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Abstract
The time-dependent stress-strength reliability models deal with systems

whose strength or the stress imposed on it or both are time-dependent.
In this paper, we consider time-dependent stress-strength reliability model
which is subjected to constant stress and it causes a change in the strength
of the system over each run of the system. Assuming a continuous phase-
type distribution for the initial strength and exponential distribution for the
duration of each run of the system called cycle time we derived the expression
for the stress-strength reliability of the system at time t. The model is further
extended to the cases where cycle time distribution is Gamma and Weibull.
Simulation studies are conducted to assess the variations in stress-strength
reliability, R(t) at different time points, corresponding to the changes in the
initial strength distribution and cycle time distribution.

Key words: EM algorithm; Exponential distribution; Gamma distribution;
Phase type distribution; Stress-Strength reliability; Weibull distribution.

Resumen
Los modelos de confiabilidad tensión-resistencia dependientes del tiempo

tratan con sistemas cuya fuerza o el estrés que se le impone o ambos dependen
de tiempo. En este artículo, consideramos modelos de confiabilidad de
resistencia-tensión dependientes del tiempo que está sometido a un estrés
constante y provoca un cambio en la fuerza del sistema después de cada
ejecución del sistema. Asumiendo una fase continua distribución de tipo
para la fuerza inicial y distribución exponencial para la duración de cada
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ejecución del sistema llamado tiempo de ciclo que obtuvimos la expresión
de la fiabilidad tensión-resistencia del sistema en el tiempo t. El modelo se
amplía aún más a los casos en los que la distribución del tiempo de ciclo
es Gamma y Weibull. Se realizan estudios de simulación para evaluar las
variaciones en la confiabilidad tensión-resistencia, R(t) en diferentes puntos
de tiempo, correspondiente a los cambios en la distribución y el ciclo de la
fuerza inicial distribución del tiempo.

Palabras clave: Algoritmo EM; Distribución de tipo de fase; Distribución
Gamma; Distribución exponencial; Distribución de Weibull; Fiabilidad de
resistencia al estrés.

1. Introduction

Stress-strength models are of special importance in reliability theory. It deals
with the evaluation of the probability that the strength of a component of a system
exceeds the stress imposed on that component. Thus if X and Y represent the
stress applied on the system and the strength of the system respectively, then the
stress-strength reliability of the system is given by R = P [X < Y ]. This model
was introduced by Birnbaum (1956) and after that several researchers studied
the estimation of R under various assumptions on the distribution of stress and
strength. A detailed discussion of the computation of stress-strength reliability
and various inference methods of R is given in Kotz & Pensky (2003). Assuming
that stress and strength are independent random variables following different
probability distributions Baklizi (2008), Kundu & Raqab (2009), Rezaei et al.
(2010), Wong (2012), Huang et al. (2012), Rao, (2012; 2014), Kizilaslan & Nadar
(2015), Ghitany et al. (2015), Jose et al. (2019) and Xavier & Jose (2020) have
discussed the problem of estimating R for single and multi-component systems.

In a random period of time, if a system is subjected to repeated stress it
will induce a change in the distribution of strength of the system over time.
Stress-strength reliability models with stress or strength or both having dynamic
characteristic are called dynamic or time-dependent stress-strength reliability
models. Yadav (1973) and Gopalan & Venkateswarlu (1982; 1983) had studied
several time-dependent models. An example of a deteriorating multi-component
system is our mobile phone. Many often we may have to download files to mobile
phones. Each file consumes the memory space of the phone corresponding to the
size of that file. It causes a reduction in the speed of functioning of the phone. So
each time we download a new file, there is an increase in the number of files piled
up in the phone memory and a reduction in the functioning speed of the phone.

Here, we consider the stress-strength reliability model in which the system is
subject to constant stress and it causes a change in the strength of the system
over time. We assume that the strength of the system reduces by a constant
over each run of the system, and is called random fixed strength and the time for
completion of the run is called cycle time. The system fails whenever the stress
imposed exceeds its strength. The stress-strength reliability of the dynamic system
changes with respect to time. So in the case of dynamic or time-dependent stress-
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strength model, we are interested in the estimation of stress-strength reliability at
time t,

R(t) = P [X(t) < Y (t)], (1)
where X(t) and Y (t) represent the stress on the system and strength of the system
at time t respectively.

A real-life system will always have some strength. When stress is applied to
the system continuously, its strength will change and the stress-strength reliability
measures the chance of further functioning of the system. For instance, suppose
that an individual is a smoker. When he smokes, tobacco will burn and a toxic
chemical particle called cigarette tar will be left behind. Whenever the person
inhales the cigarette smoke, tar builds up inside the lungs. With the accumulation
of tar, the color of the lungs will be converted to dark and eventually the tar can
kill cilia in the lungs, which helps to trap pollutants. When cilia get damaged,
the tar travels deeper into the lungs. From the lungs, it can move to other parts
of the body. It can affect every organ in the body and can cause diseases like
cancer, heart disease, etc. So when he smokes over time, there will be an increase
in accumulation of tar and simultaneously a decrease in healthy cilia.

Siju & Kumar (2016; 2017) estimated time-dependent stress-strength reliability
of the models with random fixed strength and fixed stress assuming Weibull
distribution for initial strength and cycle time distribution as exponential. In this
paper, we consider the estimation of the stress-strength reliability function R(t) of
the time-dependent models with cycle time distribution as exponential, Gamma
or Weibull. The system is subjected to a constant stress and the distribution of
the initial strength is continuous phase-type distribution.

There are several motivations for using phase-type distribution in reliability
analysis. They constitute a very versatile class of distributions defined on the
non-negative real numbers that lead to models which are algorithmically tractable.
Hence they play an important role as a computational vehicle of much of applied
probability. For a detailed discussion on phase-type distribution one may refer
to Neuts (1975). Asmussen et al. (1996) introduced expectation maximization
(EM) algorithm for fitting phase-type distribution. Expectation Maximization
uniformization (EM unif) algorithm was developed by Bladt et al. (2011) as an
improvement over EM algorithm.

Consider a continuous time Markov chain {Xt, t ≥ 0} on a discrete state space
with a finite number of states (m+ 1), of which (m+ 1)th state is absorbing and
states 1, 2, . . . ,m are transient. Suppose that the generator matrix of the chain is

Q =

(
B tB
0 0

)
where the diagonal elements of the matrix B say Bii ≤ 0; i ≤ m and the non
diagonal elements of the matrix say Bij ≥ 0 for i ̸= j, with Be+ tB = 0, where e
is an m× 1 column vector of unity and 0 is the 1×m zero matrix.

Let βi = P [X(0) = i] denote the initial probability. Hence the initial
probability vector of {X(t), t ≥ 0} is given by (β, βm+1) where β = (β1, β2, . . . , βm)
and βe+ βm+1 = 1.
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A continuous phase-type (CPH) distribution is defined as the distribution of
time to get absorbed to the absorbing state of a CTMC. If Z is a CPH random
variable, then its probability density function (pdf) is defined as

f(z) = βeBztB ; z ≥ 0 (2)
where tB = −Be and we write as Z ∼ CPH(β,B)m. The set of parameters (β,B)
is said to be a representation of the CPH distribution. The dimension of B is said
to be the order of the representation.

Several standard statistical distributions like exponential distribution, erlang
distribution, generalized erlang distribution and hyper-exponential distribution
can be obtained as special cases of CPH distribution. The class of CPH distribution
possesses several interesting closure properties which makes it a good choice
for modelling many characteristics. Most of these results are well established
in Neuts (1975).

Many authors have considered deteriorating complex multi-component
manufacturing systems whose failure times, lifetimes or repair times follow
phase-type distribution. Barron et al. (2004) analyzed an R-out-of-N repairable
system assuming the lifetimes of components follow phase-type distribution.
Barron & Yechiali (2017) dealt with deteriorating repairable Markovian system
consisting of stochastically independent and identical units following discrete
phase-type distribution (DPH). Eryilmaz (2018) considered CPH distribution as
the distributions of stress and strength and studied stress-strength reliability for
a single unit and multi-component systems. Jose et al. (2020) estimated stress-
strength reliability for a single unit and multi-component systems assuming DPH
as the distributions of stress and strength components.

This paper is organized as follows. In section 2, we briefly describe the stress-
strength reliability of time-dependent model with cycle time following exponential
distribution, constant stress and random-fixed strength. In sections 3 and 4,
the model is extended to the case in which the cycle time distribution follows
Gamma distribution and Weibull distribution respectively. Section 5 deals with
the EM algorithm for estimating the parameters of CPH distribution. In section 6,
simulation studies are conducted to assess the variations in R(t) corresponding to
the changes in the initial strength distribution and cycle time distribution. Section
7 deals with the concluding remarks.

2. Estimation of R(t) with Cycle Time Follows
Exponential Distribution

Consider a system which is allowed to run continuously within an interval of
time. The initial strength of the system is assumed to follow CPH distribution
and the stress on the system over the entire time interval is assumed to be fixed.
Let x0 be the stress applied on the system throughout the time interval (0, t) and
Y0 be the initial strength of the system. The distribution of Y0 is CPH(β,B)p
with p.d.f.,

fY0(y0) = βeBy0tB ; y0 ≥ 0. (3)
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Strength of the system is assumed to be decreasing over each run by a constant
a0. Let Xi denote the stress acting on the system during the ith cycle time and
Yi be the corresponding strength of the system. Then probability of functioning
of the system after n runs is given by

Rn = P [(X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn)]

= P [(x0 < Y0 − a0) ∩ (x0 < Y0 − 2a0) ∩ · · · ∩ (x0 < Y0 − na0)]

= P [(x0 + na0 < Y0)]

= βeB(x0+na0)e′p

(4)

where ep =
(
1 1 · · · 1

)
1×p

.
Now, assume that the cycle time has exponential distribution with rate λ, so

that N(t), the number of runs during an interval of time (0, t) follows Poisson
process. Hence the probability of n runs within (0, t) is given by

Pn(t) =
e−λt(λt)n

n!
. (5)

Therefore, the value of R(t) can be obtained as

R(t) =

∞∑
n=0

Pn(t)Rn (6)

=

∞∑
n=0

e−λt (λt)
n

n!
βeBx0+Bna0e′p

= e−λtβeBx0

∞∑
n=0

(λt)n

n!
eBna0e′p

= e−λtβeBx0eλte
Ba0

e′p.

Now we consider the special case where the cycle time distribution is
exponential with rate λ and the distribution of initial strength of the system is
exponential with rate θ. Then

R(t) = e−θx0−λt(1−e−θa0 ). (7)

Similarly, when the cycle time distribution is exponential with rate λ and the
distribution of initial strength of the system is hyper-exponential with rate
parameters θ1, θ2, . . . , θs and mixing parameters p1, p2, . . . , ps respectively, then

R(t) =

s∑
i=1

pie
−θix0−λt(1−e−θia0 ). (8)

If the initial strength distribution is a finite mixture of independent
distributions, we have the following result.

Result 1. Consider a single component system subject to a fixed stress x0,
and initial strength distribution follows a finite mixture of continuous probability
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distributions f(yi), i = 1, 2, . . . , k with mixing probabilities p1, p2, . . . , pk. If cycle
time distribution is exponential, then the stress-strength reliability function of the
system is

R(t) =

s∑
i=1

piRi(t),

where Ri(t) is the stress-strength reliability function of the system with initial
strength distribution is f(yi), fixed stress x0, and cycle time distribution is
exponential.

The graph of R(t) corresponding to various values of parameters of cycle time
distribution and initial strength distribution are given in Figures 1, 2 and 3. In
all the case, R(t) value increases with a decrease in the value of the cycle time
parameter.

Figure 1: Change in R(t) for systems with erlang initial strength and exponential cycle
time distribution.

Figure 2: Change in R(t) for systems with generalized erlang initial strength and
exponential cycle time distribution.
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Figure 3: Change in R(t) for systems with hyperexponential initial strength and
exponential cycle time distribution.

2.1. Reliability of Series and Parallel Systems

Consider n identical systems connected in series. Let the initial strength of each
system be distributed as CPH(β,B)p. Then the corresponding stress-strength
reliability can be obtained as

Rs(t) =

n∏
k=1

(Rk(t))

= (R(t))n

= (e−λtβeBx0eλte
Ba0

e′p)
n

= e−λtn(β ⊗ · · · ⊗ β)e(B⊕···⊕B)x0eλt(e
Ba0⊕···⊕eBa0 )(e′p ⊗ · · · ⊗ e′p)

= e−λtnβ∗eB
∗x0eλtCe′∗p , (9)

where β∗ = (β ⊗ β · · · ⊗ β), B∗ = B ⊕B · · · ⊕ B, C = eBa0 ⊕ eBa0 · · · ⊕ eBa0 and
e′∗p = e′p ⊗ e′p · · · ⊗ e′p

Now, consider n systems connected in parallel with identical initial strength.

Rp(t) = 1−
n∏

k=1

(1−Rk(t))

= 1− (1−R(t))n

= 1− (1− e−λtβeBx0eλte
Ba0

e′p)
n (10)
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3. Estimation of R(t) with Cycle Time Follows
Gamma Distribution

In the previous section, we assumed that cycle time distribution is exponential.
Now, we consider more general case in which we assume that the cycle times follows
Gamma distribution with p.d.f.,

f(z) =
akzk−1e−az

(k − 1)!
; z ≥ 0. (11)

Then the number of runs during the time interval (0, t) has the distribution,

Pn(t) = e−at

(n+1)k−1∑
r=nk

(at)r

r!
;n = 0, 1, 2, . . . (12)

Therefore, using equation (6), the reliability of the system at time t with
constant stress and random fixed strength following CPH distribution and Gamma
cycle time distribution can be obtained as

R(t) =

∞∑
n=0

Pn(t)Rn

=

∞∑
n=0

e−at

(n+1)k−1∑
r=nk

(at)r

r!
βeBx0+Bna0e′p

= e−atβeBx0

∞∑
n=0

(n+1)k−1∑
r=nk

(at)r

r!
eBna0e′p (13)

Consider the initial strength as exponential random variable with rate θ and
the distribution of cycle times as Gamma. Then we can obtain the expression for
R(t) as,

R(t) = e−at
∞∑

n=0

(n+1)k−1∑
r=nk

(at)r

r!
e−θ(x0+na0) (14)

When the initial strength has hyper-exponential distribution with rate
parameters θ1, θ2, . . . , θs and mixing parameters p1, p2, . . . , ps respectively, then
the expression for R(t) is

R(t) = e−at
∞∑

n=0

(n+1)k−1∑
r=nk

(at)r

r!

s∑
i=1

pie
−θi(x0+na0),

=

s∑
i=1

pi

e−at
∞∑

n=0

(n+1)k−1∑
r=nk

(at)r

r!
e−θi(x0+na0)

 (15)
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If the initial strength distribution is a finite mixture of independent
distributions, we have the following result.

Result 2. Consider a single component system subject to a fixed stress x0,
and initial strength distribution follows a finite mixture of continuous probability
distributions f(yi), i = 1, 2, . . . , k with mixing probabilities p1, p2, . . . , pk. If cycle
time distribution is Gamma, then the stress-strength reliability function of the
system is

R(t) =

k∑
i=1

piRi(t),

where Ri(t) is the stress-strength reliability function of the system with initial
strength distribution is f(yi), fixed stress x0, and cycle time distribution is
Gamma.

Figures 4, 5 and 6 represent the variation in R(t) with respect to distinct
parameter values of cycle time and initial strength distributions, when the cycle
times are Gamma random variables. Here also the value R(t) decreases with an
increase in time, as in the case of exponential cycle times.

Figure 4: Change in R(t) for systems with erlang initial strength and Gamma cycle
time distribution.

4. Estimation of R(t) with Cycle Time Follows
Weibull Distribution

Assume that the cycle time distribution of the system is Weibull with shape
parameter c. Then the p.d.f. of the cycle time distribution is given by,

f(t) = ctc−1e−tc ; t ≥ 0. (16)
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Figure 5: Change in R(t) for systems with generalized erlang initial strength and
Gamma cycle time distribution.

Figure 6: Change in R(t) for systems with hyperexponential initial strength and
Gamma cycle time distribution.

The corresponding c.d.f. has the form

F (t) = 1− e−tc ; t > 0. (17)

Then the number of runs during the time interval (0, t) is a Weibull renewal
process.

Let t1, t2, . . . denote the time at which renewal take place. Sn = t1+t2+· · ·+tn
be the total time up to the instant of nth renewal. Then the distribution of Sn, is
given by

Fn(t) =
∫ t

0
Fn−1(t− x)dF (x), (18)
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where F0(t) ≡ 1.

Let Pn(t) denote the probability of n renewals in (0, t), which is defined as

Pn(t) = Fn(t)− Fn+1(t);n = 0, 1, 2, . . . (19)

Lomnicki (1966) obtained an infinite series expression for Pn(t) in terms of the
Poissonian function say Qn(t

c) as

Pn(t) =

∞∑
i=n

ηn(i)Qi(t
c);n = 0, 1, 2, . . . (20)

where

ηn(i) =

i∑
r=n

(−1)r+n

(
i

r

)
µn(r)

λ(r)
;n = 0, 1, 2, . . . ; i = n, n+ 1, . . . (21)

λ(j) =
Γ(cj + 1)

Γ(j + 1)
; j = 0, 1, 2, . . . (22)

µn+1(i) =

i−1∑
j=n

µn(j)λ(i− j); n = 0, 1, 2, . . . ; i = n+ 1, n+ 2, . . . (23)

µ0(i) = λ(i); i = 0, 1, 2, . . . (24)

The Poissonian function say Qn(t
c) satisfies

tcr

r!
=

∞∑
i=r

(
i

r

)
Qi(t

c). (25)

Qi(t) = e−t t
k

k!
. (26)

ηn(i) are bounded by 2i(n+1) and hence Pn(t) is absolutely convergent. Note that∑i
n=0 ηn(i) = 1 and

∑∞
n=0 Pn(t) = 1.

Therefore, using equation (6), the reliability of the system at time t with
constant stress and random fixed strength following CPH distribution and Weibull
cycle time distribution can be obtained as

R(t) =

∞∑
n=0

∞∑
i=n

(ηn(i)Qi(t
ν)βeB(x0+na0)e′p (27)

If the initial strength is exponential with rate θ and the cycle times is Weibull
distributed with shape parameter ν, then

R(t) =

∞∑
n=0

∞∑
i=n

(ηn(i)Qi(t
ν)e−θ(x0+na0)
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When the initial strength has hyper-exponential distribution with rate
parameters θ1, θ2, . . . , θs and mixing parameters p1, p2, . . . , ps respectively, then
the expression for R(t) is

R(t) =

∞∑
n=0

∞∑
i=n

(ηn(i)Qi(t
ν)

s∑
i=1

pie
−θi(x0+na0)

=

s∑
i=1

pi

{ ∞∑
n=0

∞∑
i=n

(ηn(i)Qi(t
ν)e−θi(x0+na0)

} (28)

If the initial strength distribution is a finite mixture of independent
distributions, we have the following result.

Result 3. Consider a single component system subject to a fixed stress x0,
and initial strength distribution follows a finite mixture of continuous probability
distributions f(yi), i = 1, 2, . . . , k with mixing probabilities p1, p2, . . . , pk. If cycle
time distribution is Weibull, then the stress-strength reliability function of the
system is

R(t) =

k∑
i=1

piRi(t),

where Ri(t) is the stress-strength reliability function of the system with initial
strength distribution f(yi), fixed stress x0, and cycle time distribution is Weibull.

Figure 7 represents the variation in R(t) with respect to distinct parameter
values of cycle time and initial strength distributions, when the cycle times
are Weibull random variables. From Figure 7, we can see that the value of
R(t) decreases with increase in strength parameter values as well as cycle time
parameter values.

5. ML Estimation of Parameters of CPH
Distribution

We have used EM uniformization algorithm for estimating the parameters of
initial strength distribution. While dealing with phase-type random variables,
we will only have the absorption times, and the entire underlying structure of the
Markov process is not available. Asmussen et al. (1996) have presented a procedure
for fitting CPH distributions via the EM algorithm. Using uniformization method,
Bladt et al. (2011) developed an alternative method to compute the E-step in the
EM algorithm, and is called as EM unif algorithm.

Let {y1, y2, . . . , yM} be a sample of size M from CPH(β,B), then
{y1, y2, . . . , yM} denote the time until absorption. Assume that we have complete
observation of a Markov jump process with p states, {X(t), t ≥ 0}. Consider y
∈ {y1, y2, . . . , yM} and suppose that k jumps takes place before absorption. Let
x0, x1, . . . , xm be the sequence of states visited and the time taken between each
of the jumps be t0, t1, . . . , tm, ie t0 + t1 + · · ·+ tm = y.
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Figure 7: Change in R(t) for systems with exponential initial strength and Weibull cycle
time distribution.

We have to find the MLE of Γ = (β,B, t) of CPH(α,A) using the observed data
{y1, y2, . . . , yM}. Let uk = (xk

0 , x
k
1 , . . . , x

k
m) denote the trajectory of the underlying

Markov jump processes(MJPs) {X(t), t ≥ 0} corresponding to the observation yk
and u = {uk; k = 1, 2, . . . ,M} gives the full data set for the M absorption times.

Let Bk represent the number of processes that start from state k, Nk be the
number of processes which exit from state k to the absorbing state, Nkl be the
number of jumps from kth state to lth state among all processes, and Zk be the
total time spent in the state k before absorption for all processes. Let Bm

k , Zm
k , Nm

k

and Nm
kl be the corresponding statistics for the mth observation. The likelihood

function of the complete data is

L =

p∏
k=1

βBk

k

p∏
k=1

p∏
l ̸=k

tNkl

kl e−tklZk

p∏
k=1

tNk

k e−tkZk (29)

The log-likelihood function for the complete data is given by

lf (Γ;x) =

p∑
k=1

Bk log(βk) +

p∑
k=1

p∑
l ̸=k

Nkl log(tkl)−
p∑

k=1

p∑
l ̸=k

tklZk

+

p∑
k=1

Nklog(tk)−
p∑

k=1

tkZk

(30)

Asmussen et al. (1996) considered

EΓ (Bk | Ym = ym) =

M∑
m=1

EΓ (B
m
k | Ym = ym) =

M∑
m=1

βkbk (ym | Γ)
βb (ym | Γ)

(31)
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EΓ (Zk | Ym = ym) =

M∑
m=1

EΓ (Z
m
k | Ym = ym) =

M∑
m=1

ck (ym,k | Γ)
βb (ym | Γ)

(32)

EΓ (Bk | Ym = ym) =

M∑
m=1

EΓ (B
m
k | Ym = ym) =

M∑
m=1

tkak (ym | Γ)
βb (ym | Γ)

(33)

EΓ (Bk | Ym = ym) =

M∑
m=1

EΓ (B
m
k | Ym = ym) =

M∑
m=1

tklcl (ym,k | Γ)
βb (ym | Γ)

(34)

where a(y|Γ) = βeBy, b(y|Γ) = eBytB and c(y, k|Γ) =
∫ y

0
βeBweke

(B(y−w))tBdw,

k = 1, 2, . . . , p and ek is the p× 1 column vector with kth element as unity and all
other elements as zeros.

Bladt et al. (2011) replaced the constant unit of time between two transitions by
independent exponential random variables with the same parameter and interprets
a continuous time Markov process as a discrete time Markov chain. The EM unif
algorithm is given below.

Algorithm
Step1.Set Γ0 = (β0, B0, tB0

), initial value of the parameters.
Step 2.(E-step): Calculate the function r(Γ) = EΓ0

(lf (Γ;x) | Y = y)

Step 3.(M-step): Γ0 = argmaxΓr(Γ)

Step 4. Goto step 2.
The E-step and M-step are repeated until convergence.

6. Numerical Analysis

In this section, we carry out Monte Carlo simulation to illustrate the estimation
of the value of R(t) of the time-dependent system with fixed stress, random cycle
times and random fixed initial strength distributions. Here we consider three
examples. In the first example consider the system with exponential cycle time
distribution so that the number of cycles have Poisson process, in the second
example we consider the system with Gamma cycle time distribution so that
the number of cycles have Gamma renewal process and in the third example we
consider the system with Weibull cycle time distribution so that the number of
cycles have Weibull renewal process.

In each case we have simulated 10,000 observations each on cycle time and
initial strength. The parameters of the models are estimated by ML method using
the simulated data sets. The entire procedure is repeated 2,000 times and obtained
the bootstrap lower confidence interval (LCI) of R(t), at different time points, by
using the estimates of R(t) corresponding to first 1,000 samples. The remaining
1,000 simulated samples are used for computing the coverage probability (CP).
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Example 1. We take cycle time distributions as exponential and initial strength
distribution as generalized erlang. Let X1, X2, . . . , Xk are independent exponential
random variables with parameters λi, i = 1, 2, . . . , k respectively. Now consider the
sum Z =

∑k
i=1 Xi, the phase-type representation of Z is given by Z ∼ PH(β,B),

where β = (1, 0, 0, . . . , 0) and

B =



−λ1 λ1 0 . . . 0 0

0 −λ2 λ2 . . . 0 0

.

.

0 0 0 . . . −λk−1 λk−1

0 0 0 . . . 0 −λk


The distribution of Z is called k-generalized erlang distribution.

Assume that the cycle time distributions as exponential with parameter λ = 0.1
and initial strength distribution as generalized erlang with parameters 2, 0.1 and
0.5. The value of the stress is taken as x0 = 10 and the strength reducing constant
as a0 = 6. We have simulated 10,000 observations from exp(λ) and GE(2,0.1,0.5).

Using the simulated data, estimated the cycle time distribution parameter and
parameters of the initial strength distribution. The estimated values are given
in Table 1. The graph of the histograms corresponding to the simulated data on
cycle times, number of runs during the time interval (0, t) and initial strength
along with the actual distribution are given in Figure 8.

Table 1: Estimated values of parameters (with cycle time follows exponential
distribution).

λ β B tB

Actual value 0.1
(

1 0
) (

−0.1 0.1

0 −0.5

) (
0

0.5

)

MLE 0.1001
(

1 0
) (

−0.1 0.1011

0 −0.4999

) (
0

0.4996

)

Table 2: Estimates of R(t) (Cycle time follows exponential distribution).

Parameters t = 10 t = 50 t = 100

λ = 0.1 R(t) 0.4367 0.3598 0.2822
k = 2 R̂(t) 0.4385 0.3607 0.2829

θ1 = 0.1 RMSE 0.0086 0.0068 0.0056
θ2 = 0.5 90 % LCI ( 0.4277 ,1) (0.3522,1) (0.2762,1)

CP 0.836 0.875 0.8967
95% LCI (0.4257,1) (0.3500,1) (0.2742,1)

CP 0.902 0.935 0.914
99% LCI (0.4213,1) (0.3459,1) (0.2714,1)

CP 0.923 0.969 0.934
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Figure 8: Histogram of simulated data with superimposed density curves.

Figure 9: Histogram of sampling distribution of R(t) for λ = 0.1; θ1 = 2, θ2 = 0.1,
θ3 = 0.5.

The bootstrap lower confidence interval (LCI) of R(t) at time points t = 10,
50, 100 and the corresponding coverage probabilities are given in Table 2. The
histograms corresponding to the sampling distribution of R(t) at t = 10, t = 50
and t = 100 are given in Figure 9.

Example 2. In this example we took the cycle time distribution as Gamma. So
that the number of runs during the time interval (0, t) follows a renewal process.
Consider the parameters of cycle time distribution as k = 1 and a = 0.1. We took
the initial strength distribution as exponential with parameter θ = 0.01.

If Z is an exponential random variable with parameter θ having the pdf

f(x) = θe−θx; x > 0, θ > 0. (35)

The phase-type representation of Z is given by β = (1) and B = [θ].
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The value of stress is fixed as x0 = 2 and the strength reducing constant as
a0 = 0.28. We have estimated the parameters of cycle time distribution, initial
strength distribution and R(t) using the simulated data. The estimated values are
given in Table 3. The graph of the histograms corresponding to the simulated data
on cycle times, number of runs during the time interval (0, t) and initial strength
along with the actual distribution are given in Figure 10.

Table 3: Estimated values of parameters (Cycle time follows Gamma distribution).

a k β B tB

Actual value 0.1 1
(

1
) (

−0.01
) (

0.01
)

MLE 0.0976 0.9792
(

1
) (

−0.01
) (

0.0099
)

Table 4: Estimates of R(t) (Cycle time follows Gamma distribution).

Parameters t = 2 t = 4 t = 5

a = 0 : 1 R(t) 0.9423 0.7607 0.6316
k = 1 R̂(t) 0.9424 0.7633 0.6365

θ = 0.01 RMSE 0.0359 0.0064 0.0234
90% LCI (0.9419,1) (0.7601,1) (0.6308,1)

CP 0.8375 0.8675 0.815
95% LCI (0.9411,1) (0.7579,1) (0.6293,1)

CP 0.8396 0.925 0.874
99% LCI (0.9398,1) (0.7541,1) (0.6153,1)

CP 0.9075 0.9375 0.945

Figure 10: Histogram of simulated data with superimposed density curves.

The bootstrap lower confidence interval (LCI) of R(t) at time points t = 2, 4, 5
and the corresponding coverage probabilities are given in Table 4. The histograms
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of the sampling distribution of R(t) at t = 2, t = 4 and t = 5 are given in
Figure 11.

Figure 11: Histogram of sampling distribution of R(t) for a = 0.1, k = 1 and θ = 0.01.

Example 3. Here we assume that the distribution of cycle times as Weibull with
shape parameter value c = 1.5 and the distribution of initial strength as hyper-
exponential with parameter p1 = 0.2, p2 = 0.8, θ1 = 0.3, θ2 = 0.5. The value of
the stress is taken as x0 = 0.005 and the strength reducing constant as a0 = 0.001.

Let X1, X2, . . . , Xk are k independent exponential random variables with
parameters λ1, λ2, . . . , λk respectively. Assume that Z takes the value of xi with
probability pi. Then Zi can be expressed as a mixture of Xi’s with k components
and is called hyper - exponential distribution. Then Z ∼ PH(β,B), where

β = (p1, p2, . . . , pk)

and

B =



−λ1 0 . . . 0

0 −λ2 . . . 0

.

.

.

0 0 . . . −λk


The probability density function of the hyper exponential distribution is

f(x) =

k∑
i=1

piλie
−λix;x ≥ 0 (36)
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Table 5: Estimated values of parameters (Cycle time follows Weibull distribution).

c β B tB

True value 1.5
(

0.2 0.8
)  −0.3 0

0 −0.5

  0.3

0.5



MLE 1.5631
(

0.2009 0.7991
)  −0.2972 0

0 −0.4950

  0.2972

0.4950



Using the simulated data, we have estimated the cycle time distribution
parameter and parameters of the initial strength distribution. The estimated
values are given in Table 5.

The graph of the histograms corresponding to the simulated data on cycle
times, number of runs during the time interval (0, t) and initial strength along
with the actual distribution are given in Figure 12. The bootstrap lower confidence
interval (LCI) of R(t) at time points t = 2, 5, 10 and the corresponding coverage
probabilities are given in Table 6. The histograms corresponding to the sampling
distribution of R(t) at t = 2, t = 5 and t = 10 are given in Figure 13.

Figure 12: Histogram of simulated data with superimposed density curves.
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Table 6: Estimates of R(t) (Cycle time follows Weibull distribution).

Parameters t = 2 t = 5 t = 10

c = 1.5 R(t) 0.9941 0.5794 0.0024

p1 = 0.2 R̂(t) 0.9945 0.5796 0.0027

p2 = 0.8 RMSE 0.0003 0.0001 0.0002

θ1 = 0.3 90% LCI (0.9936,1) (0.5787,1) (0.0019,1)

θ2 = 0.5 CP 0.8931 0.8311 0.8411

95% LCI (0.9924,1) (0.5764,1) (0.0015,1)

CP 0.8984 0.9080 0.9343

99% LCI (0.9918,1) (0.5759,1) (0.0009,1)

CP 0.9423 0.9135 0.9498

Figure 13: Histogram of sampling distribution of R(t) for ν = 1.5; θ = 0.5.

7. Conclusion

In this paper, we considered time dependent stress-strength reliability model
subjected to constant stress. The stress causes a change in the strength of the
system during each run of the system. R(t) is estimated under the assumption
that the initial strength has CPH distribution and the cycle times have either
exponential, Gamma or Weibull distribution. We have obtained the expression
of R(t) for identical systems connected in series as well as parallel configuration
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when the cycle times follow an exponential distribution. Variation in R(t) with
respect to time is studied for various cases of systems with cycle times following
exponential, Gamma and Weibull distribution. ML estimates, bootstrap lower
confidence intervals and corresponding coverage probability are also obtained for
R(t) at different points of time.[

Received: March 2019 — Accepted: December 2020
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