), 109�128.

Belson, W. A. (1956), `A technique for studying the e�ects of a television broad-
cast', Applied Statistics 5, 195�202.

Bhattacharya, P. K. (1989), Estimation of treatment main e�ect and treatment-
covariate interaction in observational studies using bandwidth-matching,
Technical Report 188, Division of Statistics, University of California, Davis.

Bhattacharya, P. K. & Gastwirth, J. L. (1999), `Estimation of the Odds-Ratio in an
Observational Study Using Bandwidth-Matching', Journal of Nonparametric
Statistics 11, 1�12.

Blinder, A. S. (1973), `Wage discrimination: reduced form and structural esti-
mates', Journal of Human Resources 8, 436�455.

Bura, E., Gastwirth, J. L. & Hikawa, H. (2012), The use of peters�belson regression
in legal cases, in `Nonparametric Statistical Methods And Related Topics: A
Festschrift in Honor of Professor PK Bhattacharya on the Occasion of His
80th Birthday', World Scienti�c, pp. 213�231.

Cleveland, W. S. & Devlin, S. J. (1988), `Locally-weighted regression: an approach
to regression analysis by local �tting', Journal of the American Statistical

Association 83, 597�610.

Fan, J. & Gijbels, I. (1996), Local Polynomial Modelling and Its Applications,
Chapman and Hall, London.

Gastwirth, J. L. (1989), `A clari�cation of some statistical issues in Watson vs.
Fort Worth Bank and Trust', Jurimetrics Journal 29, 267�284.

Gastwirth, J. L. & Greenhouse, S. W. (1995), `Biostatistical Concepts and Meth-
ods in the Legal Setting', Statistics in Medicine 14, 1641�1653.

Gray, M. W. (1993), `Can statistics tell us what we do not want to hear? The case
of complex salary structures', Statistical Science 8(2), 144�158.

Greiner, D. J. (2008), `Causal inference in civil rights litigation', Harvard Law

Review 122, 533�598.

Hikawa, H. (2009), Local linear peters-belson regression and its applications to em-
ployment discrimination cases, Doctoral dissertation, Department of Statis-
tics , George Washington University.

Hikawa, H., Bura, E. & Gastwirth, J. L. (2010a), `Local Linear Logistic Peters-
Belson Regression and its application in employment discrimination cases',
Statistics and its Interface 3, 125�144.

Revista Colombiana de Estadística 41 (2018) 235�249



Kernel Function in Local Linear PB Regression 249

Hikawa, H., Bura, E. & Gastwirth, J. L. (2010b), Robust peters-belson type esti-
mators of measures of disparity and their applications in employment discrim-
ination cases, Technical report, Department of Statistics, George Washington
University.

Loader, C. (1999), Local Regression and Likelihood, Springer-Verlag, New York.

Nayak, T. K. & Gastwirth, J. L. (1997), `The Peters-Belson approach to measures
of economic and legal discrimination', Advances in the Theory and Practice

of Statistics pp. 587�601.

Oaxaca, R. (1973), `Male-Female di�erentials in urban labor markets', Interna-
tional Economic Review 14, 693�709.

Peters, C. C. (1941), `A method of matching groups for experiments with no loss
of populations', Journal of Educational Research 34(8), 606�612.

Sche�e, H. (1970), `Practical solutions of the Behrens-Fisher problem', Journal of
the American Statistical Association 65(332), 1501�1508.

Welch, B. L. (1949), `Further note on Mrs. Aspin's tables and on certain approxi-
mations to the tabled function', Biometrika 36(3/4), 293�296.

Revista Colombiana de Estadística 41 (2018) 235�249


