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Abstract
In this paper, we develop a theoretical study about the logistic and

saturated multinomial models when the response variable takes one of R ≥ 2
levels. Several theorems on the existence and calculations of the maximum
likelihood (ML) estimates of the parameters of both models are presented
and demonstrated. Furthermore, properties are identified and, based on an
asymptotic theory, convergence theorems are tested for score vectors and
information matrices of both models. Finally, an application of this theory
is presented and assessed using data from the R statistical program.

Key words: Multinomial logit model; Saturated model; Logistic regression;
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Resumen
En este artículo se desarrolla un estudio teórico de los modelos logísticos

y saturados multinomiales cuando la variable de respuesta toma uno de
R ≥ 2 niveles. Se presentan y demuestran teoremas sobre la existencia y
cálculos de las estimaciones de máxima verosimilitud (ML-estimaciones) de
los parámetros de ambos modelos. Se encuentran sus propiedades y, usando
teoría asintótica, se prueban teoremas de convergencia para los vectores
de puntajes y para las matrices de información. Se presenta y analiza
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una aplicación de esta teoría con datos tomados de la librería aplore3 del
programa R.

Palabras clave: Modelo logístico multinomial; Modelo saturado; Regresión
logística; Estimador de máxima verosimilitud; Vector score; Matriz de
información de Fisher.

1. Introduction

For classifying individuals, logistic regression models are generalized linear
models used (Cox 1958), which allow covariates that have been continuously and
categorically escalated to predict any outcome that has been categorically escalated
(Darlington 1990). These models do not generate assumptions on explanatory
variable distributions and generalize multiple regression analysis techniques to
cases having a categorical dependent variable and a categorical or numerical
predictor variable. Hence, regardless of study design, the logistic regression model
is a direct probability model that is able to provide valid estimates (Harrell 2015).
Accordingly, one of the most common model variants that is assessed is when
the response variable is binary, whether nominal or ordinal, as evidenced by
Hosmer & Lemeshow (2000), Agresti (2013) and Monroy, Morales & Dávila (2018).
Furthermore, LLinás (2006) discussed certain theoretical details of these models.

For example, applied sciences (such as biomedical and social sciences) often
deal with nominal response variables at several levels as well as a vector of
explanatory variables in which certain components may be intervals while others
may be nominal scale measurements. In this case and other cases in which the
answers are not ordinal and the levels are not organized in a sequential order,
a multinomial logistic regression may assist in assessing the relationship between
nominal responses and the set of explanatory variables; moreover, its applicability
is computationally accessible (Chan 2005, Long 1987).

The multinomial logit model is a generalized linear model, which can be
considered as a direct extension of the binary logit model since its categories
can contract and reduce it to a binary model. As per Begg & Gray (1984), this
reduced model is able to properly estimate both logistic parameters and their
corresponding standard errors. In fact, it is a special case of discrete choice models
(or conditional logit models) introduced by McFadden (1973) who generalized
binary logistic regression by allowing more than two discrete responses.

Based on our literature review, several studies have been published on
multinomial logistic regression models. This technique has become widespread
and its use has been very critical within social sciences, marketing applications,
and demographic and educational research studies (Chuang 1997, Peng, Lee &
Ingersoll 2002, Pohlman & Leitner 2003). For example, in classical works, such as
Hosmer & Lemeshow (2000), Díaz & Morales (2009), Kleinbaum & Klein (2010)
and Agresti (2013), these models are viewed as alternative solutions to monitor
data analysis-related issues. Among their multiple applications, Anderson,
Verkuilen & Peyton (2010) used a multinomial logistics model to study the
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psychometric validity of a multiple response instrument. Similarly, as evidenced in
Tan, Christiansen, Christensen, Kruse & Bathum (2004); Chen & Kao (2006) and
McNevin, Santos, Gamez-Tato, Álvarez-Dios, Casares, Daniel, Phillips & Lareu
(2013), these models have been very useful in genetics. Subsequently, to assess
the reliability of cancer diagnoses, multinomial logistic regression models have
been used (Lloyd & Frommer 2008). Furthermore, in epidemiology, this model
has been used in an explanatory study of factors affecting malaria treatments
in African pregnant women (Exavery, Mbaruku, Mbuyita, Makemba, Kinyonge
& Kweka 2014). In economics, the model is implemented as part of a study
that assessed occupational patterns and trends in The Netherlands (Dessens,
Jansen, G. B. Jansen, Ganzeboom & Van der Heijden 2003). In demography,
to determine risks associated with variables considered for each of these studies,
Kim (2015) and Schnor, Vanassche & Bavel (2017) used three-level multinomial
logistic regression models. Finally, Monyai, Lesaoana, Darikwa & Nyamugure
(2016) applied multinomial logistic regression to educational factors derived from
the 2009 General Household Survey in South Africa; however, Ekström, Esseen,
Westerlund, Grafström, Jonsson & Ståhl (2018) applied logistic regression models
to data collected from environmental monitoring programs.

Nevertheless, certain studies, such as Fahrmeir & Kaufmann (1985), McCullagh
& Neider (2018), and Agresti (2013), failed to provide a detailed development
of a general asymptotic theory for maximum likelihood (ML) estimation for
independent but not identically distributed variables. However, classical
Mathematical Statistics books, such as Zacks (1971) and Rao, Rao, Statistiker,
Rao & Rao (1973), only mention identically distributed independent variables
that are not applicable to generalized linear models. Nevertheless, many studies,
such as Wedderburn (1974), Wedderburn (1976), or McCullagh (1983), discuss the
more generalized concept of quasi-likelihood functions, which are important for
logistical models with repeated measurements. Therefore, because of the critical
role that multinomial logistic models play in several applications, this study seeks
to develop a theory for independent but not identically distributed variables, i.e.,
a theory that is indeed outlined in the literature but not discussed in detail.

Therefore, for independent but not identically distributed variables, theoretical
details must be generalized to multinomial model applications when the response
variable takes any of R ≥ 2 levels, which is the primary contribution of this work.
In fact, multinomial models in which the response variable may take one of three
levels are addressed in LLinás & Carreño (2012) and LLinás, Arteta & Tilano
(2016).

This paper is organized as follows. Section 2 presents the multinomial model,
and Section 3, we briefly introduce the satured model. Then, in Section 4, we
discuss the results from the score vector and the information matrix for the
saturated model. Subsequently, in Section 5, we develop the theory corresponding
to the multinomial logistic model. Section 6 provides the results from the score
vector and the information matrix for this logistic model. Then, in Section 7, we
present and demonstrate a theorem on the existence of logistic parameters and
Section 8 addresses an application of the previously introduced theory. The paper
ends with some conclusions in the Section 9.
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2. Basic Model

Assume that the variable of interest Y able to assume R levels 0, 1, . . . , R− 1.
For each r = 0, 1, . . . , R − 1, we use the notation pr := P (Y = r) to represent
the probability of Y taking the value of r. Making independent observations of
Y , we obtain the sample Y = (Y1, Y2, . . . , Yn)

T with y = (y1, y2, . . . , yn)
T , where

yi ∈ {0, 1, 2, · · · , R−1}, i = 1, · · · , n, is a possible value of the sampling variable Yi.
Note that the variables Yi are independent of each other. To build the likelihood
function, R independent variables will be created with values in {0, 1}, as follows:
Uri = 1 si Yi = r and Uri = 0, otherwise, where r = 0, 1, . . . , R− 1 y i = 1, . . . , n.
Note that Uri has a Bernoulli distribution with parameter pri = P (Yi = r). In
terms of Uri, the sampling variables will be Ui = (U0i, U1i, . . . , U(R−1)i), with
values ui = (u0i, u1i, . . . , u(R−1)i), where

∑R−1
r=0 uri = 1, for a fixed i value.

Therefore, we achieve the following: P (Ui = ui) =
∏R−1

r=0 puri
ri , i = 1, . . . , n. Fixing

y we get the likelihood function L for parameter p = (p0, p1, . . . , p(R−1))
T , with

pr := (pr1, pr2, . . . , prn)
T , and using this, the logarithm of the likelihood function

is obtained as follows:

L (p) := lnL(p) =

n∑
i=1

[
R−2∑
r=0

uri ln pri +

(
1−

R−2∑
r=0

uri

)
ln

(
1−

R−2∑
r=0

pri

)]
(1)

3. Saturated Model

The saturated model is characterized by the following assumptions:

1. The following are the basic assumptions for the model:

(a) There are K explanatory variables X1, . . . , XK (numerical or categorical)
with values x1i, . . . , xKi, for i = 1, . . . , n (fixed or observed according to
deterministic or random variables).

(b) Among the n values (x1i, . . . , xKi) of X = (X1, . . . , XK), there are J
different values, thus defining J populations. Therefore, J ≤ n.

For each population, j = 1, . . . , J , where:

• nj is the number of Yij observations (or Urij observations in the
category r) in each j population. Then, n1 + · · ·+ nJ = n.

• Zrj :=

nj∑
i=1

Urij , r = 0, 1, 2, . . . , R − 1 fixed, the random variable

that represents the sum of the nj observations Urij in j. Hence,

zrj =

nj∑
i=1

urij , with
J∑

j=1

zrj =

n∑
i=1

uri.

For clarity, the jth (x1j , . . . , xKj) population will be abbreviated by the
symbol b for each fixed r = 0, 1, 2, . . . , R− 1.
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2. For each j = 1, . . . , J population and each i = 1, . . . , n observation in j, it
is assumed that the variables (Uri| b) are independent of each other, with
a Bernoulli distribution with parameter prj = P (Uri = 1| b) = E(Uri| b).
Here vrj := V (Uri| b) = prj(1 − prj). Hereinafter, the b will be pressed.
This second assumption implies that, for each r = 0, 1, . . . , R − 1 and each
population j = 1, . . . , J :

(a) All prij for i = 1, . . . , n within each population j are equal. That is, the
dimensional vector (R−1)J is taken as a parameter p = (p1, p2, . . . , pJ)

T ,
where pj := (p0j , p1j , . . . , p(R−1)j).

(b) The Zrj variables are independent among populations with a binomial
distribution with parameters nj and prj , With mrj := E(Zrj) = njprj
and Vrj := V (Zrj) = njvrj .

In vector form, Z = (Z0, Z1, . . . , ZR−1)
T with Zr := (Zr1, Zr2, . . . , ZrJ )

T .
Values are gathered in the z = (z0, z1, . . . , zR−1)

T vector, where the zr
components are defined by zr := (zr1, zr2, . . . , zrJ)

T . From the above:

• m := E(Z) = (m0,m1, . . . ,m(R−2))
T , with mr := (mr1,mr2, . . . ,mrJ )

T .
• V := Cov(Z), which is a matrix of (R− 1)J × (R− 1)J . The elements

of this matrix can be seen in item (b) in the proof of theorem 4.

According to (1), the logarithm of the maximum likelihood function will be:

L (p) =

J∑
j=1

[
R−2∑
r=0

zrj ln prj +

(
nj −

R−2∑
r=0

zrj

)
ln

(
1−

R−2∑
r=0

prj

)]
. (2)

The following theorem evidences the ML estimator for the saturated model
parameters and the possible values that the logarithm of the corresponding
likelihood function can accept when assessed in a point estimate vector of the
parameter vector.

Theorem 1. For each fixed r = 0, 1, . . . , R − 1 and j = 1, 2, . . . , J , the ML
estimators of prj are p̃rj =

Zrj

nj
with p̃rj =

zrj
nj

. Further,

L (p̃) =

J∑
j=1

nj

[
R−2∑
r=0

p̃rj ln p̃rj +

(
1−

R−2∑
r=0

p̃rj

)
ln

(
1−

R−2∑
r=0

p̃rj

)]
< 0. (3)

Proof . This theorem is demonstrated in the Appendix hereto.

4. Score and Information of the Saturated Model

In this section, we present and demonstrate some asymptotic properties both
for the score vector and for the information matrix in the saturated model,
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highlighting the fact that we are using independent but not identically distributed
variables, thus providing the details that are not yet found in the literature. These
results are important for perfoming comparison tests using the logistic model. In
the following theorem the corresponding properties are presented.

Theorem 2. In the saturated model:

(a) The score vector of the sample is a column vector of size (R−1)J and is given
by S(p) := ∂L

∂p = (S0(p), S1(p), . . . , SR−2(p))
T , where Sr(p) is a column vector

of size J , with elements Zrj−njprj

vrj
=

nj(p̃rj−prj)
vrj

. In addition, E(S(p)) = 0.

(b) The information matrix of the sample is a square matrix of size (R− 1)J and
is given by

ℑ(p) := Cov(S(p)) =


A00 A01 · · · A0(R−2)

A10 A11 · · · A1(R−2)

...
...

. . .
...

A(R−2)0 A(R−2)1 · · · A(R−2)(R−2)

 ,

where Arr′ are diagonal matrices of size J and whose diagonal elements are
nj

vrj
if r = r′ and −njprjpr′j

vrjvr′j
if r ̸= r′. For clarity, ℑ̃ := ℑ(p).

(c) E
(
−∂2L

∂p2

)
= −ℑ̃∗, where ℑ̃∗ is a square matrix of size (R− 2)J given by

ℑ̃∗ =


A00 −A11 · · · −A(R−2)(R−2)

−A00 A11 · · · −A(R−2)(R−2)

...
...

. . .
...

−A00 −A11 · · · A(R−2)(R−2)

 ,

where Arr is the diagonal matrix described in the previous item.

(d) Then Z∗ = ℑ̃ 1
2 (V ∗)−1(Z − m), where V ∗ = diag{v∗0 , v∗1 , . . . , v∗(R−2)}, with

v∗r = (vr1, vr2, . . . , vrJ)
T . Then, S(p) = ℑ̃ 1

2Z∗ or Z∗ = ℑ̃− 1
2S(p).

Proof .

(a) We denote the random score vector of the i observation by Si(p). The results
are obtained immediately if the following is taken into account: assumption 1
from section 3, the property S(p) =

∑n
i=1 Si(p) =

∑J
j=1

(∑
i en j Si(p)

)
and

that E(Zrj) = njprj .

(b) Taking a fixed value j = 1, . . . , J . For all r = 0, 1, . . . , R− 2 we find that

V

(
Zrj − njprj

vrj

)
=

nj

vrj
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and for all r′ = 0, 1, . . . , R− 2 with r′ ̸= r:

Cov

(
Zrj − njprj

vrj
,
Zr′j − njpr′j

vr′j

)
=

1

vrjvr′j
Cov(Zrj , Zr′j) = −njprjpr′j

vrjvr′j
.

(c) With j, k = 1, 2, . . . , J and r, r′ = 0, 1, . . . , R− 2.

(1) If j ̸= k and r ̸= r′, then ∂2L

∂pr′k∂prj
= 0. Therefore, E

(
∂2L

∂pr′k∂prj

)
= 0.

(2) If j = k and r = r′, then:

∂2L

∂p2rj
=

∂

∂prj

[
Zrj − njprj
prj(1− prj)

]
= −

[(
Zrj

nj
− prj

)(
nj(1− 2prj)

v2rj

)
+

nj

vrj

]
.

(3) Now, for r ̸= r′ and j = k,

∂2L

∂pr′k∂prk
=

∂L

∂pr′k

Zrk

prk
−

nk −
R−2∑
r=0

Zrk

1−
R−2∑
r=0

prk


=

(
Zrk

nk
− prk

)
nk(1− 2prk)

v2rk
+

nk

vrk
.

That is, for r = r′, E
(

∂2L
∂p2

rk

)
= − nk

vrk
, and for, r ̸= r′, E

(
∂2L

∂pr′k∂prk

)
= nk

vrk
.

The results found in these three cases therefore demonstrate the subsection.

(d) Since

∂L

∂p
= (V ∗)−1(Z −m) = ℑ̃1/2

[
ℑ̃−1/2(V ∗)−1(Z −m)

]
= ℑ̃1/2Z∗,

the result is immediate

Remark 1. In this case, ℑ̃ has diagonalizable main submatrices with nj

vrj
> 0

elements and the determinant is positive, which implies that ℑ̃ positive definite
and therefore non singular and the ℑ− 1

2 root exists (see Harville (1997)).

In the following theorem, asymptotic results are presented and demonstrated
both for the score vector and the information matrix in the saturated model.

Theorem 3. Suppose lim
nj→∞

nj

nvrj
= 1

σ2
rj

> 0 for all j = 1, 2, . . . J and all

r = 0, 1, . . . , R− 1. Then, for the saturated model (when n → ∞ and J is fixed):
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(a) 1
nS(p)

a
= 1

nS
∗(p), where S∗(p) = ℑ̃(p̃− p), with p̃ being the ML-estimator of

p in the saturated model.

(b) 1
n

(
−∂2L

∂p2

)
a
= 1

n ℑ̃
∗. That is, for all j = 1, 2, . . . , J and all r, r′ = 0, 1, . . . , R−

1, we have
1

n

∂2L

∂pr′j∂prj
− 1

n
E

(
∂2L

∂pr′j∂prj

)
P→ 0.

(c) Z∗ d→ N (R−1)J

(
0, I(R−1)J

)
.

(d) 1√
n
S(p)

d→ N (R−1)J(0, Ξ̃), where Ξ̃ = lim
n→∞

(
ℑ̃
n

)
.

Here, a
= means asymptotic equivalence; P→, indicates convergence in probability;

d→, indicates convergence in distribution; N (R−1)J , is the (R − 1)J-dimensional
normal distribution and I(R−1)J is the (R− 1)J-dimensional identity matrix .

Proof .

(a) As per item (a) of theorem 2, S(p) =
[
diag(ℑ̃)

]
(p̃ − p), where diag(ℑ̃) is

the diagonal matrix whose elements are the same diagonal elements of ℑ̃.
Then, 1

n (S(p)− S∗(p)) is a vector column of size J that has the following
as elements

R−2∑
r=0

njprjp0j
nvrjv0j

(p̃rj − prj), j = 1, . . . , J

For a fixed j and r,

lim
nj→∞

[
njprjp0j
nvrjv0j

(p̃rj − prj)

]
=

1

σ2
rj

p0jprj
v0j

(
Zrj

nj
− prj

)
P−→ 0.

(b) As per item (c) of theorem 2, it is known that E
(
−∂2L

∂p2

)
= −ℑ̃. Suppose

r, r′ and j are fix and

Err′(n, j) :=
1

n

(
− ∂2L

∂pr′j∂prj

)
− 1

n
E

(
− ∂2L

∂pr′j∂prj

)
.

• If r = r′, then

Err′(n, j) = − 1

n

[(
Zrj

nj
− prj

)
nj

vrj

(1− 2prj)

vrj

]
.

• If r ̸= r′, then

Err′(n, j) =
1

n

[(
Zrj

nj
− prj

)
nj

vrj

(1− 2prj + 2vrj)

vrj

]
.
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Now, it is known that
(

Zrj

nj
− prj

)
p−→ 0 if n → ∞, by the weak law of the

large numbers. Because
nj

nvrj

(1− 2prj)

vrj

nj→∞−−−−→ 1

σ2
rj

(1− 2prj)

vrj
> 0

and
nj

nvrj

(1− 2(prj + vrj))

vrj

nj→∞−−−−→ 1

σ2
rj

(1− 2(prj + vrj))

vrj
> 0,

then, 1
n

(
− ∂2L

∂pr′∂pr

)
a
= 1

n ℑ̃
∗.

(c) As the variables Zrj converge to the normal distribution by the multivariate
central limit theorem, Z d−−−−→

n→∞
N (R−1)J(m,V ). Then, for a fixed value of

J :
Z∗ d−−−−→

n→∞
N (R−1)J

(
E(Z∗), ℑ̃−1/2ℑ̃ℑ̃−1/2

)
= N (R−1)J(0, I).

(d) Considering item (d) of theorem 2, we have:

(
1√
n

)
S(p) =

1√
n
ℑ̃1/2

[
ℑ̃−1/2(V ∗)−1(Z −m)

]
=

(
ℑ̃
n

)1/2

Z∗.

Now, because
1

n
ℑ̃ n−→∞−−−−→ Ξ̃, (4)

we have
(

ℑ̃
n

)1/2 c.s−−→ Ξ̃1/2. Therefore,
(

ℑ̃
n

)1/2 d−→ Ξ̃1/2, and with it,
1√
n
S(p)

d−→ N (R−1)J(0, Ξ̃).

Remark 2. The assumption from theorem 3 can be interpreted as follows: “The
speed” of each nj −→ ∞ must be the same as that of n −→ ∞. For example, in a
balanced design, all the nj are equal. In this case, nj =

n
J . Therefore, the amount

1
n · nj

vj
= 1

Jvj
is fixed; that is, it does not depend on n. Using the notations from

the previous theorem, σ2
j = Jvj because, in this case, the expression (4) becomes

an equal value of 1
n ℑ̃ = Ξ̃.

5. Multinomial Logistic Model

Assumptions 1 and 2 of section 3 include that the design matrix:

C =


1 x11 · · · x1K

1 x21 · · · x2K

...
...

...
1 xJ1 · · · xJK
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has full rank with Rg(C) = 1 +K ≤ J . To define the logistic model, we take
one of the categories of the dependent variable Y as the reference; let us say for
R− 1, with the following additional assumption:

gr(xj) = ln

(
prj

pR−1,j

)
= δr + βr1xj1 + . . .+ βrKxjK , r = 0, 1, . . . , R− 2,

where xj := (1, xj1, . . . , xjK)T . With βr := (δr, βr1, . . . , βrK)T , the parameter
vector α = (β0, β1, . . . , βR−2)

T is a column vector of size (R−1)(1+K). Note that
the assumption Rg(C) = 1+K is important for the parameter α to be identifiable.
For an xj observation in population j and for each r,

prj =
exp {gr(xj)}

R−1∑
s=0

exp {gs(xj)}

, (5)

where gR−1(xj) = 0. The logarithm of the likelihood function can be written
as a function of α as follows:

L (α) =

J∑
j=1

[
R−1∑
r=0

zrjgr(xj)− nj ln

(
R−1∑
s=0

exp {gsj(xj)}

)]
. (6)

The likelihood equations are found by calculating the first derivatives of L (α) with
respect to each of the (R − 1)(1 + K) unknown parameters. Therefore, for each
fixed k = 0, 1, . . . ,K and each r = 0, 1, . . . , R, the likelihood equations are given
by

∂L

∂βrk
=

J∑
j=1

xjk

Zrj − nj

 exp{grj(xj)}
R−1∑
s=0

exp{gs(xj)


 =

J∑
j=1

xjk (Zrj − njprj) . (7)

The maximum likelihood estimator is obtained by equating these equations to
zero and solving the logistic parameters. The solution requires the same type of
iterations that were used to obtain the estimates in binary cases and with three
levels, as demonstrated in LLinás (2006) and LLinás et al. (2016), respectively.
For general cases, results are presented in section 7.

6. Logistic Model Information and Score

The following theorem shows some properties of the score vector and the
information matrix in a logistic model.
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Theorem 4. In a logistic model:

(a) The random score of the sample is a vector column of size (R−1)(1+K) given
by S(α) := ∂L

∂α =
(
IR−1 ⊗ CT

)
(Z −m). Also, E(S(α)) = 0. Here, IR−1 is the

identity matrix of order R−1 and the symbol ⊗ means the Kronecker product.

(b) The information matrix of the sample is given by ℑ(α) := Cov(S(α)) =
(IR−1 ⊗ CT )V (I2 ⊗ C). Here, IR−1 and I2 are the identity matrices of order
R− 1 and 2, respectively.

(c) E( ∂
2L

∂α2 ) =
∂2L
∂α2 = −ℑ.

Proof .

(a) Considering Equation (7). Taking βr0 = δr, it can be verified that S(α) =
(IR−1 ⊗CT )(Z −m), where IR−1 is the identical matrix of order R− 1. With
this result, we have that E(S(α)) = (IR−1 ⊗ CT )(E(Z)− njprj) = 0.

(b) For part (a),

ℑ(α) = (IR−1 ⊗ CT )Cov(Z)(IR−1 ⊗ CT )T = (IR−1 ⊗ CT )V (I2 ⊗ C). (8)

(c) Considering mrj as defined in assumption 2 from section 3, for r, r′ =
0, 1, . . . , R − 2, and j = 1, . . . , J , k = 1, . . . ,K all fixed values, we have
∂mrj

∂βr′k
= nj

∂prj

∂βr′k
. The following two cases are found:

• If r = r′, then ∂prj

∂βrk
= vrjxjk. That is, ∂mrj

∂βrk
= njvrjxjk.

• If r ̸= r′,

∂prj
∂βr′k

=
exp{grj(xj)} exp{gr′j(xj)}xjk1 + exp{gr′j(xj)}+

∑
r ̸=r′

exp{grj(xj)}

2 = −prjpr′jxjk.

Thus, ∂mrj

∂βrk
= −njprjpr′jxjk.

Considering the results obtained in both cases, we have:

∂2L

∂α2
=

∂

∂α

[
(IR−1 ⊗ CT )(Z −m)

]
= −(IR−1 ⊗ CT )

∂m

∂α
.

Because, ∂m
∂α = V

(
I(R−1) ⊗ C

)
, we can conclude from Equation (8) that

∂2L
∂α2 = −ℑ and with that, E( ∂

2L
∂α2 ) = E(−ℑ) = −ℑ.

Remark 3. For the particular case of non-grouped data, where nj = 1,∀j and
J = n, Z = U , m = (p0, p1, . . . , . . . , p(R−2))

T , with pr = (pr1, . . . , prn)
T and C is

the original design matrix of (R− 1)× (1 +K).
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Theorem 5. Considering the assumptions from sections 3 and 5:

(a) The matrix ℑ has a full rank Rg(ℑ) = (R− 1)(1+K) and is positive definite.

(b) Suppose that lim
nj→∞

nj

nvrj
=

1

σ2
rj

> 0 does exist, then a Ξ square matrix, positive

definite and of size (R− 1)(1 +K), also exists such that:

1√
n
S(α)

d−−−−→
n→∞

N (R−1)(1+K) (0,Ξ) , for a fixed value of J.

Here, d−→ means convergence in distribution and N (R−1)(1+K) is the (R −
1)(1 +K)-dimensional normal distribution.

Proof .

(a) Taking into account that Rg (C) = 1+K, where ℑ is square of (R−1)(1+K),
that Rg

(
ATA

)
= Rg (A) and that Rg (IR−1 ⊗ C) = Rg(IR−1)R(C):

Rg (ℑ) = Rg
[
(IR−1 ⊗ CT )V (IR−1 ⊗ C)

]
= (R− 1)(1 +K).

Here, ⊗ is the Kronecker product and IR−1, the identity matrix of order R−1.
This indicates that ℑ has a full rank. Now, we must prove that ℑ is positive
definite. That is, ∀ u ̸= 0, uTℑu > 0. With u ̸= 0 being any column vector of
(R− 1)(1 +K), we have

uTℑu = uT
[
(IR−1 ⊗ CT )(V

1
2 )TV

1
2 (IR−1 ⊗ C)

]
u

=
(
V

1
2 (IR−1 ⊗ C)u

)T (
V

1
2 (IR−1 ⊗ C)u

)
.

But V 1/2
(
I(R−1) ⊗ C

)
u is a column vector of (R− 1)(1 +K). Therefore, for

all u ̸= 0, it is true that uTℑu ≥ 0. However, uTℑu = 0 if and only if it is
true that V

1
2 (IR−1 ⊗ C)u = 0. Now,

• For r = r′, the components njvrj > 0, vrj = prj(1− prj).
• For r ̸= r′, the components −njprjpr′j < 0.

Therefore, u = 0. Then, ∀ u ̸= 0, uTℑu > 0. Thus, ℑ is positive definite.

(b) With λ :=
(
λ0, . . . , λ(R−1)(1+K)

)T being any vector of real numbers, we want
to prove that

λT

(
1√
n
S(α)

)
=

1√
n

n∑
i=1

λTSi(α)

has a asymptotic one-dimensional normal distribution, where Si(α) is the score
vector of observation i. This is checked below:
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• We have that E
(
λTSi (α)

)
= λTE (Si (α)) = λT (0) = 0.

• The information matrix ℑi (for a Yi observation in population j)
corresponding to the logistic model is given by ℑi = Cov

(
(Si)(α)

)
. As

ℑi is positive definite ∀i in j,

V
(
λTSi (α)

)
= λTCov (Si (α))λ = λTℑiλ > 0.

It is clear that V = V ∗ℑ̃V ∗, where V ∗ is as per theorem 2(d). Now,
1
nℑ =

[
(IR−1 ⊗ CT )V ∗] ℑ̃

n [V ∗(IR−1 ⊗ C)]. Therefore, as per Tilanos
Theorem 3.3.1b (Tilano & Arteta 2012): 1

nℑ −−−−→
n→∞

Ξ̃. Then,

1

n
ℑ −−−−→

n→∞

[
(IR−1 ⊗ CT )V ∗] Ξ̃ [V ∗(IR−1 ⊗ C)] := Ξ

y Rg (Ξ) = (R− 1) (1 +K).

Then, we must prove that 1√
n
S(α)

d−−−−→
n→∞

N (R−1)(1+K) (0,Ξ) for a fixed value

of J . For the non-grouped case, it is true that Ξ holds 1
Jℑ(α)

J→∞−−−−→ Ξ.
Considering the above and knowing that Ξ is positive definite, we have

1

n

n∑
i=1

V λTSi(α) = λT 1

n
ℑλ −−−−→

n→∞
λTΞλ > 0.

In addition Lindberg’s condition holds, that is,

∀ε > 0,
1

n

n∑
i=1

EλTSi(α)

([
λTSi (α)

]2 · 1{[λTSi(α)]
2>ε2n}

)
−→
n→∞

0.

Therefore, we have λT
(

1√
n
S (α)

)
d−→ N1

(
0, λTΞλ

)
, when n → ∞. Then,

when applying the multivariate central limit theorem, it is concluded that
1√
n
S (α)

d−→ N2(1+K) (0,Ξ), when n → ∞ and J is fixed.

Remark 4. For the case of non-grouped data, where J = n, the assumption given
in (b) makes no sense because J is not fixed. Then, it is assumed immediately
that 1

Jℑ has a positive definite limit Ξ and 1√
J
S(α)

d−→ N (R−1)(1+K)(0,Ξ) when
J −→ ∞.
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7. Existence and Calculations of the Logistic
Parameters

Theorem 6 (Existence theorem). The ML-estimations α̂ of α exist, are unique
and calculated according to the following recursion formula:

α̂(0) = 0

α̂(t+1) = α̂(t) + [(IR−1 ⊗ CT )V̂ (t)(IR−1 ⊗ C)]−1(IR−1 ⊗ CT )(Z − m̂(t)),

where V̂ and m̂ are the estimated matrix of covariances and the expected vector of
Z, respectively, (hence, V̂ and m̂), defined in section 3 assumption 2. In addition,
asymptotically we have

√
n(α̂− α)

a
= Cov−1

(
1√
n

∂L

∂α

)
.

(
1√
n

∂L

∂α

)
=

√
n
[
(IR−1 ⊗ CT )V (IR−1 ⊗ C)

]−1
(IR−1 ⊗ CT )(Z −m).

Proof . By theorem 4 (c) ∂2L
∂α2 = −ℑ is a full rank matriz (R−1)(K+1). Therefore,

only ML-estimations α̂ may be used as solutions of the (R− 1)(K + 1) equations

S(α) :=
∂L (α)

∂α
= 0. (9)

Alternatively, by theorem 4 (a),
(
IR−1 ⊗ CT

)
(Z −m) = 0. The following must

be true: ∂L(α̂)
∂α = 0. Using the Taylor approximation, if α1 is a point between α

and α̂, then
∂L (α)

∂α
=

∂L (α̂)

∂α
+

∂2L (α)

∂α2
(α− α̂).

Considering Equation (9), , this expression can be rewritten by theorem 4 as
α̂ − α =

[
(IR−1 ⊗ CT )V (IR−1 ⊗ C)

]−1
(IR−1 ⊗ CT )(Z −m), where V1 = V (α1).

As α1 is a point on the line segment that joins α and α̂, α1 = tα̂ + (1 − t)α,
for all t ∈ [0, 1]. Under the assumption that α̂ is strongly consistent for α, that
is, α̂

c.s−→ α, n −→ α, by components α1
a.s−→ α ⇒ α1

P−→ α. This implies
that

√
n(α̂ − α) =

[
(IR−1 ⊗ CT ) 1nV1(IR−1 ⊗ C)

]−1 1√
n
(IR−1 ⊗ CT )(Z − m). As

α1
P−→ α, when n −→ ∞, we have[
(IR−1 ⊗ CT )

1

n
V1(IR−1 ⊗ C)

]−1
1√
n
(IR−1 ⊗ CT )(Z −m)︸ ︷︷ ︸

√
n(α̂−α)

a
=

[
(IR−1 ⊗ CT )

1

n
V (IR−1 ⊗ C)

]−1
1√
n
(IR−1 ⊗ CT )(Z −m)︸ ︷︷ ︸

√
n[(IR−1⊗CT )V (IR−1⊗C)]−1(IR−1⊗CT )(Z−m)

.
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We have α̂ ∼= α+
[
(IR−1 ⊗ CT )V (IR−1 ⊗ C)

]−1
(IR−1⊗CT )(Z−m). Replacing

α on the right side by the t-th approximation α̂(t) of α, we obtain the recursion
formula that provides the (t+ 1)− th approximation α̂(t+1) of α̂.

8. Example

Fontanella, Early & Phillips (2008) present results from a study that examines
the influence of both clinical and non-clinical factors on level of aftercare
decisions. The corresponding data set (named APS data) were modified to
protect confidentiality. It can be downloaded from the aplore3 library in the R
program. For the application, we selected only two variables, which are described
in Table 1.

Table 1: Code sheet for the variables in the Study.

Variable Description Code/Values Name
1 Placement combined 0 = Residential, 1 = In-

termediate residential, 2 =
Day treatment or Outpa-
tient

PLACE3 (Y )

2 History of violence 0=No, 1= Yes VIOL (X)

To apply the multinomial logistics model, we have used Day treatment or
Outpatient (2) as the reference outcome value. When these data were entered
in the R statistical package and grouped into populations. First, the Table 2
shows the cross-classification of PLACE3 versus history of violence (VIOL). We
observe that the dependent variable Y takes one of the possible R = 3 values and
the explanatory variable X is dichotomic.

Table 2: Cross-Classification of Placement (PLACE3) by History of Violence (VIOL).

History of violence (X)
PLACE3 (Y ) No (0) Yes (1) Total
Intermediate residential (0) 26 104 130
Residential (1) 15 104 119
Day treatment or Outpatient (2) 80 179 259
Total 121 387 508

We found that J = 2, with n1 = 121 (Group for X = 0) and n2 = 387 (Group
for X = 1). In this case, Z = (15, 104, 26, 104)T . By applying theorem 1,
the vectors of estimated parameters were p̃ = (0.124, 0.269, 0.215, 0.269)T and
L (p̃) = −515.7323. The matrix V̂ := Ĉov(Z) is of 4× 4 and has the form:

V̂ =


13.140 0.000 −3.223 0.000

0.000 76.052 0.000 −27.948

−3.223 0.000 20.413 0.000

0.000 −27.948 0.000 76.052
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By applying theorem 2, we could easily verify that E(S(p̃)) = 0 and that the
information matrix in the saturate model is provided by

ℑ̂(p̃) := Ĉov(S(p̃)) =


1114.189 0.000 −175.925 0.000

0.000 1969.306 0.000 −723.702

−175.925 0.000 717.231 0.000

0.000 −723.702 0.000 1969.306


Since J = 1+K (J = 2 and K = 1) then C would be a non-singular or invertible
matrix. Therefore, α̂ = (β̂0, β̂1)

T with β̂r = C−1ĝr for r = 0, 1. Here

β̂r := (δ̂r, β̂r1)
T , ĝr :=

(
ln

(
p̂r1
p̂21

)
, ln

(
p̂r2
p̂22

))T

That is, there is a one-to-one relationship between the parameters of the saturated
model and those of the logistics model. That is, the models express the same thing,
where p̂rj = p̃rj for each j = 1, 2. Taking into account that

ĝ0 =

(
−1.674

−0.543

)
, ĝ1 =

(
−1.124

−0.543

)
, C−1 =

(
1 0

−1 1

)
we found that α̂ = (−1.674, 1.131,−1.124, 0.581)T . Applying the theorem 4, the
estimation of the information matrix in logistic model is given by

ℑ(α̂) := Ĉov(S(α̂)) =


89.192 76.052 −31.171 −27.948

76.052 76.052 −27.948 −27.948

−31.171 −27.948 96.465 76.052

−27.948 −27.948 76.052 76.052


As the estimator of the covariance matrix of the maximum likelihood estimator
is the inverse of the observed information matrix, then the estimated covariance
matrix for the fitted model is

V̂ (α̂) = [ℑ̂(α̂)]−1 =


0.079 −0.079 0.013 −0.013

−0.079 0.094 −0.013 0.018

0.013 −0.013 0.051 −0.051

−0.013 0.018 −0.051 0.066


When we apply the package nnet in R, we get the same results as above. The
results of fitting the three-category logistic regression model, using the multinom
function, to these data are presented in Table 3. In this table, appear the estimated
coefficients, the estimated standard error of the coefficients, the values of the
estimated odds ratio (ÔR) and the 95% confidence interval for the odds ratio for
PLACE3 = 0 versus PLACE3 = 2 and for PLACE3 = 1 versus PLACE3 = 2.
From the Table, we see that statistically the VIOL variable is significantly
associated with adolescent placement. Table 4 shows the results obtained when
performing the comparison test of the null model with the logistic model.
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Table 3: Results of Fitting the Logistic Regression Model to the Data.

Logit Coefficient Estimation Std. Error ÔR 95% CI
0 Constant -1.674 0.2814

VIOL 1.131 0.3072 3.10 (1.70, 5.66)
1 Constant -1.124 0.2257

VIOL 0.581 0.2572 1.79 (1.08, 2.96)

Table 4: Comparison test of the null model with the logistic model.

Model DF −2L (θ̂) ∆DF ∆(−2L (θ̂)) P-value
Null 1014 1048.742
Residual 1012 1031.465 2 17.2774 0.0002

From this Table, the log-likelihood for the constant only model is L (δ̂0) =
524.37093 and the loglikelihood of the fitted model is L (α̂) = 515.73225. The
value of the statistic is

2[L (α̂)− L (δ̂0)] = 17.2774,

which yields a p-value of 0.0002. In conclusion, having a history of violence is a
significant factor for being placed in some type of residential facility.

9. Conclusions

Recent studies, such as Zacks (1971), Rao et al. (1973), Fahrmeir & Kaufmann
(1985), McCullagh & Neider (2018), and Agresti (2013), fail to provide a detailed
development of a general asymptotic theory for ML estimation for independent but
not identically distributed variables of generalized linear models. Furthermore,
other works, such as Wedderburn (1974), Wedderburn (1976), or McCullagh
(1983), only limit themselves to discussing the more general concept of quasi-
likelihood functions, which are important for logistic models with repeated
measurements. Based on these gaps identified in the literature, for independent
but not identically distributed variables, theoretical details must be generalized to
multinomial model applications when the response variable consider any R ≥ 2
levels. This is the primary contribution of this work. In fact, multinomial models
where the response variable may take one of three levels are addressed in LLinás
& Carreño (2012) and LLinás et al. (2016)). In this study, we extended these last
two works to cover the cases where R > 3.

We assessed multinomial logistic and saturated models where the response
variable takes one of R ≥ 2 values, emphasizing the fact that we used independent
but not identically distributed variables, thus providing details that are not yet
found in the literature. For this purpose, we demonstrated the properties of
the score vector and the information matrices for these models. Furthermore,
based on an asymptotic theory, we proved the convergence theorems for the score
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vector and information matrices of both models and emphasized on the fact that
these vectors exhibit normal multivariate distributions. Moreover, we validated a
theorem about the existence and calculation of ML estimates for the parameters
of the multinomial saturated model. Similarly, we presented and demonstrated
a theorem for the existence of ML estimates for logistic parameters, thus briefly
explaining the iteration method used for its calculation, i.e., the NewtonRaphson
method.

Based on the results from this work, we will be able to compare the logistic
model against its corresponding saturated model, which will allow us to reduce
the number of observations and perform faster computer-based assessments. For
future studies, the results yielded by this study may be used to construct test
statistics, as well as their corresponding asymptotic distributions.

Appendix

Proof of theorem 1. We fix r and j as constant values. For 0 < prj < 1, of (2) we
have that ∂L

∂prj
= 0 if and only if

zrj − zrj

R−2∑
r=0

prj − njprj + prj

R−2∑
r=0

zrj = 0.

That is, prj = zrj
nj

. Now:

∂2L

∂p2rj
= −


zrj
p2rj

+

(
nj −

R−2∑
r=0

zrj

)
(
1−

R−2∑
r=0

prj

)2

 .

However, since 0 <

R−2∑
r=0

zrj < nj , we have:

∂2L

∂p2rj

∣∣∣∣
prj=

zrj
nj

= −

 n2
j

zrj
+

nj(
nj −

R−2∑
r=0

zrj

)
 < 0.

That is, p̃rj = zrj
nj

. Now, the following extreme cases must be assessed:

• If
R−2∑
r=0

zrj = 0, then ∂2L

∂p2rj

∣∣∣∣
prj=p̃rj

= − nj

1−
R−2∑
r=0

p̃rj

< 0. In this case, L

decreases in p̃rj . That is, L (p̃) assumes a maximum value when p̃rj = 0.
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• If
R−2∑
r=0

zrj = nj then ∂2L

∂p2rj

∣∣∣∣
prj=p̃rj

=
nj

p̃rj
> 0. In this case, L increases in p̃rj .

That is, L (p̃) assumes a maximum when p̃rj = 1.

[
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