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Abstract

In the context of the exact dynamic common factor model, canonical
correlations in a multivariate time series are used to identify the number of
latent common factors. In this paper, we establish a relationship between
canonical correlations and the autocovariance function of the factor process,
in order to modify a pre-established statistical test to detect the number of
common factors. In particular, the test power is increased. Additionally, we
propose a procedure to identify a vector ARMA model for the factor process,
which is based on the so-called simple and partial canonical autocorrelation
functions. We illustrate the proposed methodology by means of some
simulated examples and a real data application.

Key words: Canonical correlations; Dynamic common factors; Multivariate
time series.

Resumen

En el contexto del modelo exacto de factores comunes dinámicos, las
correlaciones canónicas en series de tiempo multivariadas son usadas para
identificar el número de factores latentes. En este artículo, establecemos la
relación entre correlación canónica y la función de autocovarianza del proceso
de los factores, con el fin de modificar una prueba estadística diseñada para
identificar el número de factores comunes. En particular, se incrementa
la potencia de la prueba. Adicionalmente, proponemos un procedimiento
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para identificar el modelo VARMA para el proceso de los factores, el cual
está basado en lo que denominamos las funciones de autocorrelación simple
y parcial. Ilustramos la metodología propuesta por medio de ejemplos
simulados y una aplicación con datos reales.

Palabras clave: Correlación canónica; Factores comunes dinámicos; Series
de tiempo multivariadas.

1. Introduction

The dynamic common factor model is of interest when an observable
multivariate stochastic process {yt}, of dimension m, is generated by an
unobservable stochastic process {ft}, of dimension r, with r < m, via the equation

yt = Pft + εt, (1)

where {εt} is a multivariate stationary noise process of dimension m, with mean
0 and variance Σε, and P is an m× r matrix, known as the loading matrix or the
weight matrix. The components of the ft vector are the common factors of the yt
data vector, while εt contains their specific or idiosyncratic components. A crucial
aspect in the analysis of this type of models is the identification of r, the number
of common factors. Several studies have been carried out in this sense, mainly in
the high-dimension scenario, in which it is assumed that m goes to infinity. For
complete details, see the papers, among others, of Stock & Watson (2011), Lam
& Yao (2012), Ahn & Horenstein (2013), and their associated references.

This paper is based on the low-dimension approach (fixed m) proposed by Peña
& Box (1987) (from this point forward Peña-Box model), when the {ft} process is
stationary and {εt} is white noise, which is known as the Exact Dynamic Factor
Model (EDFM) because its specific components are orthogonal processes. Peña
& Poncela (2006) extend this paper to the case where {ft} is non-stationary and
design a statistical test to specify r. This statistical test is a function of the
canonical correlations between yt and yt−k, for some lag k, k = 1, 2, . . . Under
the null hypothesis of r factors, the authors show that this statistic is distributed
asymptotically as a χ2

(m−r)2 , for each lag k. Nevertheless, as is shown in Section
2, at each lag k the test detect the rank of the covariance matrix of ft and ft−k,
but this matrix may not have full rank. Then, this alternative may detects less
than r common factors, which imply that the power of the test is reduced. Indeed,
let us consider this example: let ft = (f1t, f2t)

⊤, where f1t = a1t + θ
(1)
1 a1,t−1 and

f2t = a2t + θ
(2)
3 a2,t−3, with {ait}, i = 1, 2, white noise processes. The number of

factors is 2 but the rank of matrix Cov(ft, ft−k) is 1 if k = 1 or k = 3 and zero
otherwise. This fact makes that the Peña & Poncela’s (2006) test does not detect
the correct number of factors at any lag k = 1, 2, . . .

In this paper, we develop a modification of the Peña & Poncela’s (2006)
statistical test, which avoids the low-power problem quoted above. Essentially,
the idea is to use in the calculation of the test statistic, the canonical correlations
between yt and a linear combination of some lagged vectors yt−i, for i ∈ {1, 2, . . .}.
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Also, we propose a methodology to identify ARMA models for the factor processes,
using the canonical and partial canonical correlation to identify the dependence
orders of the factor models. We only consider the case in which {ft} is stationary.

It is important to highlight that in the Peña-Box model the observed data
vector yt depends on ft contemporaneously. Then, the model is known as the
DFM in static form. In the DFM in dynamic form, initially proposed by Geweke
(1977) (cited by Stock & Watson (2016); Doz & Fuleky (2020)), the vector of
observed time series can also depend on different lags of the common factors.
Therefore, our contributions are based on the DFM in the static form.

The paper is organized as follows. Section 2 presents the basic results that
relate canonical correlations to the marginal autocovariance functions of the factors
processes and their use in the modification of Peña & Poncela’s (2006) statistical
test. In section 3, we present a procedure to identify the ARMA factor models.
Section 4 includes some simulated examples and an empirical application to
precipitation data in Colombia. Section 5 concludes.

2. An Extension of the Statistical Test

For each t, let ft = (f1t, . . . , frt)
⊤, where ⊤ denotes the matrix transpose

operation, and let γ
i
(k) be the i-th component on the diagonal of the

autocovariance matrix of {ft} at lag k. Following Nieto et al.’s (2016) assumptions,
in particular that the marginal processes {fit} and {fjt} are orthogonal for all
i, j = 1, 2, . . . , r, with i ̸= j, the components outside of the diagonal are zero.
In addition, the restriction P

⊤
Σ−1

ε P = Ir is imposed to solve the identification
problem (Peña & Poncela 2006), where In is the n × n identity matrix. The
remaining notation will be defined as new definitions are introduced.

From Peña & Poncela’s (2006) paper, we consider the random matrix

M̂(k) =

 T∑
t=k+1

(yty
⊤
t )

−1
T∑

t=k+1

(yty
⊤
t−k)

 T∑
t=k+1

(yt−ky
⊤
t−k)

−1
T∑

t=k+1

(yt−ky
⊤
t ), (2)

where T denotes the sample size of an observed multivariate time series of the
process {yt}, and the statistic

Sm−r(k) = −(T − k)

m−r∑
j=1

log(1− λ̂j(k)), (3)

where λ̂1(k) ≤ λ̂2(k) ≤ · · · ≤ λ̂m(k) are the ordered eigenvalues of the matrix
M̂(k), for a given lag k = 1, 2, . . . The limit distributions of these statistics are
obtained by Peña & Poncela (2006). In particular, they find that, when the process
{ft} is stationary, the limit matrix of the sequence M̂(k) is

M(k) =
(
PE[ftf

⊤
t ]P⊤+Σε

)−1

PE[ftf
⊤
t−k]P

⊤
(
PE[ft−kf

⊤
t−k]P

⊤+Σε

)−1

PE[ft−kf
⊤
t ]P⊤.
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Before establishing our main results, it is worth noticing the following fact: in
Peña & Poncela’s (2006) Theorem 3, it is claimed that the limit matrix of the
sequence {M̂(k)}, indexed by T , has rank r for all lags k. However, we have found
that for some models and some lags k the rank is less than r. As mentioned before,
let us consider this example: let ft = (f1t, f2t)

⊤, where f1t = a1t + θ
(1)
1 a1,t−1 and

f2t = a2t + θ
(2)
3 a2,t−3, with {ait}, i = 1, 2, white noise processes. The number of

factors is 2, but the rank of matrix E[ftf
⊤
t−k] is 1 when k = 1 or k = 3 and zero

otherwise. This fact makes that the rank of the limit matrix in Peña & Poncela’s
(2006) Theorem 3 depends on k. From now on, we denote the rank of that matrix
as r(k), k = 1, 2, . . .

To avoid this drawback of the methodology, we propose the following results.

Proposition 1. Let {ft} be a stationary stochastic process, then, given the lag k,
the r(k) ≤ r non-zero eigenvalues of M(k) belong to the set

Λ(k) :=

{
µ2
j (k) ∈ R : µj(k) =

|γj (k)|
γ

j
(0) + 1

, j = 1, 2, . . . , r

}
, (4)

where µj(k) is a canonical correlation between yt and yt−k, with respective
canonical variables a⊤j yt and b⊤j yt−k where

bj =
Σ

−1

ε Pj

(γj(0) + 1)1/2
∈ Rm and aj = sign{γj(k)}bj . (5)

Here R and Rm denote, respectively, the set of real numbers and the m-
dimensional real Euclidean space and Pj is the j-th column of the load
matrix P .

Proof . See Appendix A.1.

Note that the largest value of the set Λ(k) is the first canonical correlation, the
second largest value of Λ(k) is the second canonical correlation and so on up to the
r(k)-th canonical correlation (Anderson 1984). Additionally, note that r(k) = r if
|γ

j
(k)| > 0 for all j = 1, . . . , r and the m− r remaining canonical correlations are

equal to zero.
An important implication of Proposition 1 is the following: if for a given k ̸= 0,

γi(k) = 0 for some i = 1, . . . , r, then, at this lag, there is a maximum of r−1 non-
zero canonical correlations. This fact is in line with the above comment about
the loss of power of the test. In order to improve the performance of Peña &
Poncela’s (2006) test, we propose to use the canonical correlations between yt and
y†t =

∑
k∈K

yt−k, where K is a set of lags (not necessarily consecutive). To obtain K,

we propose the following two-step procedure: first, we run Peña and Poncela’s test
for lags k = 1, 2, . . . , k0, for some k0. Then, a lag k ∈ K if the Peña & Poncela’s
(2006) test detects at least one common factor at it. In the examples below, we
will give more suggestions to obtain K in practice.
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Proposition 2. Given K and the restriction P
⊤
Σ

−1

ε P = Ir, the r non-zero square
canonical correlations between yt and y†t belong to the set

Λ†(K) :=

µ2†
j (K) ∈ R : µ†

j(K) =
|γj (K)|

(γj (0) + 1)1/2(γ†
j
+ k†)1/2

, j = 1, 2, . . . , r

 , (6)

and its respective canonical variables are given by b⊤j yt and a†⊤
j y†t , with

bj =
Σ

−1

ε Pj

(γj (0) + 1)1/2
and a†j =sign{γj(K)} Σ

−1

ε Pj

(γ
j†

+ k†)1/2
, (7)

where k† is the cardinality of K, γ
j
(K) =

∑
k∈K

γ
j
(k) and γ†

j
=
∑
k1∈K

∑
k2∈K

γ
j
(|k2 −

k1|), j = 1, 2, . . . , r.

Proof . See Appendix A.2.

Now, we define

M†(K) =

 T∑
t=k̄+1

(yty
⊤
t )

−1
T∑

t=k̄+1

(yty
†
t

⊤
)

 T∑
t=k̄+1

(y†t y
†
t

⊤
)

−1
T∑

t=k̄+1

(y†t y
⊤
t ), (8)

where k̄ = max K, and obtain the following result.

Proposition 3. Let Γf (k) = E[ftf
⊤
t−k]. If

∑
k∈K

Γf (k) has rank r, then, as T goes

to infinity, the matrix sequence {M†(K)} converges in distribution to a constant
matrix that has rank r.

Proof . Using Q = Σ−1
ε [PP⊥], where P⊥ is such that P⊤P⊥ = 0 and P⊤

⊥P⊥ =
Im−r, the proof follows the basic ideas in Peña & Poncela’s (2006) paper (pages
1954-1955).

Additionally, bearing in mind that the eigenvalues of M†(K) are the square
canonical correlations between yt and y†t , we obtain the following proposition.

Proposition 4. Let µ̂2†
1 (K) ≤ µ̂2†

2 (K) ≤ · · · ≤ µ̂2†
m(K) be the ordered eigenvalues

of the matrix M†(K). Then, under the null hypothesis that the limit matrix in
Proposition 3 has m − r eigenvalues equal to zero, the asymptotic distribution of
the statistic

Sm−r(K) = −(T − k̄)

m−r∑
j=1

log(1− µ̂2†
j (K)) (9)

is χ2
(m−r)2 .
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Proof . According to Proposition 2, there are m− r canonical correlations equal
to zero between yt and y†t . This means that there are m− r linear combinations of
yt that are not correlated to m− r linear combinations of y†t ; consequently, there
are m − r regressions of the form a⊤j yt = W

⊤

j y†t + ut where Wj = 0m×1 for each
j = 1, . . . ,m− r, where the aj ’s are the canonical vectors associated to the m− r
canonical correlations equal to zero. The rest of the proof follows the lines of the
corresponding result in Peña & Poncela’s (2006) paper. We note that T − k̄ is the
number of observations that is used to compute the canonical correlations.

Remark: To compute γj (K), we sum over all the lags in K the autocovariances
of the same jth factor (in the order established at the beginning of this section).
It may happen that we found autocovariances of the same absolute value but
different sign and thus, γ

j
(K) might be equal to zero, even if for some k ∈ K,

γ
j
(k) ̸= 0. Therefore, instead of using only the sum over all the lags in K, an

alternative is to use different linear combinations to calculate y†t . Indeed, to define
a linear combination, a lag in K is kept constant (1 is the coefficient) and the
coefficients corresponding to the other lags alternate between +1 and −1. In
this way, 2(k

†−1) possible linear combinations can be analyzed. The main idea
behind the use of different linear combinations y†t is to avoid the cases, in which
the number of factors is underestimated; therefore, we propose to choose r as the
maximum number of factors detected with the different linear combinations. The
examples below illustrate this point.

In summary, the procedure for specifying r is the following:

STEP 1 Set the maximum number of lags k0 and run Peña and Poncela’s test for
lags k = 1, 2, . . . , k0.

STEP 2 Set K such as a lag k ∈ K if the Peña and Poncela’s test detects at least
one common factor at it, k = 1, 2, . . . , k0.

STEP 3 Define the 2(k†−1) possible linear combinations y†t , keeping a lag constant
(1 is the coefficient) and the coefficients corresponding to the other lags
alternate between +1 and −1.

STEP 4 Run the test (4) with each linear combination y†t and choose r as
the maximum number of factors detected with the different linear
combinations.

A simulated example
To illustrate the issues remarked above about the statistical test performance,

we conduct a Monte Carlo experiment. The design of the simulation is the
following: we set m = 6 and r = 2 and consider the factor model
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yt =



1.00 0.00

1.00 1.00

0.00 1.00

1.00 0.00

−1.00 1.00

0.00 −1.00


ft + εt, (10)

where ft = (f1t, f2t)
⊤, {εt} ∼ WN(0, I6), f1t = a1t + 0.8a1,t−1 and f2t =

a2t − 0.7a2,t−3, with {at = (a1t, a2t)
⊤} ∼ WN(0, I2). We put T = 1000 and

simulate 1000 time series from the process {yt}. For each generated time series
and fixing a significance level of 5%, Peña and Poncela’s test was run sequentially
as a test on the maximum number of factors and we stop and identify r factors as
soon as the hypothesis is rejected, which will be denoted r′ from now on.

Table 1 presents the percentage of times (in the cells) that the test identifies r′
factors (columns) at each lag k (rows), k = 1, 2, . . . , 15. Clearly, we can see that
one common factor is identified at lags k = 1, 3 and zero factors at the other lags.

Table 1: Percentage of times that the test identifies r′ factors in the simulated model.
r′ = 0 r′ = 1 r′ = 2 r′ = 3

k = 1 0.0 96.0 3.8 0.2
k = 2 93.0 6.8 0.2 0.0
k = 3 0.0 93.8 5.6 0.6
k = 4 93.4 6.2 0.4 0.0
k = 5 92.4 7.3 0.3 0.0
k = 6 93.6 6.2 0.2 0.0
k = 7 92.2 7.4 0.4 0.0
k = 8 93.2 5.9 0.9 0.0
k = 9 94.0 5.8 0.2 0.0
k = 10 93.2 6.7 0.1 0.0
k = 11 94.0 5.7 0.3 0.0
k = 12 94.4 5.6 0.0 0.0
k = 13 94.2 5.7 0.1 0.0
k = 14 93.7 6.2 0.1 0.0
k = 15 92.8 6.9 0.3 0.0

For this model, we get K = {1, 3} with k† = 2; therefore, one have
22−1 = 2 possible linear combinations. These are y†t = yt−1 + yt−3 (1) and
y†t = yt−1 − yt−3 (2). In Table 2 we present the results obtained using the two
linear combinations y†t . We observe that r = 2 is clearly identified for any y†t .

Table 2: Percentage of times that the proposed test identifies r′ factors in the simulated
model.

Linear combination r′ = 0 r′ = 1 r′ = 2 r′ = 3

(1) 0.0 0.0 96.6 3.4
(2) 0.0 0.0 95.3 4.7
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In order to illustrate that the test proposed in this section stays valid even when
the covariance Γf (k) is a full rank matrix for some lag k, we modified the factor
models in this example as follow: f1t = 0.8f1,t−1 + a1t and f2t = −0.7f2,t−3 + a2t.
Table 3 presents the percentage of times that the test identifies r′ factors at each
lag k with this simulated AR model, k = 1, 2, . . . , 15.

Table 3: Percentage of times that the test identifies r′ factors in the simulated model.
r′ = 0 r′ = 1 r′ = 2 r′ = 3

k = 1 0.0 76.0 23.5 0.5
k = 2 0.0 78.8 20.7 0.5
k = 3 0.0 0.0 95.5 4.3
k = 4 0.0 78.4 21.4 0.2
k = 5 0.0 79.8 19.4 0.8
k = 6 0.0 1.4 94.5 3.9
k = 7 4.8 79.7 15.4 0.1
k = 8 13.3 75.6 10.9 0.2
k = 9 0.0 30.0 68.2 1.8
k = 10 27.4 63.3 9.2 0.1
k = 11 37.4 56.0 6.5 0.1
k = 12 0.9 57.0 41.2 0.9
k = 13 45.0 50.4 4.6 0.0
k = 14 48.2 48.1 3.7 0.0
k = 15 10.3 66.4 23.3 0.0

We can see that about 95% of times two common factor is identified at lags
k = 3, 6 and between one a two common factors at lags k = 1, 2, 4, 5.

Table 4: Percentage of times that the proposed test identifies r′ factors in the simulated
model.

Linear combination r′ = 0 r′ = 1 r′ = 2 r′ = 3

(1) 0.0 0.0 96.1 3.8
(2) 0.0 0.0 95.9 4.1

For this model, we use K = {1, 3} with k† = 2 with the two linear combinations
(1) y†t = yt−1 + yt−3 (1) and (2) y†t = yt−1 − yt−3 (2). In Table 4 we present the
results obtained using the two linear combinations y†t . We observe that r = 2 is
clearly identified for any y†t .

3. A Procedure for Identifying the Common-
Factors Model

Usually in practice, the factor models are identified using preliminary estimates
of the factor processes (see, among others, Peña & Poncela’s (2006) and Nieto
et al.’s (2016) papers). However, if there is much uncertainty in these estimates, the
model identification process might lead to wrong models. To avoid this problem,
we propose another alternative to the factors model identification, which consists
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in using the relationship between canonical correlations and the factor-processes
autocovariance function established in Proposition 1.

The main idea is to plot the canonical correlations that are related to the
same factor against lag values. Because of Proposition 1, we plot at each lag the
absolute value of the autocovariance of factor fjt divided by the constant γj(0)+1,
for each j = 1, . . . , r. Loosely speaking, we plot a function that is proportional
to the absolute value of the autocorrelation function of the jth factor. For each
j = 1, . . . , r, we call the function that corresponds to the jth factor as the jth
canonical autocorrelation function (CACF).

It is worth noticing that, when the canonical correlations are ordered in
descending way, given that each canonical correlation is proportional to the
autocovariance of a particular factor (see Proposition 1), a specific order is defined
for the components of ft at each lag, but this ordering on the components of ft is
not necessarily the same at all lags. Then, to avoid this drawback, there are two
main goals to achieve. The first one is to define a unique order for the components
of ft and the second, ordering at each lag the canonical correlations based on this
particular components order.

From now on, we denote µ2
ji:k

∈ Λ(k) the ith squared canonical correlation
for a given lag k, in descending order of magnitude, and bji:k denote its related
eigenvector, where i = 1, 2, . . . , r(k) and ji:k ∈ {1, 2, . . . , r}.

Our proposal to define the same order for all lags is based on the following
lemmas.

Lemma 1. For any lag k, the canonical vector related to the factor fjt is given
by bj := (γj(0) + 1)−1/2Σ−1

ε Pj, j = 1, 2, . . . , r.

Proof . Let B = [b1, b2, . . . , br] = Σ−1
ε P (Γf (0) + Ir)

−1/2, then

B⊤yt = B⊤(Pft + εt) = (Γf (0) + Ir)
−1/2(ft + νt),

where νt = P⊤Σ−1
ε εt. Notice that {νt} is a white-noise process with mean 0(r×1)

and variance matrix Ir; therefore, the canonical variables B⊤yt have covariance
matrix Ir and their associated canonical correlations are the absolute value of the
diagonal components of the matrix

E[B⊤yt, y
⊤
t−kB] = (Γf (0) + Ir)

−1/2Γf (k)(Γf (0) + Ir)
−1/2,

as was shown in Proposition 1.

Lemma 2. Given the set of lags K, if bj is an eigenvector of M(k) for all k ∈ K
then bj is an eigenvector of MS(K)1 =

∑
k∈K M(k), with eigenvalue

∑
k∈K µ2

j (k),.

Proof . Multiplying MS(K) by bj , we obtain[∑
k∈K

M(k)

]
bj =

[∑
k∈K

µ2
j (k)

]
bj . (11)

1A similar idea is applied in Lam & Yao’s (2012) paper to detect the number of factors.
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Based on Lemma 2, we propose to use as specific order of the components
of ft, the one specified by the eigenvalues of MS(K) ordered in descending
way. We denote as bj1:K , bj2:K , . . . , bjr:K their related eigenvectors, which are the
column vectors b1, b2, . . . , br defined in Proposition 1, Lemma 1 and Lemma 2,
but rearranged according to the defined order. Then, at each lag, we order the
canonical correlations by matching each one to the eigenvector of MS(K) that
is collinear to its canonical vector. That association is possible by means of
the cosine similarity between the eigenvectors of MS(K) with the eigenvectors
of M(k), which are the normalized canonical vectors. Hence, by Lemma 1, all
the canonical correlations that match with a particular eigenvector of MS(K) are
related to the same factor.

This proposal, as stated in Proposition 5, is based on the fact that the sequence
of squared cosines of the angle between an eigenvector of M̂(k) and an eigenvector
of M̂S(K), indexed by T , converges in probability to 1 if they are related to the
same factor, otherwise it converges to 0.

Proposition 5. For any lag k ∈ K, let b̂ji:K , bji:K , b̂ji:k and bji:k be the eigenvectors
associated to the ith non-zero largest eigenvalue of M̂S(K), MS(K), M̂(k) and
M(k), respectively. If M(k) has r(k) ≤ r eigenvalues different of zero, then, as
T → ∞, for i = 1, . . . , r and i′ = 1, . . . , r(k),(

b̂
⊤

ji′:k
b̂ji:K

||̂bji′:k || ||̂bji:K ||

)2

p→

(
b
⊤

ji′:k
bji:K

||bji′:k || ||bji:K ||

)2

= cos2
(
θji′:kji:K

)
, (12)

where θji′:kji:K is the angle between bji′:k and bji:K .

Proof . It follows using the consistency property of the estimators b̂ji′:k and b̂ji:K ,
and the continuous mapping theorem.

Note that cos2
(
θji′:kji:K

)
takes its maximum value if bji′:k and bji:K are collinear

to the same column vector of Σ−1
ε P ; hence, by Lemma 1, they are related to the

same particular factor. In this case, ji′:k = ji:K.
In our proposed methodology, we also define the partial canonical

autocorrelation function (PCACF), which, jointly with the CACF, let us identify
ARMA models for the factors, in a similar way to the Box-Jenkins methodology.
The main idea is to plot the partial canonical correlations that are related to the
same factor against lag values, based on the same order defined on the CACF,
given that we face the same issues. We call the function that corresponds to the
jth factor as the jth partial canonical autocorrelation function (PCACF).

To establish such definition, in Proposition 6 we show the relation between
partial canonical correlation and a modified partial autocorrelation of the latent
factors, in which we use Reinsel’s (1997) concept of partial canonical correlations
between two random vectors. To fix ideas, the partial canonical correlations
between yt and yt−k are the canonical correlations between yt and yt−k given yt−1,
yt−2, · · · , yt−k+1 and can be calculated as the non trivial canonical correlations
between [y⊤t , y

⊤
t−1, . . . , y

⊤
t−k+1]

⊤ and [y⊤t−1, y
⊤
t−2, . . . , y

⊤
t−k]

⊤.
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On a New Procedure for Identifying a Dynamic Common Factor Model 11

Based on these ideas and being Yt;k = [y⊤t , y
⊤
t−1, . . . , y

⊤
t−k+1]

⊤, we obtain the
following result.

Proposition 6. Given a lag k, the rp(k) ≤ r partial canonical correlations
different from zero between yt and yt−k are equal to the absolute values of the
partial autocorrelation between f∗

j,t and f∗
j,t−k, j = 1, . . . , rp(k), with f∗

t = ft + νt
and {νt} ∼ WN(0, Ir). Furthermore, the respective canonical variables are

gj(k)
⊤Yt;k and hj(k)

⊤Yt−1;k, j = 1, 2, . . . , rp(k),

with hj(k) = βj(k) ⊗ Σ−1
ε Pj ∈ Rkm and gj(k) = αj(k) ⊗ Σ−1

ε Pj ∈ Rkm, where
αj(k) and βj(k) are the canonical vectors associated to the non trivial canonical
correlations between [f∗

j,t, f
∗
j,t−1, . . . , f

∗
j,t−k+1]

⊤ and [f∗
j,t−1, f

∗
j,t−2, . . . , f

∗
j,t−k]

⊤.
Here, ⊗ denotes the Kronecker product.

Proof . See Appendix A.3.

Because Proposition 6, on the PCACF we plot the absolute value of the partial
autocorrelations of the processes f∗

jt, for each j = 1, . . . , r. Loosely speaking, we
plot a function that shows the MA process behavior of the factors plus a noise
process in absolute value; therefore, if the variance of the added noise process
is negligible with respect to the variance of the factor we get the PACF of the
MA(qj) process, otherwise an MA(pj + qj) process is observed (Peña 2010).

It is worth noticing that, when the partial canonical correlations are ordered
in descending way, as in the CACF, a specific order is defined for the components
of ft at each lag, but this ordering on the components of ft is not necessarily the
same at all lags. Then, using the same order define for the CACF, we order at
each lag the partial canonical correlations based on this particular components
order, as presented below.

In what follows, let ηji:k(k) be the ith partial canonical correlation for a given
lag k, in descending order of magnitude, and let hji:k be its related eigenvector,
where i = 1, 2, . . . , rp(k) and ji:k ∈ {1, 2, . . . , r}.

Now, from Proposition 6, we note that for a given i, i = 1, 2, . . . , rp(k), the
coefficients of yt in the respective canonical variable form the vector hji:k [1 : m],
the m first elements of the canonical vectors hji:k , which is collinear to one of
the columns of the matrix Σ−1

ε P . Therefore, a similar result to Proposition 5 is
obtained with the sequence of squared cosines of the angles between ĥji′:k [1 : m],
a consistent estimator of hji′:k [1 : m], and the previously defined vector b̂ji:K ,
i = 1, 2, . . . , r. Hence, as in a similar way that in the CACF, we match all the
partial canonical correlations related to the same factor.

Additionally, to test the number of rp(k) active factors on the partial canonical
correlations at lag k, we use the statistic

Cm−rp(k)(k) = −(T − k − 1)

m∑
i=rp(k)+1

log(1− η̂2ji:k(k)), (13)
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12 Stevenson Bolívar, Fabio H. Nieto & Daniel Peña

which is asymptotically a χ2
(m−rp(k))2

, where the square partial canonical
correlations, η̂2j1:k(k) ≥ η̂2j2:k(k) ≥ · · · ≥ η̂2jm:k

(k), are the m smallest eigenvalues of
the matrix

M̂p(k) =

[
T∑

k+1

(Yt;kY
⊤
t;k)

]−1 T∑
k+1

(Yt;kY
⊤
t−1;k)

[
T∑

k+1

(Yt−1;kY
⊤
t−1;k)

]−1 T∑
k+1

(Yt−1;kY
⊤
t;k).

For more details of the asymptotic distribution of this statistic see Reinsel
(1997), on the identification stage in the scalar component models (SCM) of
Tiao & Tsay (1989).

To use these ideas in practice, we propose the following methodology, which is
illustrated in the first example of Section 4.

STEP 1 First, define the set K as the set of all lags k ≤ k0, for a fixed k0 ≥ 1,
such that the Peña-Poncela’s test identify at least one factor and get
the r eigenvectors of M̂S(K) :=

∑
k∈K M̂(k), related to the r maximum

eigenvalues. Notice that the descending order of these eigenvalues define
an specific order for the eigenvectors b̂j1:K , b̂j2:K , . . . , b̂jr:K and by Lemma
1 for the factors, which we propose to use as the unique order for all
lags.

STEP 2 At each lag k, associate each canonical correlation to a particular
factor via the association to a particular eigenvector of matrix M̂S(K),
according to Lemma 2. For this purpose, start associating the
estimated largest canonical correlation µ̂j1:k(k) to one of the eigenvectors
b̂j1:K , b̂j2:K , . . . , b̂jr:K , by selecting the one having the maximum cosine
similarity with its eigenvector b̂j1:k , that is, the largest value of the
squared cosine of the angle between both vectors (maximum correlation
between two random canonical vectors). Similarly, to the next estimated
canonical correlations µ̂j2:k(k) ≥ µ̂j3:k(k) ≥ · · · ≥ µ̂jr(k):k

(k) assign one
of the eigenvectors b̂j1:K , b̂j2:K , . . . , b̂jr:K , but excluding eigenvectors that
were already assigned to higher canonical correlations.

STEP 3 At each lag k, associate each partial canonical correlation to a particular
factor via the association to a particular eigenvector of matrix M̂S(K).
Follow the same ideas of the STEP 2, using the partial canonical
correlations η̂j1:k(k) ≥ η̂j2:k(k) ≥ · · · ≥ η̂jrp(k):k

(k) and theirs respective
eigenvectors ĥj1:k [1 : m], ĥj2:k [1 : m], . . . , ĥjrp(k):k

[1 : m].

STEP 4 For each i = 1, 2, . . . , r, plot the ith sample CACF defined by ϑ̂i(k,K) =
µ̂ji:K(k), 0 < k < T , where µ̂2

ji:K
(k) is the ith eigenvalue of the matrix

M̂(k), ordering on STEP 2.

STEP 5 For each i = 1, 2, . . . , r, the ith sample PCACF defined by φ̂i(k,K) :=
η̂ji:K(k), 0 < k < T , where η̂2ji:K(k) is the ith of the m smallest eigenvalues
of the matrix M̂p(k), ordering on STEP 3.
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On a New Procedure for Identifying a Dynamic Common Factor Model 13

STEP 6 Based on the CACF and the PCACF plots, identify ARMA models for
the factor processes, in a similar way to the Box-Jenkins methodology,
bearing in mind that the ith CACF is proportional to the ACF of the ith
factor process, see Proposition 1 and the ith PCACF shows the PACF
of f∗

it, see Proposition 6.

For the last step, it is important to highlight that, in terms of absolute
values, the CACFs show the AR behavior of each factor process because the
CACFs are proportional to theirs ACFs (see Proposition 1). In the same way,
the PCACFs show the MA behavior of each factor process plus a noise process
(see Proposition 6). In summary, in absolute values, the ith canonical and partial
canonical correlations show the ARMA(pj , qj) behavior of the associated factor if
the variance of the added noise process is negligible with respect to the variance
of the factor, otherwise an ARMA(pj , pj + qj) behavior is observed (Peña 2010),
where pj and qj are, respectively, the autoregressive and moving average order
of the factor related with the jth partial canonical autocorrelation correlation
function.

4. Some Examples

4.1. A Simulated Model

We simulate again model (11), using as sample size T = 1000. As was found
previously, we obtain K = {1, 3} after setting k0 = 13. We recall that using the
two possible linear combinations we identify 2 common factors. With the simulated
data, we get µ̂2

j1:K
(K) = 0.22 and µ̂2

j2:K
(K) = 0.18, the ordered eigenvalues of the

matrix M̂S(K), with eigenvectors b̂j1:K = (−0.56,−0.58,−0.31,−0.38, 0.27, 0.20)⊤

and b̂j2:K = (−0.24, 0.18, 0.40,−0.09, 0.63,−0.59)⊤, respectively.
The next step is to use this specific order at all lags. Then, for each eigenvector

b̂j1:K and b̂j2:K , we match a canonical correlation and a partial canonical correlation
at each lag k = 1, 2, . . . , k0, based on the methodology mentioned before. As
an illustration of our proposed ordering methodology, we calculate the cosine
similarity to order the canonical correlations at lags k = 1 and k = 3. For lag k = 1,
µ̂j1:1(1) = 0.46 with eigenvector b̂j1:1 = (0.61, 0.48, 0.17, 0.37,−0.47, 0.04)⊤ and
µ̂j2:1(1) = 0.10 with eigenvector b̂j2:1 = (0.62,−0.47,−0.52,−0.12,−0.03, 0.31)⊤.
The cosine similarity of b̂j1:1 with the vectors b̂j1:K and b̂j2:K are 0.87 and 0.12,
respectively. Then, we relate µ̂j1:1(1) to b̂j1:K and µ̂j2:1(1) to b̂j2:K . In the same
way, at lag k = 3, we got 0.16 and 0.85 as the cosine similarity of the vector
b̂1:3 with b̂j1:K and b̂j2:K , respectively; hence, we relate µ̂j1:3(3) = 0.42 to b̂j2:K and
µ̂j2:3(3) = 0.07 to b̂j1:K .

In other words, ϑ̂1(1,K) = 0.46, ϑ̂2(1,K) = 0.07, ϑ̂1(3,K) = 0.10 and
ϑ̂2(3,K) = 0.42 as is shown in the Figure 1, where we plot the CACF and the
PCACF according to the order specified by b̂j1:K and b̂j2:K . We use gray bars
in both graphics to indicate the canonical correlations and the partial canonical
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correlations that are statistically different from zero, according to the tests (3) and
(13) mentioned before.

1 3 5 7 9 11 13
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(a) CACF and PCACF of the first factor process
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ϕ 2
(k

, K
)

(b) CACF and PCACF of the second factor process

Figure 1: Plot of CACF and PCACF of the simulated data. Gray bars indicate
the canonical correlations and the partial canonical correlations that are
statistically different from zero, according to the tests (3) and (13) mentioned
before.

Notice that the first CACF and PCACF show an MA(1) behavior; hence they
are related to the factor f1t and the second ones, an MA(3), as it is factor f2t. In
this example, the CACF and PCACF show exactly the same expected behavior
of the ACF and PACF proposed by Box & Jenkins (1970), because an MA(q)
process plus a white noise process still being an MA(q) process (Peña 2010).

4.2. A Real Data Application

This example is taken from Nieto et al.’s (2016) paper, where the total monthly
rainfall time series were used. The rainfalls were measured in meteorological
stations located at the airports of six cities in Colombia: Bucaramanga(y1),
Cúcuta(y2), Ibagué(y3), Medellín(y4), Manizales(y5) and Bogotá(y6). Figure 2
presents the deseasonalized time series and, with the Peña & Poncela’s (2006)
test at the lags 1, 2, . . . , 13, we get that the lags 1, 4 and 6 present at leat one
factor. With K = {1, 4, 6} we detect two common factors using the test proposed
in Section 2.
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Figure 2: Rainfall time series.

Figure 3 presents the CACF and the PCACF of the deseasonalized time series
following our proposed methodology. To the first factor, Figure 3(a), in the CACF
non-zero correlations are observed at lags 1, 4 and 6 (according to Peña and
Poncela’s test) and in the PCACF at lags 1 and 6 (according to the test 13).
Also, a possible decreasing behavior in the CACF from the first correlation, that
suggests an MA(1) process. For the second factor, Figure 3(b), in the CACF and
the PCACF a non-zero correlations are observed at lag 1 (according to the test
(3) and (13)) and a possible decreasing behavior is observed in the CACF, that
suggests an AR(1) process.

To the estimation of the parameters, we maximize the likelihood function
using the EM algorithm. On step E, we use the Kalman filter and the
smoothing algorithm. On step M , we use the space-state representation proposed
by Metaxoglou & Smith (2007) for VARMA models, intending to simplify the
maximization process from step M , as the authors mention in their paper. Also,
to solve the identification problem of the model, restriction P⊤Σ−1

ε P = Ir was
imposed, and using Jungbacker & Koopman (2015) ideas we transform the data
y∗t = ALyt in step E, with AL = P⊤Σ−1

ε , obtaining the transformed model
y∗t = ALyt = ft +ALεt, where ALP = Ir and var[ALεt] = Ir.
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(a) CACF and PCACF of the first factor process
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Figure 3: Plot of CACF and PCACF of Colombian rainfalls

Based on the above specification, the following model with two common factors
is estimated:

Yt =



7.52 −18.19

11.14 −32.96

19.73 8.14

22.60 14.33

16.52 −6.73

12.46 −3.03


ft + εt,

where f1t = 0.12f1,t−6 + 0.117a1,t−1 + 0.122a1,t−4 + a1t, f2t = 0.36f2,t−1 + a2t,
Σa = diag(4.01, 0.69) and Σε = diag(2226.9, 1853.7, 3463.2, 1279.2, 1566.2, 712.7).

The structure of the factors can be seen by columns of the P matrix. The first
one has a positive effect on the time series, with a minor scale on the Bucaramanga
rainfall (y1t). The second separates Ibagué (y3t) and Medellin (y4t) from the others
cities precipitations.

5. Conclusions

In this paper, (1) we establish the relationship between canonical correlations
and the autocovariance function of the factor process. Based on this relation, we
modify Peña & Poncela’s (2006) test to detect the number of common factors,
increasing the test power. Additionally, (2) we establish the relationship between
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partial canonical correlations and the partial autocorrelation function of the factor
process. Finally, (3) we propose to use the canonical vectors to link the canonical
and partial canonical correlations at each lag to a specific factor process. These
three findings allow us to propose a procedure to identify a vector ARMA model
for the factor process, which is based on the so-called simple and partial canonical
autocorrelation functions.[

Received: March 2019 — Accepted: September 2020
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Appendix A. Proofs of the Propositions

Appendix A.1. Proposition 1

Proof . Calling Γy(k) = E(yty
⊤
t−k) to the lag covariance matrices of the data and

Γf (k) = E(ftf
⊤
t−k) the diagonal covariance matrices for the factors, we have that

Γy(0) = PΓf (0)P
⊤ +Σε and for k > 0,

Γy(k) = PΓf (k)P
⊤. (A.1)

Let us first assume that Σε = Im and consider now lineal combinations a⊤yt

and b⊤yt−k of unit variance that has maximum squared correlation. It is easy to
see that the squared correlation is the largest eigenvalue and a the corresponding
eigenvector of the matrix

Hk = Γy(0)
−1Γy(k)Γy(0)

−1Γy(k) = AA

where
A = Γy(0)

−1Γy(k).

Therefore as the eigenvalues of a non singular matrix and its inverse are the inverse
and with the same eigenvectors, Γy(0) = PΓf (0)P

⊤+Im have eigenvectors P and
eigenvalues γj(0) + 1. Then Γ−1

y (0) has eigenvectors P and eigenvalues (γj(0) +
1)−1. Therefore, A has P eigenvectors and eigenvalues (γj(0)+1)−1γj(k). Matrix
Hk has the same P eigenvectors and but now its eigenvalues are (1+γj(0))

−2γj(k)
2.

In summary, the canonical variables have the form a⊤yt = αjp
⊤
j yt where pj

is one of the columns of P and in order to have variables with unit variance as
E(α2

jp
⊤
j yty

⊤
t pj) = α2

jp
⊤
j Γy(0)pj = α2

j (γj(0) + 1) then

a = αjpj =
1

(γj(0) + 1)1/2
pj .
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In the general case, calling y∗
t = Σ

−1/2
ε yt the model can be written as in (1)

with P∗ = Σ
−1/2
ε P and Σ∗

ε = Im. Assuming P∗⊤P∗ = Ir = P⊤Σ−1
ε P

Γ∗
y(0) = Σ−1/2

ε Γy(0)Σ
−1/2
ε = Σ−1/2

ε PΓf (0)P
⊤Σ−1/2

ε + Im

and the eigenvectors of Γ∗
y(0) are Σ

−1/2
ε pj and the eigenvalues γj(0) + 1.

Appendix A.2. Proposition 2

Proof . Assuming that Σε = Im and taking the lineal combinations a⊤yt and
b⊤y†

t of unit variance that has maximum squared correlation, it is easy to see
that the squared correlation is the largest eigenvalue and a the corresponding
eigenvector of the matrix

HK = Γy†(0)−1Γy(K)Γy(0)
−1Γy(K)

where

y

Γy(K) := E
[
yty

†⊤
t

]
= PΓf (K)P⊤,

Γy(0) := E
[
yty

⊤
t

]
= PΓf (0)P

⊤ + Im

Γy†(0) := E
[
y†
ty

†⊤
t

]
= PΓf†(0)P⊤ + k†Im,

(A.2)

with Γf†(0) :=
∑
k1∈K

∑
k2∈K

E
[
ft−k1f

⊤
t−k2

]
, Γf (K) :=

∑
k∈K

E
[
ftf

⊤
t−k

]
and k† the

cardinality of K.
Therefore, following the same ideas of the demonstration in Proposition 1 the

result of Proposition 2 is obtained, with γj(K) and γ†
j the j-th elements of the

diagonal matrices Γf (K) and Γf†(0), respectively.

Appendix A.3. Proposition 6

Proof . Let H = [P, P⊥], such that HTΣ−1
ε H = Im and zt = H⊤Σ−1

ε yt , then

zt = H⊤Σ−1
ε Pft +H⊤Σ−1

ε εt (A.3)

zt =

[
ft

0(m−r)×1

]
+ νt, (A.4)

where νt is a Gaussian noise process with E[νt] = 0m×1 and E[νtν
⊤
t ] =

Im. Therefore, the components of zt are pairwise orthogonal, which means
cov[zj,t, zj′,s] = 0, for any j, j′ = 1, . . . ,m, j ̸= j′, t, s ∈ Z. Additionally,

var[zt] =

[
Σf (0) 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

]
+ Im (A.5)

cov[zt, zt−k] =

[
Σf (k) 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

]
. (A.6)

Revista Colombiana de Estadística - Theoretical Statistics 44 (2021) 1–21



20 Stevenson Bolívar, Fabio H. Nieto & Daniel Peña

Given that H⊤Σ−1
ε is an invertible matrix, the canonical correlations between

yt and yt−k are equal to the canonical correlations between zt and zt−k, aditionally,
the canonical vectors of yt are equal to the canonical vectors of zt multiplyied by
H⊤Σ−1

ε (Anderson 1984). Therefore, in the rest of the proof we find the canonical
correlation between zt and zt−k and their respective canonical vectors.

To get the partial canonical correlations of the process {zt}, note that, it is
pairwise orthogonal, then the partial canonical correlations between zt and zt−k

are equal to the k-th partial autocorrelation of zj,t, the j-th component of zt.
This partial autocorrelation can be calculate as the k-th component of the vector
(Reinsel 1997)[

ϕj
1k

ϕj
2k

· · · ϕj
kk

]⊤
=
(
E[Zj,t−1;kZ

⊤
j,t−1;k]

)−1
E[Zj,t−1;k, zjt], (A.7)

where Zj,t;k = [z⊤j,t, z
⊤
j,t−1, . . . , z

⊤
j,t−k+1]

⊤. Using the properties of partitioned
matrices

ϕj
kk =

γj(k)− ϱj,k−1

(γj(0) + 1)− ϱj,k−1
,

with ϱj,k−1 = Γ̃⊤
j;(k−1)Γ

−1
j;k−1Γj;(k−1) if k > 1 and ϱj,k−1 = 0 if k = 1, where

and

Γj;k = E[Zj,t;kZ
⊤
j,t;k],

Γj;(k) = [γzj (1), γzj (2), . . . , γzj (m)]

Γ̃j;(k) = [γzj (m), γzj (m− 1), . . . , γzj (1)].

To get the canonical vectors related to the non trivial canonical correlations of
Zt;k = [z⊤t , z⊤t−1, . . . , z

⊤
t−k+1]

⊤ and Zt−1;k = [z⊤t−1, z
⊤
t−2, . . . , z

⊤
t−k]

⊤, say g∗j (k)
and h∗

j (k), respectively, we use the canonical vectors of Zj,t;k and Zj,t−1,k, say
αj(k) and βj(k) (dimesion k × 1). Hence, given that the process {zt} is pairwise
orthogonal these canonical vectors can be expressed as

g∗j (k) = αj(k)⊗ ej y h∗
j (k) = βj(k)⊗ ej j = 1, . . . , rp(k), (A.8)

where ej is the vector of dimension m × 1 with the value one in the position j-
th and zero otherwise. This is easy to verify by multiplying g∗j (k)

⊤ by Zt;k and
h∗
j (k)

⊤ by Zt−1;k. Based on this result, it is concluded that the canonical vectors
regarding to [y⊤t , y

⊤
t−1, . . . , y

⊤
t−k+1]

⊤ and [y⊤t−1, y
⊤
t−2, . . . , y

⊤
t−k]

⊤ are, respectively,

gj(k) = αj(k)⊗ Σ−1
ε Pj and hj(k) = βj(k)⊗ Σ−1

ε Pj j = 1, . . . , rp(k), (A.9)

beacuse, g∗j (k)⊤Zt;k = (αj(k)
⊤ ⊗ ej)Zt;k = (αj(k)

⊤ ⊗ ej)(Ik ⊗P⊤
j Σ−1

ε )Yt;k, hence
the canonical variables related to Yt;k and Yt−1;k are (αj(k)

⊤ ⊗ P⊤
j Σ−1

ε )Yt;k and
(βj(k)

⊤ ⊗ P⊤
j Σ−1

ε )Yt−1;k.
To get αj(k) and βj(k) we use that

E
[
g∗j (k)

⊤
Zt;kZ

⊤
t−1;kh

∗
j (k)

]
= ϕj

kk,
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and hence

αj(k) =
1

(γj(0) + 1)− ϱj,k−1

[
−1

Γ−1

j;k−1Γj;(k−1)]

]
, (A.10)

βj(k) =
1

(γj(0) + 1)− ϱj,k−1

[
Γ−1

j;k−1Γ̃j,(k−1)

−1

]
(A.11)

By notation, on Proposition 6, we set the first r components of zt as f∗
j,t,

j = 1, 2, . . . , r.

Revista Colombiana de Estadística - Theoretical Statistics 44 (2021) 1–21


	Introduction
	An Extension of the Statistical Test
	A Procedure for Identifying the Common-Factors Model
	Some Examples
	A Simulated Model
	A Real Data Application

	Conclusions
	Proofs of the Propositions
	Proposition 1
	Proposition 2
	Proposition 6


