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Abstract

In this paper we study the reliability of a multicomponent stress-strength
model assuming that the components follow power Lindley model. The max-
imum likelihood estimate of the reliability parameter and its asymptotic con-
fidence interval are obtained. Applying the parametric Bootstrap technique,
interval estimation of the reliability is presented. Also, the Bayes estimate
and highest posterior density credible interval of the reliability parameter
are derived using suitable priors on the parameters. Because there is no
closed form for the Bayes estimate, we use the Markov Chain Monte Carlo
method to obtain approximate Bayes estimate of the reliability. To evaluate
the performances of different procedures, simulation studies are conducted
and an example of real data sets is provided.

Key words: Bayesian inference; Bootstrap confidence interval; Maximum
likelihood estimation; Stress-strength model.

Resumen

En este trabajo, estudiamos la fiabilidad de un modelo multicomponente
de resistencia al estrés suponiendo que los componentes siguen el modelo
Lindley de potencia. Se obtiene la estimacién de maxima verosimilitud del
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parametro de confiabilidad y su intervalo de confianza asintético. Aplicando
la técnica Bootstrap paramétrica, se presenta la estimacion de intervalo de
la confiabilidad. Ademas, la estimacion de Bayes y el intervalo creible de la
densidad posterior mas alta del parametro de confiabilidad se obtienen uti-
lizando los antecedentes adecuados sobre los pardametros. Debido a que no
existe una forma cerrada para la estimacion de Bayes, utilizamos el método
de Markov Chain Monte Carlo para obtener una estimacion aproximada de
Bayes de la confiabilidad. Para evaluar el rendimiento de diferentes proce-
dimientos, se realizan estudios de simulacién y se proporciona un ejemplo de
conjuntos de datos reales.

Palabras clave: Inferencia bayesiana; intervalo de confianza Bootstrap; es-
timacion de méxima verosimilitud; modelo de resistencia al estrés.

1. Introduction

Stress-strength models have attracted the attention of statisticians for many
years due to their applicability in diverse areas such as medicine, engineering, and
quality control, among others. In reliability studies with strength X and stress
Y, the parameter R = P(X > Y) measures the reliability of a system (Kotz &
Pensky 2003). This model is used in engineering problems for comparing the ca-
pability of two workers or comparison of the performances of products from two
companies, etc. There is a large amount of literature about the estimation of R
using different approaches and distributional assumptions on (X,Y’). Estimation
of R in the models with correlated stress and strength is conducted by Balakrish-
nan & Lai (2009). Hanagal (1997) derived maximum likelihood estimate (MLE)
of stress-strength parameter R in a bivariate Pareto model. Inference for the
stress-strength models in a generalized exponential model is studied by Kundu &
Gupta (2005). Pak, Parham & Saraj (2014) have used fuzzy set theory to derive
inferences on the parameter R when the observations of the strength and stress
are imprecise quantities. Ghitany, Al-Mutairi & Aboukhamseen (2015) studied
statistical estimation of R for the power Lindley model . Pak, Khoolenjani & Ja-
fari (2014) developed inference procedures for the stress-strength parameter R in
bivariate Rayleigh model. They studied different estimation methods by using the
ML and bootstrap techniques. Dey, Raheem & Mukherjee (2017) derived the form
of stress-strength reliability parameter for the transmuted Rayleigh distribution.
Tarvirdizade & Ahmadpour (2016) considered estimation of the stress-strength re-
liability for the two-parameter bathtub-shaped lifetime distribution based on up-
per record values. Mahmoud, El-Sagheer, Soliman & Abd Ellah (2016) discussed
Bayesian estimation of R based on record values from the Lomax Distribution.
Condino, Domma & Latorre (2016) studied likelihood and Bayesian estimation of
P(Y < X) using lower record values from a proportional reversed hazard family.
Inference on the Weibull distribution based on record values is considered by Wang
& Ye (2015).

Recently, several researchers pay attention to developing inferential procedures
for the reliability in multicomponent stress-strength (MSS) models. In the MSS
system there are m identical and independent strength components and a common
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stress that functions when at least (1 < r < m) of the components survive.
This MSS model is denoted as r-out-of-m: G system. For example, consider an
automobile with a V-8 engine that works if four cylinders are firing. So, it can
be represented as 4-out-of-8: G system. Another example may be a suspension
bridge with m pairs of vertical cables that survive when at least r number of
vertical cables work. Inference on the reliability in MSS models when the stress
and strength have Weibull distribution is considered by Kizilaslan & Nadar (2015).
Rao (2012) and Rao, Aslam & Kundu (2014) conducted a series of studies to
estimate the reliability of MSS models by assuming generalized exponential and
Burr XII distributions for the components. They have used classical approaches
to compute the reliability estimation in r-out-of-m: G models. Nadar & Kizilaslan
(2016) considered Marshal-Olkin bivariate Weibull distribution and provided some
inference procedures for MSS models. Dey, Mazucheli & Anis (2017) addressed
MSS models consisting of Kumaraswamy distributed random variables. Hassan
(2017) provided classical and Bayesian estimation of reliability parameter when
the components follow Lindley distribution.

To our knowledge there are no reports on MSS models based on power Lind-
ley distribution. The interest of this paper is to provide classical and Bayesian
inferences on the reliability of r-out-of-m: G models when the strength and stress
components are independent random variables distributed as power Lindley model.
The ML estimate of the reliability parameter and its asymptotic confidence inter-
val are obtained. Also, by using a parametric Bootstrap approach, two confidence
intervals (CI) are derived for the interested parameter. Considering squared error
loss function and using gamma priors on the parameters, an expression is pro-
vided as the Bayesian estimate of the reliability parameter. Since this expression
can not simplified to a nice closed form, we employ a Markov Chain Monte Carlo
(MCMC) procedure to obtain random samples from the posterior distributions
and in turn use them to derive the Bayes estimate and highest posterior density
(HPD) credible interval of the reliability.

A random variable (r.v.) Z follows power Lindley model with the parameters ~
and ¢ if its probability density function (pdf) and cumulative distribution function
(cdf) are given by
v6?
o+1

f(z7,6) = 1+ 27)27_16_527, z>0, ~,0>0. (1)

and

S(z;7,0)=1— (1 + z”) e 07, z2>0, ~,0>0, (2)

0+1
respectively. From now on power Lindley model with the parameters v and ¢ will
be denoted as PL(v,9).

The layout of this paper is as follows. Section 2 concerns ML estimation of
the reliability parameter. In Section 3, two different confidence intervals for the
reliability is constructed by using parametric Bootstrap samples. The Bayesian
analyses are provided in Section 4. To evaluate the performances of the proposed
estimators, simulation studies are conducted in Section 5. Moreover, for illustrative
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purposes, analysis of two real data sets is presented. Finally, some comments and
conclusions are made in Section 6.

2. Maximum Likelihood Estimation

Suppose that the m strength components of a MSS system are independent
r.v.s with the common cdf G(z) and let F(y) be the cdf of the stress r.v. Y.
When the strength and stress components of the system follow PL(v,d;) and
PL(~,d2), respectively, the reliability of MSS model can be obtained as

Rem =Y ( i ) / (1 - G() ' (Gy)™ 'dF (y)

1

i=r 0
i m e 61 ‘ —is1 Y 51 —&51y7 me
— 1 Y 1Y 1— 1 Y 1Y
;<z>/0 (+61+1y)6 ( (+61+1y)e )
03 Yy, v—1 —d2y”
X 62+1(1+y Yy e dy. (3)

After simplification, the expression in (3) is expressed as

i i %:i m (-1)* 53 ( 5y )S“
i=r j=0 t= s:O 'S'Z_-] _i_t)!(t_s)! 0o +1 1\ +1
« (s +J)! (s4j+1)! ”
((i + )01 4 d2)5T7+L — ((i 4+ 1)y + g)5Hi+2
Now assume that x1,...,2, and ¥, ...,y are the ordered random observations

from PL(v,d1) and PL(7,d2), respectively. For more details about the experimen-
tal design used for generating the stress and strength data, the readers can refer
to Bhattacharyya & Johnson (1974). The observed data likelihood function of ,
01 and d2 becomes

k
n+k c2n 2k =5 Z @) =82 3 v k
Y0, ! J y-1
L = =1 b | | (1 | | 1
(7,61, 02) (51+1)”(52+1) = u +z7) ( +y]) (5)

Jj=1

and the corresponding log-likelihood function is

£(7,61,62) log L(, 61, 02)

(n+ k)log~y + 2nlogd, + 2klogdy — nlog(dy + 1) — klog(de + 1)

+> {log(1 +27) + (v — 1) logz; — 6] }
k
+> {log(1+y)) + (v — 1) logy; — 62y } - (6)
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The ML estimate of the parameters ~, §; and Jo, say ¥, 51 and 52, can be obtained
using the following system of equations:

ol n+k o m?logml
5 - R e s
k
y; logy;
Z{ i+y ! (1—62yj7)10gyj} =0, (7)
1 j
ot 2n - o7
- = = 8
851 51 1 Z i ( )
and
o 2k a
8752_ do 52+1 z:: (9)

Then, by using the invariance property of the MLEs, the ML estimate of R, ,,
can be computed as

i m—1

i m! t 522 01 o
Sy e
— = 'S'l*] 7Z*t)'(t75)' 52-'—]_ 51+1

s:O

=2_.
(s +4)! (s+7+1)!
((i 4 )81 + 02)5H5+L (i + )8y + 69)5+i+2

X (10)

Once the maximum likelihood estimate of the reliability parameter is obtained,
we can use the asymptotic normality of the MLEs to compute the approximate
100(1 — )% CI of the reliability R, ,,, as follows:

Ry + 2a4/6% . (11)

r,m

Here, zg is an upper percentile of the standard normal variate and the asymptotic
variance &%nm is obtained as

~2 _ 2 8Rhm ? 2 aRr,m ?
ORvm — 961 a0, + 05, 965 |(’?,51,32)
s _[g(_ 0 526, 4 1)2
o5 = _— - - 7
o 962 n(62 + 46, +2)’

PR A R, (R
02 962 T k(62 4 465 +2)
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m T m—t t s
8Rr7m _ Z Z m! (_1)t (5% 61 +J
961 g e sl )l (m — i~ D)l — s)! G+ 1\01 +1
X{ s+7J { (s+j)! N (s+7+1) }
01614+ 1) L((G+1t)01 + d2)sH+L ~ ((i +t)d1 + d2)5Hi+2

_ (s+j+1) (s+7+2)!
_ ('L + t) { ((’L + t)51 + 62)s+j+2 ((Z + t)(sl + 52)S+j+3 }:|

C{)Rrym mo ot omTi m) . 5, s+j
90, :Z, 2> Is! )!(t—s)!(*l) <51+1)

< jlsl(i — j)l(m —i—t

i=r j=0 t=0 s=
X{52+262{ (s+7)! (s+7+1) }
(624 1)2 L ((i +t)01 + G2)5tIFTL  ((i 4 )y + 62)5Hi+2
% { (s+75+ 1) (s+7+2) H
Jo+ 1 L ((5+¢)51 + d2)5T9+2 * ((i +t)d1 + d2)sHi+3 [ |~

Note that the form of confidence interval of R given by Eq. (11) may lead to a
confidence interval that does not completely fall inside the unit interval (0,1). In
this case, one can apply the logit transformation g(R) = log(%) (see Ghitany
et al. 2015). Then, using the delta method, the asymptotic 100(1—«)% confidence
interval for g(R) is derived

B ~2
log RA ZEZQ#E(L,U)
1-&) *RU-R)

Finally, the asymptotic 100(1 — «)% confidence interval for R is obtained by

el eV
(1+6L’1+ev>' (12)

3. Bootstrap Confidence Interval

In this section, we describe the extraction of bootstrap CI for the reliability
R, by applying two types of bootstrap techniques, namely, percentile bootstrap
(Boot-p) method on the basis of the idea of Efron (1982) and Student’s ¢ bootstrap
method (Boot-t) based on the idea of Hall (1988). The performances of these two
bootstrap methods will be compared with the asymptotic CI of R, ,, in Section
5. For more details about different parametric and non-parametric methods of
constructing bootstrap confidence intervals, one can refer to the excellent book of
Meeker, Hahn & Escobar (2017) and the references therein.

First, based on the original samples x1,...,2, and yi,...,y; from PL(y,d1)
and PL(v,d2), we generate bootstrap samples of size B by using the following
algorithm.
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Step 1: By using the samples x4, ...,2, and y1, ..., yx, obtain the ML estimates
4, 01 and d5 from the system of equations in (7)-(9).

Step 2: Using the new estimates of parameters computed in Step 1, generate
bootstrap samples z7, ...,z and y7,...,y; and compute the MLEs 4*, 31‘ and 3;
Then, by using relation (10), calculate the bootstrap estimate of reliability R,
say R;m

Step 3: Repeat Steps 2 for B times, and obtain ]%lr*m forl=1,...,B.

Now, define Rpp(t) = Q'(t) where Q(t) = P(R,, < t) is the cdf of R} ,,,.
The 100(1 — &)% Boot-p CI of the reliability R, ,, is obtained as

N a
(RBP(*%RBP(l - *)) . (13)
2 2
T
For constructing Boot-t CI of R, ,,, first compute the statistic A] = w
Var(Rr,m)

for | =1,..., B in which Var(}?r’m) is derived from expression (10). Then, define

log (Rr*m ) W) Y m) Var(lrm) _ (L, 0) (14)

; Rr,m<1 - Rr,m)

T,m

where W (t) = P(A; <t). The 100(1 — &)% Boot-t CI of the reliability R, ., is

given by
L U
L (15)
1+el’ 1+4eV

Note that in the calculation of the (a/2)100% and (1 — «/2)100% percentiles,
the functions Q(t) and W (t) are not found exactly but by the empirical CDF in
each case. Moreover, the empirical distributions used in construction of confidence
intervals may not provide adequate approximation to the tails. In this case, the
empirical distributions based on some generalized pivotal quantities can be used
to obtain approximate confidence intervals.

4. Bayesian Analyses

In this section we describe the Bayesian estimation of the reliability R, ,, as
well as the corresponding HPD credible interval. In order to conduct the Bayesian
analysis, some prior distributions on the parameters are required. Here, we assume
that ~, §; and &5 are independent r.v.s and follow the gamma prior distributions
as

m1(7y) oc y11 e b
To(01) o 672 te— b2 (16)
T3(0y) o 053 Lem92bs
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respectively, where the hyperparameters a;,b;, i = 1,2,3 are positive (see Pak,
Parham & Saraj 2013). By combining (5) with (16), the joint density function of
(7, 61,d2) and the data becomes

n+k+a17152n+a2—162k+a3—1
1 2
(01 + 1)"(02 + 1)

k
><H1+:v Hl—i—yj . (17)

Thus, we can write the posterior density function of v, §; and Jo as

7y

n k
—51(ba+ 3 x]) —82(b3+ X y])
(7, 61, 02, data) by HET ST =

(77 513 527 data)

7 (v, 01,02 | data) = .
(7, 81, 02, data)dydd1dds

(18)

I

It is well known that, assuming squared error loss function, the Bayes estimate of
the reliability R, ,, is its posterior mean which is obtained by

E(R, , | data) :///RM,LW (7,01, 02 | data)dyddidds. (19)
00 0

Since the posterior density function 7*(v,d1, d2 | data) has a complex form, it
is difficult to derive a nice closed form for the Bayes estimate of R, ,,. Therefore,
we adopt Gibbs sampling method to extract random samples from the conditional
densities of the parameters and use them to obtain the Bayes estimate and HPD
credible interval of R, ,,.

From (17), the conditional posterior densities of v, §; and d5 can be extracted

as
> a] —02 > vj
71 (v | 61,92, data) < Gamma(n + k4 ay,by)e =1 ‘e =1
n k
XH1—|—x Hl—kyj , (20)
i=1 j=1
75 (61 | v, data) < Gamma(2n + az,bs + z; 5 1) (21)
and
73 (02 | v, data) x Gamma(2k + a3, bs + Z y”)# (22)
Y Y J (62 + 1)k Y

Jj=1

respectively. Note that the conditional densities in (20)-(22) are not in the form
of known distributions and therefore it is not possible to sample from these dis-
tributions by standard methods. If the posterior density function be unimodal
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and roughly symmetric, then it is often convenient to approximate it by a nor-
mal distribution (see Gelman, Carlin, Stern & Rubin 2003). To show that the
posterior densities of v, 6; and d2 are roughly symmetric and log-concave (so uni-
modal), plots of the conditional densities along with the asymmetry and kurtosis
coefficients of the posterior distributions are given in Figure 1 for the different
sets of parameter values. It is observed that the plot of the posterior densities
are similar to normal distribution. Therefore, in the following algorithm we em-
ploy Metropolis-Hastings (M-H) technique with normal proposal distribution to
generate samples from these distributions.

1) Let initial values of the parameters to be (v°,8?,89) and set [ = 1.

2) Considering the proposal distribution ¢(8,) = I(6; > 0)N(5'7*,1) for the
M-H method, generate &} from 73(8; | v'~1, data).

3) Generate 6, from 73 (82 | 7', data) using M-H method with the proposal
distribution ¢(dz) = I(6a > 0)N (5571, 1).

4) Generate 4 , from 7} (v | 64,85, data) using M-H method with ¢(y) = I(y >
0N (71, 1).

5) Compute R.,, from (4) and Set [ =1+ 1.

6) Repeat Steps 2-5 for M times, and obtain !, &}, 6} and R%m for | =
1,..., M.

The steps of M-H technique used in the above algorithm can be described as
follows:

o Set o = pul~ L.

e Generate 7 using the proposal distribution q(x) = I( > 0)N(u!=1,1).
e Let p(o,7) = min {1, 7} (7)q(0)/7}(c)q(T)}.

e Accept 7 with probability p(c, 7), or accept o with probability 1 — p(o, 7).

Then, by using the generated random samples from the above Gibbs procedure,
the approximate Bayes estimate of the reliability parameter R, ,, becomes Rﬂ\ffm =

M
>R /M.
=1

Also, let RS% << R,(«f\fn) be the ordered values of thm forli=1,...,M.
The HPD credible interval of R, ,, will be derived by selecting the interval with
the shortest length through the following 100(1 — a))% credible intervals of R, ,,:

(RY),, R0y (RlM) R(M)y

roms Flrm
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F1cure 1: Posterior densities of v, d1 and 2 for various sets of parameter values.
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It must be noted that, for implementing the above MCMC procedure, some of
the points must be considered. Firstly, specification of starting values is generally
required for MCMC simulations. Sample draws at the beginning of the MCMC
sequence cannot be expected to represent draws from the desired posterior distri-
bution. Thus, it is common practice to drop some number of the initial sample
draws, so that the remaining draws more accurately represent a sample from the
limiting distribution (Meeker et al. 2017). The discarded sample draws are re-
ferred to as burn-in draws. Secondly, if there is a strong autocorrelation between
the generated samples, it may be advisable to use thinning by retaining every 1 in
10 or 1 in 50 of the sample draws (depending on the strength of the autocorrela-
tion). Thinning will increase the number of draws that need to be generated but
reduce the number of draws that need to be stored.

TaBLE 1: MLE and different CIs of the reliability Ry when (v,d1,d2) = (2,1,1).

(r,m) (n,k) MLE Asymptotic CI Boot-p CI Boot-t CI
AV MSE AL CP AL CP AL CP
(1,3) 15,15 0.73107 0.00954 0.36841 0.9233 0.39128 0.9436 0.41007 0.9681

(15,15)

( ) 0.73214 0.00743 0.32274 0.9327 0.333637 0.9285 0.38145 0.9725
(30,30) 0.73887 0.00568 0.26678 0.9476 0.27410 0.9067 0.30632 0.9643
( ) 0.74362 0.00376 0.23214 0.9516 0.23317  0.9653 0.25714 0.9715
( ) 0.74425 0.00307 0.21218 0.9631 0.21309 0.9417 0.22985 0.9652

( ) 0.59035 0.01309 0.41502 0.9327 0.43947  0.9255 0.44780 0.9613
( ) 0.59247 0.00968 0.36826 0.9419 0.38507  0.9289 0.3903  0.9641
(30,30) 0.59705 0.00718 0.30826 0.9467 0.31927  0.9061 0.32043 0.9403
( ) 0.59727 0.00524 0.27154  0.9533  0.27546 0.9513 0.27850 0.9592
( ) 0.59814 0.00411 0.24496 0.9579 0.24568 0.9438 0.24825 0.9517

TABLE 2: MLE and different CIs of the reliability R, ., when (v, d1,d2) = (2,1.5,2).

(r,m) (n,k) MLE Asymptotic CI Boot-p CI Boot-t CI
AV MSE AL CP AL CP AL CP
(1,3) 15,15 0.82995 0.00814 0.30497 0.9194 0.31014 0.9349 0.338097 0.9438

(15,15)

( ) 0.83141 0.00552 0.26814 0.9258 0.27136 0.9271 0.34175 0.9619
(30,30) 0.83275 0.00318 0.21640 0.9471 0.21593 0.9067 0.26074 0.9735
( ) 0.83546 0.00240 0.18708 0.9513 0.18786 0.9526 0.22027  0.9654
( ) 0.83773 0.00168 0.15652 0.9607 0.16744 0.9290 0.17308 0.9548

( ) 0.70742 0.01118 0.38452 0.9128 0.40376 0.9243 0.43164  0.9581
( ) 0.70985 0.00854 0.34287 0.9265 0.35714 0.9281 0.37572  0.9537
(30,30) 0.71028 0.00513 0.28384 0.9341 0.28926 0.9076 0.30358  0.9578
( ) 0.71126 0.00438 0.24846 0.9406 0.25269 0.9507 0.26394  0.9622
( ) 0.71270 0.00339 0.17158 0.9451 0.18947 0.9236 0.19245  0.9608
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TABLE 3: Bayes estimates of the reliability R, when (v,d1,d2) = (2,1,1).

(r,m) (n,k) prior I prior IT
AV MSE AL CP AV MSE AL CP
(1,3) 15,15 0.73410 0.01078 0.36231 0.9085 0.83638 0.00774 0.35257 0.9463

(15,15)

( ) 0.73695 0.00748 0.31959 0.9254 0.73879 0.00627 0.31246 0.9480
(30,30) 0.73722 0.00520 0.26625 0.9371 0.74019 0.00461 0.26143 0.9511
( ) 0.74158 0.00365 0.23102 0.9436 0.74375 0.00346 0.22818 0.9535
( ) 0.74469 0.00301 0.20758 0.9477 0.74492 0.00280 0.20543 0.9581

(2,4) ( ) 0.59371 0.01257 0.42390 0.9249 0.59475 0.01005 0.41332 0.9448
( ) 0.59511  0.00991 0.37417 0.9372 0.59653 0.00821 0.36657 0.9493
(30,30) 0.59613 0.00679 0.31137 0.9413 0.59771 0.00603 0.30624 0.9517
( ) 0.59685 0.00502 0.27166 0.9458 0.59812 0.00463 0.26837 0.9566
(50,50)

0.59791 0.00408 0.24431 0.9479 0.59896 0.00380 0.24178 0.9607

TABLE 4: Bayes estimates of the reliability R, ., when (v,d1,02) = (2,1.5,2).

(r,m) (n,k) prior I prior II
AV MSE AL CP AV MSE AL Cp
(1,3) 15,15) 0.82687 0.00736 0.29646 0.9143 0.83119 0.00574 0.27567 0.9462

(15,15)

( ) 0.83315 0.00545 0.25719 0.9287 0.83393 0.00460 0.23450 0.9514
(30,30) 0.83402 0.00351 0.21530 0.9426 0.83455 0.00327 0.21186 0.9573
( ) 0.83524 0.00241 0.18845 0.9480 0.83543 0.00228 0.18378 0.9621
( ) 0.83692 0.00193 0.16797 0.9513 0.83870 0.00175 0.16643 0.9637
(2,4) ( ) 0.70349 0.01243 0.39629 0.9221 0.70840 0.00873 0.37985 0.9386
( ) 0.70668 0.00892 0.34763 0.9267 0.71053 0.00716 0.33089 0.9407
(30,30) 0.70922 0.00561 0.29108 0.9315 0.71085 0.00544 0.28413 0.9432
( ) 0.71104 0.00432 0.25493 0.9357 0.71160 0.00384 0.25127 0.9487
( ) 0.71247 0.00328 0.22761 0.9373 0.71291 0.00302 0.22540 0.9511

5. Numerical Comparisons

5.1. Simulation Study

In the preceding sections different point and interval estimation techniques are
used for estimating the reliability of MSS system under classical and Bayesian
perspectives. In this section, we performed Monte Carlo simulations to investigate
the behaviour of the proposed methods for various sample sizes. The performance
of the competitive estimates has been compared in terms of their average values
(AV) and mean squared errors (MSE). In addition, the confidence and credible in-
tervals are compared on the basis of their average width and coverage percentages.
The calculations are conducted using R 2.14.0 (R Development Core Team 2011).

We have considered two sets of parameter values as (v,d1,02) = (2,1,1),
(2,1.5,2) and different choices of sample sizes as (n, k) = (15, 15), (20, 20), (30, 30),
(40, 40), (50,50). With these choices of the parameter values, the true value of
reliability R, ,, for (r,m) = (1, 3) becomes, respectively, 0.75 and 0.839455 and
for (r,m) = (2,4) become 0.6 and 0.713061. First, in each case, different random
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samples are generated from PL model and the ML estimates of the unknown pa-
rameters 7, d; and d, are obtained from the system of equations in (7)-(9). Then,
the ML estimates of the reliability R,.,, are computed from relation (10). The AVs
and MSEs of the MLEs obtained from 10000 replications are presented in Tables
1-2. We have also derived 95% approximate CIs of the reliability parameter by us-
ing the asymptotic variance of an provided in Section 2. In addition, employing
the Boot-p and Boot-t techniques, we have obtained the 95% CIs of R,.,, based on
1000 bootstrap replications. For different sample sizes, the coverage probabilities
(CP) and average length (AL) of these classical CIs based on 10000 replications
are provided in Tables 1-2.

To evaluate the Bayes estimates, we take two different sets of hyper-parameters
values as

Prior I: a1 = a9 = by = by = 0.
Prior II: a1 = ax = by = by = 2.

Note that the prior I corresponds to the common noninformative prior which is
non-proper also. Press (Press 2001) suggested using small positive choices for the
hyperparameters that result in proper priors. So, in this case, we have considered
a1 = az = by = by = 0.0001. For the above cases, the approximate Bayes estimates
of R, , are obtained by applying Gibbs sampling technique. To this end, Markov
chains of size 7500 are generated and the first 2500 of the observations are re-
moved to eliminate the effect of the starting distribution. Then, in order to reduce
the dependence among the generated samples, we take every 5th sampled value
which result in final chains of size 1000. To monitor the convergence of MCMC
simulations, the scale reduction factor estimate is used. The estimate is given by
VVar(¢)/W, where ¢ is the estimand of interest, Var(¢) = (n — 1)W/n + B/n
with the iteration number n for each chain, the between-sequence variance B, and
the within-sequence variance W; (see Gelman et al. 2003). In our case, the scale
factor values of the MCMC estimators are found to be below 1.1, which is an
acceptable value for their convergence. The means of the simulated samples are
recorded as Bayes estimates of R, ,,. Tables 3-4 present the AVs and MSEs of
the Bayes estimates obtained from 10000 replications. Further, for the generated
samples, we have derived 95% credible intervals and counted the ones that cover
the true value of the reliability R, ,,. The number of such intervals divided by
10000 is reported as estimated coverage probabilities. For different sample sizes,
the coverage probabilities (CP) and average length of credible intervals are also
provided in Tables 3-4.

From Tables 1-4 it is observed that the estimates obtained based on larger
sample sizes have smaller MSEs, as we expected. The estimates of the the reliabil-
ity R, computed using the Bayesian procedure with the non-informative priors
and the MLEs are almost identical. However, using the informative gamma prior
distributions, results in reasonable improvements in the performances of Bayes
estimates. It can be further observed that asymptotic results of the MLEs have
satisfactory performances unless the sample is small. In most of the cases, the cov-
erage percentages of the approximate CIs are near to the predetermined nominal
level.
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Comparing different classical Cls, we observe that the lengthes of asymptotic
CIs are somewhat shorter than that of bootstrap CIs. Both coverage percentages
and average lengthes of Boot-t CIs are greater than that of Boot-p intervals. It is
to be noted that the lengthes of all confidence and credible intervals decrease as the
observed sample sizes increase. Moreover, the credible intervals of R, ,, attained
smaller lengthes compared to the approximate and bootstrap Cls. Overall, the
performances of the credible intervals of R, ,, based on informative priors are
superior than all the other confidence intervals as shown by their ALs and CPs.

5.2. Data Analysis

To display the application of the different methods to real data, let us consider
the two data sets reported in Bader & Priest (1982) on the failure stresses of single
carbon fibers of lengths 20 mm and 50 mm, as follows:

Data set 1: (20 mm, (n = 69)) 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861,
1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140,
2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,
2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586,
2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818,
2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433,
3.585, 3.585.

Data set 2: (50 mm, (k = 65)) 1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746,
1.753, 1.764, 1.807, 1.812, 1.840, 1.852, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974,
2.019, 2.051,2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.18, 2.194, 2.211,
2.270, 2.272, 2.280, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.390, 2.410, 2.430,
2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593, 2.601, 2.604, 2.620, 2.633,
2.670, 2.682, 2.699, 2.705, 2.735, 2.785, 3.020, 3.042, 3.116, 3.174.

Ghitany et al. (2015) showed that PL model fits data sets 1 and 2 very well.
Here, assuming three different choices of (r,m) for the MSS system, we compute
the estimates of reliability parameter R, ,, by using classical and Bayesian pro-
cedures developed in this paper. First, from the the above data sets, the ML
estimates of the parameters are obtained as 4 = 4.029990, §; = 0.042273 and
b5 = 0.061771. Then, the MLEs of the reliability R, ,, are computed from the
expression in (10). Further, by using the MLEs of the parameters, we have ob-
tained boot-p and Boot-t CIs of the reliability parameter based on 1000 bootstrap
replications in both cases.

To analyze the data from the Bayesian perspective, two different sets of values
for the hyper-parameters are considered as

(a1 = ay = by = by) = (0.0001,0.0001,0.0001,0.0001), (2,2,2,2).  (23)

Random samples of 20,000 realizations are generated from the posterior densities
in (20)-(22) and the first 10000 realizations are deleted to diminish the trace of
initial samples. Then, one observation in every 10 iterations is saved to break the
autocorrelation between generated samples. Tables 5-6 reports different estimates
of the reliability R, ,, as well as the 95% confidence and credible intervals. It is
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observed that the Bayes estimates of R, ,, based on noninformative priors and
the ML estimates are about the same, however, the width of credible intervals are
somewhat shorter than that of approximate CIs.

TABLE 5: Classical estimates of R, n,.

(r,m) MLE Asymptotic CI Boot-p CI Boot-t CI

(1,3) 0.873880 (0.796951,0.924424)  (0.805811,0.931284)  (0.788861,0.927796)
(2,4) 0.764123 (0.659042,0.844462)  (0.669598,0.855831)  (0.657230,0.845517)
(3,5) 0.676097 (0.561555,0.772821)  (0.571876,0.786770)  (0.564630,0.790619)

TABLE 6: Bayes estimates and HPD intervals of R, n,.

(r,m) a1 = as = by = bg = 0.0001 a1 =ag =by =by =2

RrRM CRI RM CRI
(1,3) 0.871363 (0.837419,0.945532) 0.856925 (0.829527,0.911584)
(2,4) 0.753290  (0.714031,0.892473) 0.751942  (0.691382,0.853991)
(3,5) 0.671425  (0.582975,0.786451) 0.643154  (0.620763,0.819327)

6. Conclusions

In the literature, there are well-developed estimation techniques for the relia-
bility parameter of MSS models when the components follow different well-known
lifetime distributions, however, as we observed the PL model has not been consid-
ered. In this paper, considering independent strength and stress random variables
distributed as power Lindley model, we have developed inferential procedures for
the MSS systems. The MLE and asymptotic CI for the reliability parameter are
computed. Also, by using the parametric bootstrap approach, interval estimation
of the reliability is provided. Further, employing a Gibbs sampling procedure, the
Bayes estimate and HPD credible interval of the involved parameter have been
derived. In order to assess the accuracy of the various approaches, Monte Carlo
simulations are conducted. By increasing the sample sizes, expected improvements
are observed in the performances of all estimators. Moreover, for larger sample
sizes, the Cls constructed from the MLEs work well and their CPs are close to the
nominal level. The coverage percentages of Boot-p Cls increase when the sample
sizes increase, but are less than 95%. Overall, using informative priors in com-
puting the Bayes estimates of R, ,,, we observed better performances of the point
and interval estimates of the reliability parameter.
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