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Abstract

In the inferential process of Principal Component Analysis (PCA), one
of the main challenges for researchers is establishing the correct number
of components to represent the sample. For that purpose, heuristic and
statistical strategies have been proposed. One statistical approach consists
in testing the hypothesis of the equality of the smallest eigenvalues in
the covariance or correlation matrix using a Likelihood-Ratio Test (LRT)
that follows a x? limit distribution. Different correction factors have been
proposed to improve the approximation of the sampling distribution of the
statistic. We use simulation to study the significance level and power of
the test under the use of these different factors and analyze the sample
size required for an adequate approximation. The results indicate that for
covariance matrix, the factor proposed by Bartlett offers the best balance
between the objectives of low probability of Type I Error and high Power.
If the correlation matrix is used, the factors W3 and cx3 are the most
recommended. Empirically, we can observe that most factors require sample
sizes 10 or 20 times the number of variables if covariance or correlation
matrices, respectively, are implemented.
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Resumen

Dentro del proceso inferencial del Anélisis de Componentes Principales
(PCA) uno de los interrogantes principales de los investigadores es sobre el
nimero correcto de componentes para representar la muestra. Para este fin se
han propuesto estrategias heuristicas y estadisticas. Un enfoque estadistico
consiste en probar la hipétesis sobre la igualdad de los valores propios més
pequeiios de la matriz de covarianza o correlacién a través de una prueba de
razén de verosimilitud (LRT) que sigue una distribucién limite x?2. Diferentes
factores de correccién han sido propuestos para mejorar la aproximacién de la
distribuciéon muestral del estadistico. En este trabajo utilizamos simulacién
para estudiar el nivel de significancia y la potencia de la prueba bajo el uso
de estos diferentes factores, asi como una revisién del tamafio de muestra
requerido para una adecuada aproximacion. Los resultados para la matriz
de covarianza indican que el factor propuesto por Bartlett ofrece el mejor
equilibrio entre los objetivos de baja probabilidad de Error Tipo I y alta
potencia. En caso de la matriz de correlacién, los factores W5 y ex3 son los
més recomendados. Empiricamente se observa que la mayoria de los factores
requieren tamafios de muestra 10 y 20 veces mayores al nimero de variables
en caso de la matriz de covarianza o de correlacién respectivamente.

Palabras clave: Andlisis de componentes principales; Comparaciéon de
potencias; Distribucién Chi-cuadrado; Prueba de esfericidad; Prueba de
razén de verosimilitud.

1. Introduction

Principal Component Analysis (PCA) is a multivariate technique used to
reduce data dimensionality. During the inference process of PCA for a sample
composed of p original variables, questions arise about the adequate k number
of components to represent the data and the adequate sample size to produce
the inference (Krazanowski, 1988). For instance, Chakraborty et al. (2020) used
the Bartlett’s test of sphericity in a correlation matrix for the construction of
socioeconomic index based on PCA in the field of environmental justice. Similary
Sahan et al. (2018) used the same test for the validation of a psychological
questionnaire. PCA can also be used as an intermediate step in a prediction
task. For example, Maté (2011) used PCA to generate combined forecasts by
identifying the underlying structure within a set of prediction methods.

In the inferential context, principal components are no longer a strictly
mathematical procedure to become a statistical method. The objective of
obtaining a smaller dimension to represent the data is affected by the sample
error. This sample error can lead to misrepresentation of the data. Such as the
non-inclusion of components with relevant information (underestimation), or the
inclusion of noise components (overestimation), causing a distortion in the analysis
(Peres-Neto et al., 2005). As Bjorklund (2019) pointed out, when a study requires
to extract a number of components, the differentiation between the eigenvalues
must be previously tested before proceeding with the analysis since the patterns
found may correspond to a simple sampling error of the correlations.

Revista Colombiana de Estadistica - Applied Statistics 44 (2021) 43-64



Comparison of Factors to Test the Equality of Figenvalues in PCA 45

Several strategies have been adopted to define the k& number of principal
components that should be retained. In this regard, multiple works can be
found comparing different methods with respect to their ability to identify the
true number of non-trivial components (Ferré, 1995; Jackson, 1993; Peres-Neto,
Jackson & Somers, 2005). For example, Jackson (1993) compared heuristic
and statistical methodologies used to define the number of components. He
compared Kaiser-Guttman, Bootstrapped Kaiser-Guttman, Scree Plot, Modified
Scree Plot, Percentage of explained variation, and those based on hypothesis
testing. Regarding the statistical approach, Jackson (1993) concluded that
Bartletts test of sphericity, based on the hypothesis of the equality of the remaining
p — k eigenvalues in the covariance matrix, correctly identified true dimensionality
in many data sets. But it showed inconsistent results with matrices having a
low observation-to-variable ratio (less than 3:1 ratio). Similarly, Peres-Neto et al.
(2005) made a comparison of methods and proposed a two-stage selection strategy,
using Bartlett’s sphericity test to identify the significance of the first component.
Later, different rules can be applied to validate the other components. However,
it should be noted that in most of these works comparing methods or applying
Bartlett’s sphericity test, only one version of the test correction factors is used.
Although, multiple correction factors have been proposed.

This study focuses on the analysis of a methodology based on a hypothesis
testing process also known as isotropic test or equality of variance test of the
(p—k) last principal components. This is an important method in literature, which
has even inspired graphic methods such as the scree-plot (Ferré, 1995). In this
statistical method, the null hypothesis of interest is defined as Hoy : A1 = Apy2 =
... = Ap = A, against Hgy : some of them are different. Where X\ represents the
unknown common value and A; is the population eigenvalue of the 1 —th component
obtained from the covariance or correlation matrix. The test tries to find evidence
that the smallest p — k last population eigenvalues are equal and could even be
considered to be simple measurements of noise (Schott, 1988). Then, accepting
Hyr, means that, if more than k components are included, all the p components
should be included because each one of the remaining components contains the
same amount of information. Hyy is tested in a sequential manner starting with
k = 0, and increasing k until the hypothesis is accepted (Mardia, Kent & Bibby,
1979; Krazanowski, 1988). To evaluate the hypothesis, it is used a Likelihood-Ratio
Test (LRT), which, under Hgy, presents an x? asymptotic distribution (Mardia,
Kent & Bibby, 1979; Krazanowski, 1988). Alternatively, Schott (2012) proposed a
new limiting distribution based on Saddlepoint approximations when Chi-square
distribution is not adequate, but that scenario was not considered in this study.

To improve the approximation of the sampling distribution of the statistic to
its distribution limit, several correction factors have been proposed; said factors
change if the PCA is conducted based on the covariance matrix or the correlation
matrix. For that reason, this work uses a simulation to compare different correction
factors that have been proposed for the Likelihood-Ratio statistic when the test of
equality of eigenvalues is used in PCA, whether with a covariance or correlation
matrix. The comparison considers the number of variables, the number of
components, and the sample size in order to recommend to PCA users which
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factor to employ and under what conditions it would be adequate to do so. We
also study the power of the test under the different factors, in order to obtain a
complete view on the performance of the method.

This article is organized as follows: First, we present the test and different
correction factors proposed for the covariance and correlation matrices. Afterward,
we describe the simulation scheme and illustrate the process. Finally, we report
the results of the simulation and draw some conclusions. In the conclusions,
we highlight a series of recommendations regarding the test statistics to be
used in PCA.

2. Tests of Equality of Eigenvalues

2.1. Test of Equality of Eigenvalues for the Covariance
Matrix

Let x1,...,X, be arandom sample of an n size taken from a normal p—wvariate
distribution with unknown population vector of p means and ¥ population
covariance matrix. Let Ay > --- > X, > 0 be the population eigenvalues of X
and [y > Iy > --- > [, be the sample eigenvalues of sample covariance matrix .5,
with an n sample size. The test statistic to evaluate the hypothesis of equality of
the smallest p — k eigenvalues Hop : Apy1 = Apg2 = --- = A, = A, based on the
sample covariance matrix, is given by (Mardia, Kent & Bibby, 1979; Krazanowski,
1988):

Wn’{(pk)loglz (pikr)] - Z log(li)} (1)

i=k+1 i=k+1

under true Hyy,, W has approximately a 2 distribution with %(p— k+2)(p—k—1)
degrees of freedom, where n’ is replaced by n or n — 1, which are represented as
W, and W,,_1, respectively.

To achieve a better x? approximation, n’ is replaced with the next correction
factor (Mardia, Kent & Bibby, 1979; Krazanowski, 1988), which is known as
Bartletts Test of Sphericity:

2p+11
FC2Bartlett =n—- P 6 (2)

Lawley (1956) claims that a better x? approximation is achieved if n’ is replaced
by the correction factor:

k
1 2 1
FC3Lawiey =n—k—= (2¢0+1+2) + 22y ——— 3
Lawley =N 6(q+ +q>+ ;:1(&‘_”2 (3)

where, for practical purposes, A; is replaced by l;, ¢ = p — k, and A\ is estimated

T Xigga b
as A = [)—716
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In Jackson (1993), n’ is replaced by
FC4ackson =1 —k (4)
Likewise, in Ferré (1995), correction factor F'C2partierr is written as:

%+ 11
FCBparre =n—k—1— 2T

()

To test the hypothesis that all the variables are independent and have an equal
variance (Jolliffe, 2002), that is, Ho with k& = 0, correction factor FC3rauicy
becomes (Bartlett, 1954; Lawley, 1956):

n—é(2p+1+i) (6)

Not rejecting hypothesis Hpy would mean that it is not possible to reduce the
dimensionality of the data at all.

2.2. Test of Equality of Eigenvalues for the Correlation
Matrix

When PCA is based on variables that have been standardized, the hypothesis
that all the eigenvalues in the population correlation matrix P are the same is equal
to the hypothesis that P = I (Mardia et al., 1979), that is, proving that Ho with
k = 0, which means that all the variables are independent without implying that
the variances are the same (Jolliffe, 2002). To support this hypothesis, Mardia,
Kent & Bibby (1979) introduced the following LRT in terms of sample correlation
matrix R:

Lr=—n-log|R| (7)

which, under Hyg, has a x2 distribution with %p(p — 1) degrees of freedom. Box
(1949) suggested a new correction factor to improve the x? approximation, which
is presented in Mardia, Kent & Bibby (1979), replacing n by:

2p+11
8
. (8)

FC’lLR:nf

To conduct the same test, Bartlett (1954) present the following correction
factor:

2p+5
FC2LR:7’L— pg (9)

Now, we are also interested in testing the hypothesis that the smallest p — k
eigenvalues of P are equal, where 0 < k < p — 1. Mardia, Kent & Bibby (1979)
examine the following statistic suggested by Bartlett (1951):
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p P
W*:n/{(p_k)loglz (pllk)] - > log(li)}, (10)
i=k+1 i=k+1

where n’ is replaced by n — 1 or n (Lawley, 1956; Mardia, Kent & Bibby, 1979;
Schott, 1988), which is represented as W and W;_,, respectively. However, this
statistic is not x? asymptotically distributed, although it could be approximated
if A1, Ao,..., A are big in relation to A with a maximum number of degrees of
freedom equal to %(p —k+2)(p— k—1) (Bartlett, 1954; Lawley, 1956; Mardia
et al., 1979).

To improve the approximation to the limit distribution, we calculate the Wz
statistic, where n’ is replaced by the following correction factor B (Bartlett, 1954;
Jackson, 1991):

1 9
B=n—=(2 _z 11
n 6(p+5) 3k (11)

Lawley (1956) improved the approximation presented by Bartlett (1954) under
the same assumption of normality and calculating the effective number of degrees
of freedom in a general case for the W* statistic, taking n’ = n:

%(q— 1)(g+2)

1 P P P P P
_6 2(¢q—1) Z QZZ +ZZC“C” ”

=1 j=1

Hw= =

(12)

where c;; are the elements of C' = I — QlQ'l (Q1 can be estimated as the matrix of
the eigenvectors of the corresponding l1,ls, ..., I, of R); r;; denotes the correlation
between x; and x;; ¢ = p — k, and ) is estimated as . The W* statistic, based
on the degrees of freedom pyy«, is denoted as sz*.

Schott (1988) extended the study by Lawley (1956), which shows the way to
obtain a new statistic of the form cx? proposed by Anderson (1963). From this,
we obtain that ¢ = 203, /uw- and d = 2u3y,. /0g,., where py+ and of,. are the
mean and variance of W*. That is, uw~ is the result obtained by Lawley (1956)
(see Equation 12), and the variance of W* is

0% = (q— (g +2) ( )Zc“+4f:§py;<” c“cﬂ>

i=1 j=1
p p p p
5 5) SIS 5D 3) DLNRCRED 35 35 D) DY T HNIE
i=1j=1 i=1j=1a=1 i=1 j=1a=1p3=1

where figjo = czﬁ ]a —2q~ lc?ac“clgg +q_20iicjjcaacﬁﬁ7 q=p—k, ¢, and r;; are

obtained as mentioned for Equation 12, and X is estimated as by
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3. Simulation Scheme

3.1. Simulation Scheme for the Covariance Matrix

The correction factors will be evaluated based on their distribution
approximation to the corresponding limit distribution by comparing the
level of nominal significance and the significance estimated for the specific
statistic. For significance level simulation we use p = 5,10,15,30 and n =
10, 30, 50, 100, 200, 500. We take n > p 4+ 1 so that the sample eigenvalues of
S are positive. We performed 100,000 simulations under the following sample
generation process.

n-sized samples are taken from a distribution N, (0,X). By considering
the covariance matrix ¥ = diag (A1,..., g, A, ..., A) a diagonal matrix of the
population eigenvalues, generality is not lost because the eigenvalues of S are the
same as those of G' SG for any orthogonal matrix G. Moreover, the W statistic
is invariant to multiplications of S by a positive scalar. Therefore, under Hyy, we
can assume X = diag (A1 /A, ..., \g/A, 1, ..., 1), which, for simplicity, is written as
(Waternaux, 1984; Schott, 2006; Fujikoshi et al., 2007; Watanabe et al., 2008):

S = diag (M, M, 1.0, 1) (14)

The configuration of the population eigenvalues can be defined as follows (Schott,
2006; Fujikoshi et al., 2007; Watanabe et al., 2008):

i. If £ =0, then ¥ = I,. That is, all the components explain the same amount of
variability.
fi. If k=2, then A =1 and \; = 1;12(%’“) with a; = 0.56, as = 0.24. Thus, the
j=1%i
first two components explain 80% of the total variation.

iii. Ifk:?),then)\:land)\i:%

with a1 = 0.45, as = 0.3 a3 = 0.15. In this case, the first three components
explain 90% of the total variation.

The nominal significance level was set at « = 0.05. As the estimated
significance level approaches the nominal value, the sampling distribution of the
statistic is considered to achieve a better approximation to its limit distribution
(Waternaux, 1984; Schott, 2006; Fujikoshi et al., 2007; Watanabe et al., 2008).
To calculate the estimated significance level, we first define the quantile of the
limit distribution as We = Xé(p—k-&-Q)(p—k—l),l—a with @ = 0.05. Afterward, we
generate a sample based on a pre-established population configuration, calculate
the test statistic, and check if W > W¢; that is, under a defined k, we check if
Hyy, is rejected being true. The same process is completed as many times as the
number of simulations above; as a result, we obtain the number of times that the
null hypothesis is rejected being true. That quantity is divided by the number of
conducted simulations; thus, we obtain the percentage of times that Type I errors
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were produced, which is defined as the estimated significance level. The simulation
process was programmed in R Core Team (2019).

3.2. Simulation Scheme for the Correlation Matrix

The simulation scheme considered in this study is similar to that proposed
above for the covariance matrix. The difference lies in the fact that we should
define a covariance matrix where the variances of all the variables equal 1, and
that Ay +---4+ X, = p. For that purpose, we implemented the study by Arteaga &
Ferrer (2010), in which they proposed an algorithm to obtain a covariance matrix
with the eigenvalues and the specified variances. Likewise, the configurations of
the population eigenvalues used in the covariance matrix are redefined so that they
meet the previous constraint regarding the sum of the eigenvalues, but maintaining
the same percentages of explained variation.

3.3. Simulation Scheme for Power of the Test

For the study of the power of the test, the following alternatives were designed
with deviations from the null hypothesis given by § = 0.5, 1, 1.5 (Waternaux, 1984).

i. Toprove k=0, Hyo: A1 = X2 =...= X, =1, when really \y =1+9
ii. Toprove k=2, Hyo: As=As=... =X, =1, whenreally \g =1+

The scenarios of k = 0 and k£ = 2 were evaluated with p = 10 and p = 30
and sample sizes n = 30,50, 100, 200, 500. For the & = 2 scenario, we use the
configuration of variance explained with a; = 0.56,a2 = 0.24, for A1 and A,
respectively. This scheme leaves an unexplained 20% variance in the remaining
components, seeking to make the identification of the different component more
demanding. For scenario k = 0, similar to the power test performed by Knapp
& Swoyer (1967), the eigenvalues of A\ = 1.5,2,2.5 represent overall correlation
coefficients of 0.06, 0.11 and 0.17 (Friedman, 1981). To evaluate the factors of
the correlation matrix, the eigenvalues were adjusted to the condition that all
variances are equal to 1 and that Ay 4+ --- + A, = p. The analysis focuses on the
factors that show the best performance in significance analysis. The simulation
process consisted in counting the number of times that Hyy is rejected considering
that it is not true. To do this we define the critical value W with o = 0.05.

3.4. Illustration

Figure 1 illustrates the sampling distribution W under different sample sizes,
p = 5, k = 0, and replacing n = n, denoted as W,. The solid line represents
the limit distribution Xzé(p_ Kt 2)(p—k—1)’ and the dark area denotes the estimated
significance level, which is marked as &. Figure 1 shows that, as the sample size n
increases, the sampling distribution of the W,, statistic moves closer to the limit

distribution. This would lead us to conclude, in this case, that a sample size of
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o1

n = 100 would produce a good approximation of the statistic distribution and,
therefore, an estimated significance level very close to the nominal value oo = 0.05.

In general, correction factors are considered to generate a good approximation
or performance if the estimated significance level is close to the nominal level; and,
among them, we select the factor that presents the lowest estimation. The purpose
is to obtain the factor that produces the lowest error level.
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Comparison between the sampling distribution of the W,, statistic and its
limit distribution for the case of p = 5 and k = 0. The dark area represented
by & indicates the estimated significance level, that is, the proportion of real
rejection obtained with the W, statistic under a scenario of p, n and k.

4. Simulation Results

4.1. Simulation Results in the Case of the Covariance Matrix

Tables 2, 3 and Figure 2 present the results of the simulation with the
covariance matrix. To test & = 0 in Table 2, the factors are sorted from best
to worst according to the quality of the approximation: FC5perre, FC2Bgrtiett,
FC3rawiey, Wn-1, and W,. Additionally, factors FC5perre and FC2pgriiett
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present a good approximation even with sample sizes close to the number of
variables. However, when p = 30, factor FFC2pgartetr requires n = 100, while
n = 50 is enough for FC5peppre. In turn, factors W,_; and W, exhibit a poor
approximation, which quickly worsens as the number of variables increases.

Based on Table 3, to test & = 2 the order of the factors is FCHperre,
FCQBartleth FC3Lawley7 FC4Jacks0na Wn—h and Wy,. Factors FC2B(17'tlett and
FC3Lawiey exhibit a very similar behavior, although FC2pgryers still presents
significance levels slightly lower than those of FC3pqwiey. Factors W,_; and
W, still show the worst approximation to their limit distribution, as can be seen
in Figure 2(d). When k = 3 the order is FCbrerre, FC3Lawiey, FC2Bartiett,
FC4jackson, Wn—1, and W,. Factors FC2pgrtjers and FC3pquiey still present
a similar behavior; however, in this case, factor F'C3pguiey Produces slightly
lower significance levels. Factors FC4 j4ckson, Wn_1, and W, still show the worst
approximation.

In order to get a closer view of the performance of the correction factors with
respect to the sample size, we estimate the significance levels for each change in
the sample size, in units, from n = p 4+ 1 to n = 1000. Figure 2 presents the
behaviors we obtained. All the charts enable us to conclude that, with sample
sizes very close to the number of variables, most statistics exhibit a poor behavior,
except for FC5perre, which presented an acceptable behavior with a low number
of variables (p = 5, 10). Furthermore, as p increases, the performance of all the
statistics is reduced, which results in the need for larger sample sizes to obtain
good approximations. Factors W,,, W, _1, and FC4 j4cks0n are most affected by
such increase, while FC5pe,re continues presenting the lowest estimations.

4.2. Simulation Results in the Case of the Correlation Matrix

If the PCA is carried out using the correlation matrix and & = 0 is tested,
Table 1 shows that the correction factor with the best approximation, even with
small sample sizes, is FC1pg. That factor, for example, for p = 10, requires a
sample size of n = 30 to obtain an estimated significance level close to the nominal
one. F'C2pp presented the second best performance, although it requires sample
sizes that are sometimes much larger than those of FFC'lpr to achieve a good
approximation. Finally, the Ly statistic, simply multiplied by n, presents a poor
approximation.

Tables 1 and 4 present the results of the simulation with the correlation matrix.
The quantity n — 27’7?;11 of factor FFC1p is less than n — % of factor FC2pR.
This enables factor FC1pr to produce more contraction of the basic form of the
statistic, that is, of log |R|. As a consequence, the sampling distribution of FC2pr
will be more displaced to the left and, therefore, it will exhibit lower estimated

significance levels.
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TABLE 1: Comparison of the significance levels estimated based on the statistics of
the correlation matrix; Lr, FClrr and FC2rgr; nominal significance level
a=0.05and k =0.

n=10 n=30 n=50 n=100 n=200 n =>500

p

5 Lg 0.3129  0.0939  0.0737 0.0614 0.0534 0.0492
FClpr 0.0622 0.0521  0.0496 0.0501 0.0484 0.0467
FC2rLr 0.1187 0.0624  0.0560 0.0534 0.0497 0.0476

10 Lgr 0.2637  0.1403 0.0886 0.0650 0.0583
FClpgr 0.0512  0.0532 0.0521 0.0492 0.0529
FC2pr 0.0776  0.0653 0.0586 0.0525 0.0536

15 Lp 0.6737  0.3158 0.1380 0.0840 0.0617
FClLgr 0.0773  0.0584 0.0504 0.0518 0.0493
FC2LR 0.1340  0.0799 0.0602 0.0560 0.0506

30 Lg 0.9971 0.6420 0.2340 0.1002
FClpgr 0.1493 0.0640 0.0506 0.0494
FC2LR 0.2497 0.0856 0.0607 0.0521

TABLE 2: Comparison of the significance levels estimated based on the statistics of
the covariance matrix; Wy, Wn_1, FC2partictt, FC3Lawiey, and FCBrerre;
nominal significance level a = 0.05 and k = 0.

n=10 n=30 n=50 mn=100 n=200 mn =500

p
W 0.2947 0.0931 0.0733  0.0604  0.0549  0.0523
W1 0.2021 0.0771 0.0649  0.0567  0.0532  0.0515
FC2Bartiers  0.0362  0.0437  0.0467  0.0481  0.0401  0.0498
FC3Lawiey 01287  0.0634 0.0580  0.0534  0.0518  0.0509
FCB5perre 0.0098  0.0333  0.0398  0.0447  0.0476  0.0492

10 W 0.2471  0.1382  0.0843  0.0652  0.0561
Wa_1 0.1928  0.1147  0.0761  0.0617  0.0546
FC2Bartiet 0.0413  0.0438  0.0474  0.0484  0.0491
FC3Lawiey 0.0848 0.0667  0.0575  0.0535  0.0512
FCBperre 0.0241  0.0325  0.0416  0.0453  0.0477

15 W 0.6479  0.3027  0.1342  0.0834  0.0619
Wa_1 0.5502  0.2491  0.1172  0.0775  0.0599
FC2Bartlett 0.0515 0.0442  0.0466  0.0479  0.0492
FC3Lawley 0.1417 0.0816  0.0617  0.0553  0.0522
FCBperre 0.0239  0.0293  0.0383  0.0436  0.0474

30 Wy 0.9967  0.6161  0.2366  0.0990
W1 0.9926 05573  0.2131  0.0944
FC2Bartiett 0.1058  0.0495  0.0487  0.0489
FC3Lawley 0.2751  0.0870  0.0638  0.0545
FCBperre 0.0496  0.0344  0.0410  0.0457
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In a test to reduce p variables to k = 2 components based on the correlation
matrix (see Table 4), correction factor B, that is, W}, produces the best
approximation with estimated significance levels, in most cases, much lower than
those obtained with other statistics or correction factors. However, the increase
in the number of variables has a negative effect on the performance of such factor,
which generates situations that require sample sizes above 500 for 30 variables.
Nevertheless, such factor offers the best approximation. Factors W} and W;_,
present the same behavior: poor performance. Statistics Xiw* and cx? exhibited
a similar behavior, although the latter with slightly lower significance levels and
a better behavior than factor W in cases of large sample sizes. Statistics Xiw*
and cxg did not exhibit a good performance with small sample sizes.
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FIGURE 2: Detailed comparison by sample size n of correction factors for the covariance
matrix: Wn; Wn—ly FCQBartlett, FC'?)Lawleya FC4Jack:son7 and FCBFE’I‘TEy
with a =0.05y k = 2.
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TABLE 4: Comparison of the significance levels estimated based on the statistics of the correlation matrix; Wy,

nominal significance level o = 0.05; k = 2 and k = 3.

* * 2 2,
n—1, S\ma Xy o and CXd>

k=2 k=3

P n=10 n=30 n=50 n=100 n=200 n=500 n=10 n=30 n=50 n=100 n =200 n =>500
5 Wi 0.2835 0.0975 0.0810  0.0600 0.0600 0.0645 0.2570 0.0980 0.0895  0.0760 0.0825 0.0760
~_1 0.2175 0.0845 0.0775  0.0575 0.0590 0.0635  0.2235 0.0940 0.0835 0.0735 0.0815 0.0755

B 0.0670 0.0560 0.0625  0.0520 0.0550 0.0625  0.0795 0.0670 0.0720  0.0645 0.0765 0.0745

Xw:\_\* 0.2725 0.0975 0.0810  0.0600 0.0600 0.0645  0.2415 0.0980 0.0895  0.0760 0.0825 0.0760

me 0.2425 0.0900 0.0765  0.0510 0.0530 0.0505  0.1955 0.0780 0.0615  0.0480 0.0495 0.0535

10 Wg 0.2955 0.1920  0.1005 0.0825 0.0735 0.3885 0.2385  0.1775 0.1285 0.1280
1 0.2465 0.1670  0.0955 0.0795 0.0730 0.3435 0.2185  0.1645 0.1230 0.1275

gt 0.0765 0.0810  0.0680 0.0695 0.0670 0.1245 0.1145  0.1190 0.1025 0.1175

st\* 0.2585 0.1585  0.0870 0.0720 0.0605 0.2810 0.1575  0.0990 0.0695 0.0695

an 0.2475 0.1445  0.0815 0.0620 0.0555 0.2415 0.1440  0.0900 0.0655 0.0645

15 Wy 0.7215 0.3920  0.1745 0.1165 0.0960 0.7785 0.4805  0.2500 0.1835 0.1430
1 0.6445 0.3320 0.1610 0.1095 0.0940 0.7190 0.4375  0.2320 0.1750 0.1390

f 0.1135 0.0860  0.0785 0.0760 0.0770 0.1640 0.1315  0.1195 0.1255 0.1195

Xms\* 0.6690 0.3235  0.1420 0.0950 0.0690 0.6650 0.3490  0.1555 0.1025 0.0740

me 0.6525 0.3045  0.1320 0.0865 0.0585 0.6310 0.3010  0.1250 0.0810 0.0550

30 Wi 0.9985  0.6980 0.3005 0.1510 0.9995  0.7875 0.4190 0.2235
1 0.9965  0.6505 0.2835 0.1450 0.9990  0.7490 0.4020 0.2160

B 0.2245  0.1050 0.0925 0.0880 0.2585  0.1515 0.1515 0.1320

st\* 0.9970  0.6295 0.2450 0.1150 0.9980  0.6405 0.2610 0.1140

on 0.9965  0.6100 0.2330 0.1075 0.9955  0.5885 0.2335 0.1005
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TABLE 5: Power comparison for statistics based on the covariance matrix; for Hoo and
Hyz testing when really A1 = (1 + J) and A3 = (1 + ) respectively, with
a=0.05

1446 n=30 n=50 n=100 n=200 n=>500

p=10k=0 1.5 FC2paruerz 0.0650 0.0923  0.1796 04074  0.9095
FC3Lawiey ~ 0.1238  0.1303  0.2053  0.4244  0.9118

FChperre 0.0409 0.0731  0.1646  0.3973  0.9079

2.0  FC2partiers 0.1418  0.2725  0.6298  0.9611  1.0000

FC3Lawiey 02316  0.3356  0.6608  0.9643  1.0000

FC5perre 0.0973  0.2349  0.6101  0.9591  1.0000

25  FC2paruerr 02753  0.5441  0.9282  0.9997  1.0000

FC3Lawiey ~ 0.3932  0.6110  0.9380  0.9997  1.0000

FCBperre 0.2088  0.4992  0.9221  0.9997  1.0000

p=30,k=0 15 FC2pgurtiets 0.1287  0.0834  0.1353  0.4017
FO3Lawiey 0.3110  0.1381  0.1668  0.4217

FC5perre 0.0619  0.0596  0.1178  0.3900

2.0  FC2Bartiett 0.1860  0.2141  0.5202  0.9872

FO3Lawiey 0.4022  0.3037  0.5697  0.9886

FC5 perre 0.0977  0.1661  0.4897  0.9862

25  FC2Bartiett 0.2768  0.4541  0.9004  1.0000

FC3Lawiey 0.5143 05615  0.9195  1.0000

FC5 perre 0.1620  0.3901  0.8865  1.0000

p=10k=2 1.5 FC2partierr 0.1075  0.1301 0.2335 0.4916 0.9485
FCO3pawley 0.1186  0.1364 0.2377 0.4941 0.9487

FCbperre 0.0335  0.0758 0.1931 0.4663 0.9460

2.0 FC2Bgrtiert  0.2170  0.3614 0.7202 0.9805 1.0000

FCO3rawiey 0.2336  0.3727 0.7244 0.9808 1.0000

FCbperre 0.0879  0.2585 0.6763 0.9774 1.0000

2.5 FC2Bgrtietr  0.3782  0.6409 0.9579 1.0000 1.0000

FCO3pawiey 0.3990  0.6505 0.9589 1.0000 1.0000

FCBFerre 0.1983  0.5350 0.9463 0.9999 1.0000

p=30k=2 15 FC2pariei 0.2439  0.1258  0.1678  0.4515
FC3Lawiey 0.2831  0.1367  0.1741  0.4553

FChperre 0.0304  0.0501  0.1149  0.4177

2.0  FC2partiett 0.3277 02893  0.5897  0.9926

FC3Lawiey 0.3712  0.3065  0.5989  0.9928

FC5perre 0.0539  0.1464  0.5034  0.9906

2.5  FC2partiett 0.4430  0.5580  0.9318  1.0000

FC3Lawiey 0.4800  0.5775  0.9348  1.0000

FCBperre 0.0993 03718  0.9012  1.0000
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TABLE 6: Power comparison for statistics based on the correlation matrix; for Hop and
Hyz testing when really A1 = (1 + J) and A3 = (1 + ) respectively, with
a = 0.05.
1446 n=30 n=50 n=100 n=200 n =500

p=10,k=0 1.5 FClrr 0.1304  0.2080 0.4474 0.8360 0.9998
FC2rr 01786  0.2402 0.4660 0.8416 0.9998

2.0 FClrr 0.3354 0.6126 0.9532 0.9998 1.0000

FC2rpr 0.4036  0.6468 0.9566 0.9998 1.0000

2.5 FClpr 06224  0.8996 0.9992 1.0000 1.0000

FC2rr 0.6834 0.9136 0.9992 1.0000 1.0000

p=30,k=0 15 FClpgr 0.1858  0.1204 0.1952 0.5764
FC2pr 0.3042  0.1544 0.2198 0.5886

2.0 FClpgp 0.2806  0.3152 0.6872 0.9984

FC2rr 0.4186  0.3710 0.7126 0.9986

2.5  FClpgp 0.4264  0.6264 0.9702 1.0000

FC21r 0.5654  0.6822 0.9738 1.0000

p=10,k=2 15 W 0.1203  0.1477  0.2638 0.5266 0.9486
Xy« 0.3471  0.2613  0.3111 0.5336 0.9431

ex? 0.3341  0.2496  0.3039 0.5213 0.9336

20 W 0.2233  0.3815  0.7381 0.9845 1.0000

Xy« 0.4994  0.5354  0.7782 0.9851 1.0000

ex? 0.4798  0.5258  0.7655 0.9850 1.0000

25 W 0.3945  0.6602  0.9671 0.9999 1.0000

Xy e 0.6796  0.7812  0.9753 0.9999 1.0000

ex? 0.6658  0.7710  0.9754 0.9999 1.0000

p=30,k=2 15 W3 0.2517  0.1570 0.2079 0.5126
Xy e 0.9980  0.7265 0.4522 0.5790

ex? 0.9976  0.7107 0.4325 0.5588

20 Wj 0.3310  0.3138 0.6361 0.9920

Xy = 0.9989  0.8722 0.8450 0.9942

ex? 0.9986  0.8614 0.8335 0.9937

25 W 0.4480  0.5862 0.9400 1.0000

Xy« 0.9994  0.9630 0.9868 1.0000

ex 0.9992  0.9598 0.9850 1.0000
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(a) p=10, A3 =15 (b) p=10, A3 =2
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F1GURE 3: Detailed power performance by sample size of the covariance matrix correction
factors for Hoz testing when A3 = (1 + J) with a = 0.05.

With the increase in components to k = 3 it is observed a deterioration of the
approximation of factors W, W*_,, and W}. In turn, statistics Xiw* and cxi
still present estimated significance levels similar to those obtained with k = 2.

4.3. Simulation Results for the Power of the Test

Regarded to the power of the test, for both scenarios k=0 and k=2, when the
covariance matrix is used, the factor F'C3rquiey Presents the best performance,
followed by FC2pgriert, and with the lowest performance we have FC5perpe
(Table 5). This means that FC3rquiey generates the lowest probability of Type II
Error in all scenarios. As expected, the power of the test for the different factors
increases with the sample size, although the growth rate is subject to the level of
deviation of the eigenvalue from the common value A (Figure 3). In general terms
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the three factors show a better performance in the k=2 scenario than in the k=0
scenario. For cases with a low differentiation (§ = 0.5) and p = 10, sample sizes
of 500 are needed to obtain powers close to 1. Although when p = 30, in the
same sample size of n = 500, probabilities of Type II Error greater than 50% are
obtained and only for sample sizes greater than 1000, powers greater than 90%
are observed (see Figure 3).

In order to evaluate the relevance of the first component using the correlation
matrix, the best result is obtained with FC2pr (Table 6). This performance
difference from FC1lpg is most noticeable when p = 30. To evaluate k = 2,
the best result is obtained with Xﬁw* followed by CX% with a close performance.
However, both factors show less consistent behavior when n is close to p. Unlike
W which shows a more consistent growth of power with increasing sample size.
On the other hand, similar to the covariance matrix, estimated powers of around
0.51 and 0.57 are observed when there is a low differentiation of the component,
with the number of variables of p = 30 and a sample size of n = 500.

It can also be seen that in general the powers obtained with the correlation
matrix are greater than those obtained with the covariance matrix under the same
scenarios. For example, for k =0, p =10, 1 +J = 1.5 and n = 500 we get power
estimates of 0.99, while in the covariance matrix the values are between 0.90 and
0.91. Similarly, for £ = 2 and p = 30, 14+6 = 1.5 and n = 500, the estimated power
ranges from 0.51 to 0.57 for the three factors in the correlation matrix, while in
the covariance matrix, the values are between 0.41 and 0.45.

5. Conclusions

Assuming a normal distribution, we compared the different correction factors
that have been proposed for likelihood-ratio statistic to define the number of
components that should be retained in PCA. Using the test of the hypothesis
of equality of the smallest last (p — k) eigenvalues of the covariance or correlation
matrix. For large sample sizes in the order of n = 500, most factors generated
estimated significance levels close to their nominal counterparts and even below
them, which indicates that a good approximation was achieved.

In order to conduct a PCA based on the covariance matrix, factors FC5perre
and FC2pgrt1er present the best approximation with & = 0, 2, 3, even with sample
sizes close to the number of variables p. With & = 2, factors FC2pgrtiers and
FC3pawiey exhibit a very similar behavior, although F'C2pgrier: requires larger
sample sizes to obtain good approximations. With k = 3, factors FC2pgrtiest
and F'C3pquwiey still present a similar behavior, although FC2pgriers exhibits
slightly higher levels than F'C3rquwiey. Furthermore, factors FC4 rockson, Wn—1,
and W, offer the worst performance, which is even more critical when there is a
big difference between the number of variables and the sample size. This produces
situations in which sample sizes above 800 are required for 30 variables (see Figure
2(d)). Hence, these factors would not be recommended to determine the number of
components. Finally, we can observe that, as the number k£ of components grows,
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the estimated significance levels of factors FC2parierr and FC3pquwiey exhibit
patterns of slight increase and decrease, respectively.

In this work we also investigated the power of the test in relation to the use
of the different factors. To do this, we focused on the factors that performed best
at the significance level. As it was mentioned above, the factors FC2pgrtiett,
FC3rawiey and FCbperr. generated the best approximation when using the
covariance matrix. Among these factors, the best power for the different scenarios
was obtained with the factor FC3awiey, followed by the factor FC2partiers and
finally FC5perre with the lowest performance. As it can be seen, the single
recommendation of a factor that provides the lowest probability of Type I Error
and in turn the highest power is a difficult problem. However, given the scenarios
that have been studied, we dare to consider the factor F'C2p4 tier¢ as the most
balanced between these two objectives. This considering that although it does
not generate the least level of significance or the greatest power, it was close to
the factors with the best performance in each case. The simulation results also
showed that if the component differentiation is low (6 = 0.5), sample sizes of 30 to
50 times the number of variables are required to obtain powers greater than 90%.
If the deviation is higher (6 = 1.5), only 6 or 10 larger sample sizes are required.

If the correlation matrix is used with k = 0, factor F'C'1r presents the lowest
estimated significance levels, close to the nominal value, even with small sample
sizes. Moreover, this factor is the most consistent as the number of variables
increases, as opposite to the Lg statistic, which becomes more erroneous. Now, in
terms of power, the factor FC2p g presents the best performance in the different
scenarios studied. Knapp & Swoyer (1967) using this same factor pointed out the
sensitivity of the test in identifying the first component. This is consistent with
the current study, where we observed a high power of 0.9136 in a case where the
first component represents a global correlation between all variables of only 0.17
(A1 = 2.5). This means that the test is highly powerful even in scenarios with low
global correlation.

Regarding the test with k¥ = 2 and £ = 3, Table 4 shows that Wy is the
factor with the best approximation and consistency. Nevertheless, factor cx?2,
with large sample sizes, presents even better results than W5. In addition, as
the number of components grows, most statistics are deteriorated. With k = 2,
the statistics Xiw* and cxi are similar; however, with k = 3, a greater difference
can be observed, and the cx? statistic presents a better approximation. This is
in line with Schott (1988) regarding the superior performance of cx? with respect
to X,.- With respect to power, x>  shows the best results followed by cxj.
The factor W only begins to show approximately comparable results after sample
sizes between 10 and 20 times larger than the number of variables. Thus, if large
sample sizes are available, it is recommended to use the factor W} for k£ > 0. And
in the case of testing k = 0 it is recommended to use the factor FC2pgr

Finally, as p increases, the behavior of all the statistics worsens. Therefore, it
would be interesting to precisely study the n/p ratio under which the sampling
distribution of the statistic would exhibit a good approximation in general. We can
empirically establish that, to achieve adequate approximations, we require sample
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sizes 10 times the number of variables in the case of the covariance matrix, and 20
times if a correlation matrix is used. Which are more demanding sizes than the
minimum of 2p indicated by Schott (2012) for covariance matrix using the factors
FC2partiett and FC3pgwiey. Although the values proposed in this work are in
consideration of the significance level of all factors, the sample requirements can
be increased up to more than 30 times if a high power is desired.

As indicated at the beginning of this study, Table 7 provides a series of
recommendations about correction factors that should be used according to a
specific configuration, p number of variables, n sample size, and k number of main
components being tested. The objective is to obtain the best performance in the
test. Furthermore, the results are discriminated depending on the type of matrix
(covariance or correlation) on which the PCA was based.

TABLE 7: Recommended correction factors according to a specific configuration of the p
number of variables, n sample size, and k number of components considering
the type of matrix (covariance or correlation) on which the PCA was based.

Association Matrix k P n Recommended Factor
10-50 FC5F€7‘T‘€7 FCQBaT‘tlett

5-9 50-200 FC2partiett, FCOFerre
200+ FC2Ba7‘tlett7 FC5F8’I‘T87 chLawley
30-50 FCZBartletta FC5Ferre

k=0 10-29 50-200 FC2Bartlett: FC5Ferre
200+ FCZBartlettv FC5F87‘7‘67 chLawlcy
S0+ 286200 iggmw FC5 FC3
i + Bartlett> Ferres Lawley
Covariance 10-50 FCQBartletta FCbFerre
5-9 50-200 FC2Bartlett: FCSFerre, FCSLawley
200+ FC2Bartlett7 FC5F8’I‘T87 chLawley
k>0 30-50 FC2partiett, FC5Ferre, FC3Lawley
1029 50-200  FC2partterts FOSperres FOB3Lawiey
200+ FCQBartlettv FC5F87‘7‘67 chLawley
30+ 50-200 FC5Ferre
200+ FC2Ba7‘tlett7 FC5F57‘r57 chLuwley
10-50 FClpr
59  50-200 FC2pp, FClpg
200+ FC2LRr, FClyr, Lp
k=0 30-50  FClop
10-29  50-200 FC2.p, FClyg
200+ FC2pRr, FClpp
504 90200 FOlpp
Correlation 200+ FC2pRr, FClLr
10-50  Wj,
5-9 50-200 W}, ex?
200+ W§, ex?
E>0 30-50 Wi

10-29  50-200 W

200+ Wg, cxg, Xiw*
50-200 Wj

2004+ W5, ch

30+
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