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Abstract

Recently, Xiong et al. (2019) introduced an alternative measure of
uncertainty known as the fractional cumulative residual entropy (FCRE). In
this paper, �rst, we study some general properties of FCRE and its dynamic
version. We also consider a version of fractional cumulative paired entropy
for a random lifetime. Then we apply the FCRE measure for the coherent
system lifetimes with identically distributed components.
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Resumen

Recientemente, Xiong et al. (2019) introdujeron una medida alternativa
de incertidumbre conocida como entropia residual acumulativa fraccionada
(FCRE). En este articulo, primero, estudiamos algunas propiedades
generales de FCRE y su version dynami. También consideramos una version
de entropia pareada acumulativa fraccionaria para una vida aleatoria. Luego,
aplicamos la medida FCRE para la vida util del sistema coherente con
componentes distribuidos de manera idéntica.
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1. Introduction

The behavior of engineering systems often requires use of concepts of entropy
and its generalizations. Let X denotes the lifetime of a system with probability
density function (pdf) f and distribution function F , respectively. Shannon (1948)
introduced a measure of uncertainty associated with f as

H(X) = −
∫ +∞

0

f(x) log f(x)dx.

The quantity H(X) is often named di�erential entropy. Recently, new measures
of information have been proposed in the literature. Replacing the pdf by the
survival function F̄ = 1− F in Shannon entropy, the cumulative residual entropy
(CRE) was de�ned by Rao et al. (2004) as follows:

E(X) =

∫ +∞

0

F̄ (x)Λ(x)dx = E
(

Λ(X)

λ(X)

)
,

where Λ(.) = − log F̄ (.) and λ(.) = f(.)
F̄ (.)

is the failure rate of F . Asadi & Zohrevand

(2007) also considered a dynamic version of the CRE as

E(X; t) = E(Xt) =

∫ ∞
t

(
F̄ (x)

F̄ (t)

)
[Λ(x)− Λ(t)]dx, t ≥ 0,

where Xt = (X − t|X ≥ t) is the residual lifetime. Clearly, Xt denotes the system
lifetime conditioned to the survival of the system at time t. Some interesting
results and extensions regarding CRE have been studied by Psarrakos & Navarro
(2013), Psarrakos & Toomaj (2017) and Navarro & Psarrakos (2017). Di Crescenzo
& Longobardi (2009) proposed another information measure analogue to E(X),
called it cumulative entropy (CE) and is de�ned as

CE(X) =

∫ +∞

0

F (x)Λ̃(x)dx,

where Λ̃(x) = − logF (x). Longobardi (2014) obtained more results of CE and
stochastic orders. Tahmasebi et al. (2020) studied on a shift-dependent measure
of CE and its applications in blind image quality assessment. Ubriaco (2009)
de�ned a new entropy based on fractional calculus as follows:

Hp(X) =

∫ +∞

0

f(x)[− log f(x)]pdx, 0 < p ≤ 1.

The fractional entropy is concave, positive and non-additive. From a physical
sense, it also satis�es Lesche and thermodynamic stability. Recently, Xiong et al.
(2019) de�ned fractional cumulative residual entropy (FCRE) as

Ep(X) =

∫ +∞

0

F̄ (x)[Λ(x)]pdx =

∫ 1

0

ϕp(u)

f(F̄−1(u))
du, 0 < p ≤ 1, (1)
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where ϕp(u) = u[− log u]p and F̄−1(u) = sup{x : F̄ (x) ≥ u} is known as
the quantile function of F̄ . Note that ϕp(0) = ϕp(1) = 0. It is clear that
E1(X) = E(X). Klein et al. (2016) proposed the φ − entropy based on cdf F
and survival function F̄ as

CPE(X) =

∫
R
φ(F (x)) + φ(F̄ (x))dx,

where φ is the entropy generating function de�ned on [0, 1] with φ(0) = φ(1) = 0.

The study on information properties of coherent systems is a relevant subject
in reliability and survival theories. A system is said to be coherent if it does not
have any irrelevant components and its structure function is monotone. Recently,
Toomaj et al. (2017) studied on the CRE of coherent systems when the component
lifetimes are identically distributed. Toomaj et al. (2018) obtained some results
on information properties of coherent systems.Da Costa Bueno & Balakrishnan
(2020) considered a cumulative residual inaccuracy measure for coherent systems.
Moreover, Calì et al. (2020) obtained some results on the generalized cumulative
entropy in coherent systems. Rahimi et al. (2020) studied on extended cumulative
entropy based on kth lower record values for the coherent systems lifetime.

In the present paper we study general properties of Ep(X) and obtain some
results of Ep(T ) for a coherent system with lifetime T .

This paper is organized as follows: In Section 2, we present some general
properties of FCRE and its dynamic version, we also propose a version of fractional
cumulative paired entropy for a random lifetime based on the φ − entropy. In
Section 3, we study the FCRE measure for the coherent systems lifetime with
identically distributed components.

2. General properties of FCRE

Before proceeding to give the results of this section, we overview some
preliminary concepts on stochastic orderings between random variables. For more
details of these concepts one can see Shaked & Shanthikumar (2007).

De�nition 1. Suppose that X and Y are the non-negative random variables with
cdfs F and G, respectively, then

1. X is smaller than Y in the hazard rate order, denoted by X ≤hr Y , if
λX(x) ≥ λY (x) for all x, where λX(x) and λY (x) are the failure rate
functions X and Y , respectively.

2. X is smaller than Y in the dispersive order, denoted by X ≤disp Y , if
f(F−1(u)) ≥ g(G−1(u)) for all u ∈ (0, 1), where F−1 and G−1 are right
continuous inverses of F and G, respectively.

3. X is said to have decreasing failure rate (DFR) if λX(x) = f(x)
F̄ (x)

is decreasing
in x.
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4. X is smaller than Y in the convex transform order, denoted by X ≤c Y , if
G−1F (x) is a convex function on the support of X.

5. X is smaller Y in the increasing convex order, denoted by X ≤icx Y ,
if E(φ(X)] ≤ E(φ(X)] for all increasing convex functions φ such that the
expectations exist.

6. X is smaller than Y in the star order , denoted by X ≤∗ Y , if G−1F (x)
x is

increasing in x ≥ 0.

7. X is smaller than Y in the supper additive order, denoted by X ≤su Y , if
G−1F (t+ u) ≥ G−1F (t) +G−1F (u) for t ≥ 0, u ≥ 0.

8. X is said to have increasing(decreasing) failure rate average (IFRA(DFRA))
if λ(x)

x is increasing (decreasing) function in x > 0.

Here we aim to present some general results of FCRE and FCPE. We will focus
on certain lower and upper bounds and stochastic orderings properties of these
measures, the proof of which follows on the same lines are given by Psarrakos &
Toomaj (2017) and Navarro & Psarrakos (2017).

Proposition 1. Let X be an absolutely continuous non-negative random variable
with Ep(X) <∞. Then

Ep(X) = E[hp(X)], 0 < p ≤ 1,

where hp(x) =
∫ x

0
[Λ(z)]pdz.

Proposition 2. If X denotes an absolutely continuous nonnegative random
variable with �nite µ = E(X). Then

Ep(X) ≥ h̃(µ), 0 < p ≤ 1,

where h̃(µ) =
∫ µ

0
[Λ(z)]pdz.

Proposition 3. Let X and Y be two nonnegative random variables such that
X ≤icx Y , then Ep(X) ≤ Ep(Y ).

Proposition 4. Let X and Y be two nonnegative random variables with �nite

positive means and such that X ≤icx Y , then Ep(X)
E(X) ≤

Ep(Y )
E(Y ) .

Proposition 5. If X is IFRA(DFRA), then for 0 < p ≤ 1 we have

Ep(X) ≤ (≥)E
(

X

[Λ(X)]1−p

)
.

Proposition 6. Let X and Y be two random variable with cdfs FX and GY ,
respectively. If X ≤st Y , then

Ip(X,Y ) ≤ Ep(X) ≤ Ip(X,Y ), 0 < p ≤ 1,

where Ip(X,Y ) =
∫ +∞

0
F̄X(u)[− log ḠY (u)]pdu.
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The dynamic version of the FCRE of the residual lifetime Xt = (X− t | X > t)
is given by

Ep(X; t) = Ep(Xt) =

∫ ∞
t

F̄ (x)

F̄ (t)
[Λ(x)− Λ(t)]pdx, 0 < p ≤ 1, t ≥ 0. (2)

Note that Ep(X; 0) = Ep(X). This function is called dynamic fractional cumulative
residual entropy (DFCRE).

Proposition 7. Let X be a random variable with cdf F and Y = aX + b, where
a > 0 and b ≥ 0. Then

Ep(Y ; t) = aEp(X;
t− b
a

), 0 < p ≤ 1, t ≥ 0.

Proposition 8. Let X be a non-negative random variable with absolutely cdf F (x),
then an alternative expression of the DFCRE is

Ep(X̃t) =

∫ ∞
t

F̄ (x)

F̄ (t)
([Λ(x)− Λ(t)]p + 1) dx = Ep(Xt) +m(t).

Proposition 9. Let X be a random variable with survival function F̄ (.). Then

Ep(X; t) = E[hp(X; t) | X > t], 0 < p ≤ 1, t ≥ 0,

where hp(X; t) =
∫ x
t

[Λ(z)− Λ(t)]pdz, z > t.

Proposition 10. Let X be the random lifetime of a system with cdf FX , then we
have

Ep(Xt) ≤ [E(Xt)]
p, 0 < p ≤ 1.

Proof. Since F̄ (x)
F̄ (t)

≤
[
F̄ (x)
F̄ (t)

]p
for 0 < p ≤ 1, from (2) we have

Ep(Xt) =

∫ ∞
t

F̄ (x)

F̄ (t)
[Λ(x)− Λ(t)]pdx ≤

∫ ∞
t

[
F̄ (x)

F̄ (t)
[Λ(x)− Λ(t)]

]p
dx.

By noting that g(x) = xp, for all 0 < p ≤ 1, is a concave function of x, Jensen's
inequality gives

Ep(Xt) ≤
[∫ ∞

t

F̄ (x)

F̄ (t)
[Λ(x)− Λ(t)]dx

]p
.

Hence, the proof is completed.

De�nition 2. Let X be a random variable with cdf F . Then the fractional
cumulative paired entropy (FCPE) is de�ned as

FCPEp(X) =

∫ +∞

0

F̄ (x)[Λ(x)]pdx+

∫ +∞

0

F (x)[Λ̃(x)]pdx

= Ep(X) + CEp(X), 0 < p ≤ 1,

where Ep(X) =
∫ +∞

0
F (x)[Λ̃(x)]pdx is the fractional cumulative past entropy

(FCPE).
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Note that FCPEp(X) is useful to describe information in dynamic reliability
systems when uncertainty is related to the future, and to the past, respectively.
Hence, in the following we study some results of this measure. The results are
similar to various results given in Xiong et al. (2019) and hence we omit their
proofs.

Proposition 11. Let F be the cdf of the random variable X. Then

FCPEp(aX + b) = |a|FCPEp(X), 0 < p ≤ 1.

Proposition 12. Let X and Y be two random variable with cdfs FX and GY ,
respectively. If X ≤disp Y , then

FCPEp(X) ≤ FCPEp(Y ), 0 < p ≤ 1.

Proposition 13. If X and Y are two absolutely continuous independent random
variables, then

FCPEp(X + Y ) ≥ max{FCPEp(X),FCPEp(Y )}, 0 < p ≤ 1.

Analogous to empirical FCRE given in Xiong et al. (2019) , we provide an
estimator of FCPE using empirical approach.

De�nition 3. Let X1, X2, . . . , Xn be a random sample of size n from a lifetime
distribution with absolutely continuous cdf F (x). Then the empirical FCPE is
de�ned as

F̂CPEp,n(X) =

n−1∑
k=1

Uk+1(1− k

n
)[− log(1− k

n
)]p +

n−1∑
k=1

Uk+1
k

n
[− log(

k

n
)]p,

where Uk+1 = X(k+1) − X(k), U1 = X1 and X(k) represent the order statistic of
Xk.

Proposition 14. Let X be a random variable with E(|X|p) <∞ for some p < 1,
then the empirical FCPE converges to the FCPE of X, i.e., as n→∞

F̂CPEp,n(X)→ FCPEp(X) almost surely.

Example 1. Let us consider the data set from Murthy et al. (2004), concerning
the failure times of 84 mechanical components displayed in Table 1.

Table 1: The failure times of 84 mechanical components.

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478 0.557

1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 32.646 3.699 1.124 1.981

2.661 3.779 1.248 2.010 2.688 3.924 1.281 2.038 2.823 4.035 1.281 2.085 2.890

4.121 1.303 2.089 2.902 4.167 1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255

1.505 2.154 2.964 4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615

2.223 3.114 4.449 1.619 2.224 3.117 4.485 1.652 2.229 3.166 4.570 1.652 2.300

3.344 4.602 1.757 2.324 3.376 4.663
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The mean and standard deviation of this data set are 2.55 and 1.11,
respectively. Since the coe�cient of skewness is 0.1 which indicates that the
data is right skewed. We propose a two-parameter Weibull distribution with cdf
F (x) = 1 − exp(−axb). Based on the p − value = 0.9687 of the Kolmogorov-
Smirnov test, we can conclude that Weibull distribution with parameters â = 0.082
and b̂ = 2.37 can be �tted to this data set. Figure 1 shows the function
F̂CPEp,n(X) for 0 < p ≤ 1. It decreases in empirical measure of FCPE for
di�erent values of p. Hence, the FCPE measure is particularly suitable to measure
variability in data distributions that are skewed to the right, such as those
concerning the failure times of 84 mechanical components. This is con�rmed by
Figure 2 where the density is positively skewed.
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Figure 1: Plot of F̂CPEp,n(X) for 0 < p ≤ 1.

3. FCRE of Coherent Systems

Let T denote the lifetime of a coherent system consisting of m independent
and identically distributed (i.i.d.) components with the common distribution FX ,
then its survival function F̄T can be written as

F̄T (t) = q̃(F̄X(t)),

where q̃ : [0, 1] → [0, 1] is a distortion function and depends on the structure of
a system and the survival copula of the component lifetime. The function q̃ is a
continuous increasing function such that q̃(0) = 0 and q̃(1) = 1. For more details
on coherent systems see Burkschat & Navarro (2018) and Navarro et al. (2013).
The distortion function q̃ depends on both the structure of the system and the
survival copula of the random vector (X1, . . . , Xn). However, it does not depend
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Figure 2: Plot of Weibull density with parameters â=0.082 and b̂ = 2.37.

on F̄ . For example if we consider a 2-out-of-3 system with i.i.d. components, then
we have q̃(u) = 3u2 − 2u3. Also, for a parallel system with i.i.d. components and
lifetime T = max((X1, . . . , Xm) we have q̃(u) = 1 − (1 − u)m. Hence, the FCRE
of the random lifetime T is obtained as follows:

Ep(T ) =

∫ +∞

0

F̄T (x)[− log F̄T (x)]pdx

=

∫ +∞

0

ϕp(F̄T (x))dx

=

∫ +∞

0

ϕp(q̃(F̄X(x)))dx

=

∫ 1

0

ϕp(q̃(u))

fX(F̄−1
X (u))

du, 0 < p ≤ 1. (3)

For example, for a parallel system withm = 5 i.i.d. component lifetimes of uniform
distribution in (0, 1), we have

E0.5(T ) = 0.1841 < E0.5(X) = 0.3133.

Hence, the information measure E0.5(T ) is smaller in the case of a complex system
(a parallel system) with respect to the parent distribution. As an application of
equation (3), we have the following example

Example 2. (i). We consider two coherent systems with lifetimes T1 =
max{X1,min{X2, X3, X4}} and T2 = max{min{X1, X2},min{X3, X4}} and i.i.d.
components having the common exponential with mean θ. From (3) we obtain

E0.5(T1) = (0.8618)θ, E0.75(T1) = (0.8844)θ, E0.5(T1) < E0.75(T1).
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Similarly we obtain

E0.5(T2) = (0.5358)θ, E0.75(T2) = (0.5291)θ.

It is clear that Ep(T2) ≤ Ep(T1) for p = 0.5, 0.75.

(ii). If the system have dependent identical exponential components with an
exchangeable survival copula C̃, then we have

Ep(T1) = θ

∫ 1

0

ϕp(q̃1(u))

u
du, 0 < p ≤ 1,

where q̃1(u) = C̃(u, 1, 1, 1)+C̃(u, u, u, 1)−C̃(u, u, u, u). If the component lifetimes
are dependent with the Farlie-Gumbel-Morgenstern (FGM) survival copula as

C̃(u1, u2, u3, u4) = u1u2u3u4[1 + α(1− u1)(1− u2)(1− u3)(1− u4)], −1 ≤ α ≤ 1.

Then, for α = 0.5 we obtain q̃1(u) = u+ u3 − u4[1 + (1−u)4

2 ] and

E0.5(T1) = (0.8614)θ, E0.75(T1) = (0.8845)θ.

Finally, if a system with lifetime T2 have dependent identical exponential
components with FGM survival copula, then

Ep(T2) = θ

∫ 1

0

ϕp(q̃2(u))

u
du, 0 < p ≤ 1,

where for α = 0.5 we have q̃2(u) = 2u2 − u4[1 + (1−u)4

2 ]. So, for p = 0.5, 0.75 we
obtain

E0.5(T2) = (0.5349)θ, E0.75(T2) = (0.5285)θ.

Numerically, we see that for a constant α, Ep(T2) decreases when p increases.

In the following we study some results of Ep(T ). The results are similar to
various results given in Toomaj et al. (2017) and hence we omit their proofs.

Proposition 15. Let T be the lifetime of coherent system with i.i.d. components
having common distribution F (.) with distortion function q̃. If ϕp(q̃(u)) ≥ (≤
)ϕp(u) for all u ∈ [0, 1] and 0 < p ≤ 1, then we have

Ep(T ) ≥ (≤)Ep(X).

Example 3. Let T = min{X1, X2, . . . , Xn} be the lifetime of series system with
i.i.d. components having common distribution F (.).

(i) If F (x) = x, 0 < x < 1. Then for 0 < p ≤ 1 we have

Ep(T ) =

(
n

n+ 1

)p
Γ(p+ 1)

n+ 1
< Ep(X) =

Γ(p+ 1)

2p+1
.
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(ii) If F (x) = 1−
(
β
x

)α
, x > β. Then for α > 1 and 0 < p ≤ 1 we have

Ep(T ) =

(
nα

nα− 1

)p
βΓ(p+ 1)

nα− 1
< Ep(X) =

(
α

α− 1

)p
βΓ(p+ 1)

α− 1
.

(iii)If F (x) = 1− exp (−(λx)q) , x > 0. Then for q > 0 and 0 < p ≤ 1 we have

Ep(T ) =
Γ(p+ 1

q )

λqn
1
q

< Ep(X) =
Γ(p+ 1

q )

λq
.

Proposition 16. Assume that the components have cdf FX and pdf fX and
support S. Let T be the lifetime of a coherent system with i.i.d. components
and with distortion function q̃.

(i). If f(x) ≤M for all x ∈ S, then

Ep(T ) ≥ 1

M

∫ 1

0

ϕp(q̃(u))du, 0 < p ≤ 1.

(ii). If f(x) ≥ L > 0 for all x ∈ S, then

Ep(T ) ≤ 1

L

∫ 1

0

ϕp(q̃(u))du, 0 < p ≤ 1.

Example 4. (i). Let T = max{X1,min(X2, X3)} be the lifetime of coherent
system with i.i.d. components have an exponential distribution with mean µ > 0,
then M = 1

µ and

E0.5(T ) ≥ µ(0.2820).

(ii). Let T = max{min(X1, X2, X3),min(X2, X3, X4)} be the lifetime of coherent
system with i.i.d. components have a Pareto type II distribution with cdf

F̄ (x) =
(

β
β+x

)α
, x > 0, then M = αβα and

E0.5(T ) ≥ 0.2140

αβα
.

Proposition 17. Suppose that T is the lifetime of a coherent system with i.i.d.
components and with distortion function q̃. Let ϕp(u) = u[− log(u)]p. Then

B1,pEp(X1) ≤ Ep(T ) ≤ B2,pEp(X1), 0 < p ≤ 1,

where B1,p = infu∈(0,1)

(
ϕp(q̃(u))
ϕp(u)

)
and B2,p = supu∈(0,1)

(
ϕp(q̃(u))
ϕp(u)

)
.

Proof . Proof is similar to the proof of Proposition 1. of Toomaj et al. (2017) and
hence it is omitted.
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For example, if the distortion function for a 3-out-of-4 system with i.i.d.
components is q̃(u) = 6u2 − 8u3 + 3u4, then for α = 0.1, 0.3 we obtain

0.1676 ≤ E0.1(T ) ≤ (1.29434)E0.1(X1),

and

0.0047 ≤ E0.3(T ) ≤ (1.1811)E0.3(X1).

In Table 2, the distortion functions for all coherent structures with 1-4
components are provided by Navarro et al. (2013). In Table 3, we obtain the values
of Ep(T ) for these systems when the components have a uniform distribution in
(0, 1).

Table 2: Distortion function q̃ for coherent system with 1-4 i.i.d. components.

N T q̃(u)

1 X1 u

2 X1:2 = min(X1, X2) u2

3 X2:2 = max((X1, X2) 2u− u2

4 X1:3 = min(X1, X2, X3) u3

5 min(X1,max((X2, X3)) 2u2 − u3

6 X2:3(2− out− of − 3) 3u2 − 2u3

7 max((X1,min(X2, X3)) u+ u2 − u3

8 X3:3 = max((X1, X2, X3) 3u− 3u2 + u3

9 X1:4 = min(X1, X2, X3, X4) u4

10 max((min(X1, X2, X3),min(X2, X3, X4)) 2u3 − u4

11 min(X2:3, X4) 3u3 − 2u4

12 min(X1,max((X2, X3),max((X2, X4)) u2 + u3 − u4

13 min(X1,max((X2, X3, X4)) 3u2 − 3u3 + u4

14 X2:4 4u3 − 3u4

15 max((min(X1, X2),min(X1, X3, X4),min(X2, X3, X4)) u2 + 2u3 − 2u4

16 max((min(X1, X2),min(X3, X4)) 2u2 − u4

17 max((min(X1, X2),min(X1, X3),min(X2, X3, X4)) 2u2 − u4

18 max((min(X1, X2),min(X2, X3),min(X3, X4)) 3u2 − 2u3

19 min(max((X1, X2),max((X2, X3),max((X3, X4)) 3u2 − 2u3

20 min(max((X1, X2),max((X1, X3),max((X2, X3, X4)) 4u2 − 4u3 + u4

21 min(max((X1, X2),max((X3, X4)) 4u2 − 4u3 + u4

22 min(max((X1, X2),max((X1, X3, X4),max((X2, X3, X4)) 5u2 − 6u3 + 2u4

23 X3:4(3− out− of − 4) 6u2 − 8u3 + 3u4

24 max((X1,min(X2, X3, X4)) u+ u3 − u4

25 max((X1,min(X2, X3),min(X2, X4)) u+ 2u2 − 3u3 + u4

26 max((X2:3, X4) u+ 3u2 − 5u3 + 2u4

27 max((min(X1, X2, X3),min(X2, X3, X4)) 2u− 2u3 + u4

28 X4:4 = max((X1, X2, X3, X4) 4u− 6u2 + 4u3 − u4
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Table 3: Ep(T ) and bounds for Ep(T ) obtained from the coherent systems given
in Table 1 with i.i.d. components having a U(0,1).

N p Ep(T ) B1,p B2,p B2,pEp(X1)

1

0.1 0.4438 1 1 0.4438

0.2 0.3996 1 1 0.3996

0.3 0.3644 1 1 0.3644

2

0.1 0.3045 0 1.0717 0.4756

0.2 0.2822 0 1.1486 0.4589

0.3 0.2648 0 1.2310 0.4485

3

0.1 0.5289 0.3819 1.985 0.8809

0.2 0.4353 0.1459 1.970 0.7872

0.3 0.3685 0.0557 1.9555 0.7125

4

0.1 0.2310 0 1.1159 0.4952

0.2 0.2167 0 1.2455 0.4977

0.3 0.2058 0 1.3902 0.5065

5

0.1 0.3692 0.00014 1.0022 0.4447

0.2 0.3327 0.00015 1.0084 0.4029

0.3 0.3042 0.00016 1.0178 0.3708

6

0.1 0.4127 0.0002 1.0787 0.4787

0.2 0.3528 0.0002 1.0487 0.4190

0.3 0.3098 0.0002 1.0283 0.3747

7

0.1 0.4769 0.4094 1.2082 0.5361

0.2 0.4037 0.1676 1.1761 0.4699

0.3 0.3510 0.0686 1.1504 0.4192

8

0.1 0.5429 0.1458 2.9636 1.3152

0.2 0.4192 0.0212 2.9279 1.1699

0.3 0.3385 0.0031 2.8926 1.0540

9 0.1 0.1860 0 1.1484 0.5096

0.2 0.1756 0 1.3192 0.5271

0.3 0.1678 0 1.5154 0.5522

10

0.1 0.2728 0 1.0717 0.4756

0.2 0.2519 0 1.1486 0.4589

0.3 0.2358 0 1.2310 0.4485

11

0.1 0.3101 0 1.0062 0.4465

0.2 0.2798 0 1.0217 0.4082

0.3 0.2565 0 1.0441 0.3804

12

0.1 0.3402 0 1.0043 0.4457

0.2 0.3073 0 1.0154 0.4057

0.3 0.2818 0 1.0316 0.3759

13

0.1 0.3972 0.0002 1.0001 0.4438

0.2 0.3561 0.0002 1.0009 0.3999

0.3 0.3237 0.0002 1.0029 0.3654

14

0.1 0.3361 0 1.0158 0.4508

0.2 0.2922 0 1.0020 0.4003

0.3 0.2608 0 1.0005 0.3645

15

0.1 0.3634 0 1.0269 0.4557

0.2 0.3152 0 1.0082 0.4028

0.3 0.2807 0 1.0007 0.3646

16,17

0.1 0.3890 0.0001 1.0459 0.4641

0.2 0.3356 0.0001 1.0219 0.4083

0.3 0.2972 0.0001 1.0082 0.3673

Continued
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Table 3. Continued

N p Ep(T ) B1,p B2,p B2,pEp(X1)

18,19

0.1 0.4127 0.0002 1.0787 0.4787

0.2 0.3528 0.0002 1.0487 0.4190

0.3 0.3098 0.0002 1.0283 0.3747

20,21

0.1 0.4338 0.0002 1.1319 0.5023

0.2 0.3660 0.0002 1.0940 0.4371

0.3 0.3178 0.0003 1.0656 0.3883

22

0.1 0.4506 0.0003 1.2059 0.5351

0.2 0.3734 0.1459 1.1567 0.4622

0.3 0.3195 0.0557 1.1186 0.4076

23

0.1 0.4558 0.1676 1.2943 0.5744

0.2 0.3677 0.0280 1.2307 0.4917

0.3 0.3093 0.0047 1.1811 0.4303

24

0.1 0.4577 1 1.1100 0.4926

0.2 0.3935 1 1.0840 0.4331

0.3 0.3470 0.0774 1.0652 0.3881

25

0.1 0.4914 0.3819 1.3270 0.5889

0.2 0.4072 0.1459 1.2810 0.5118

0.3 0.3479 0.0557 1.2434 0.4530

26

0.1 0.4915 0.1628 1.4476 0.6424

0.2 0.3947 0.0265 1.3845 0.5532

0.3 0.3304 0.0043 1.3332 0.4858

27

0.1 0.5218 0.1563 1.9851 0.8809

0.2 0.4133 0.0244 1.9703 0.7873

0.3 0.3413 0.0038 1.9556 0.7126

28

0.1 0.5342 0 3.9378 1.7475

0.2 0.3926 0 3.8771 1.5492

0.3 0.3064 0 3.8172 1.3909

In the following proposition, we compare the FCRE of two systems with distinct
lifetimes.

Proposition 18. Suppose that T1 and T2 are the lifetimes of two coherent systems
with i.i.d. components and with distortion functions q̃1 and q̃2, respectively. Let
ϕp(u) = u[− log(u)]p. Then

D1,pEp(T1) ≤ Ep(T2) ≤ D2,pEp(T1), 0 < p ≤ 1,

where D1,p = infu∈(0,1)

(
ϕp(q̃2(u))
ϕp(q̃1(u))

)
and D2,p = supu∈(0,1)

(
ϕp(q̃2(u))
ϕp(q̃1(u))

)
.

It is clear that if D2,p ≤ 1, then Ep(T2) ≤ Ep(T1). Now, let us consider two
coherent systems with i.i.d components. Suppose that T1 = X1:2 = min(X1, X2)
is the lifetime of a 2- components parallel system with q̃1(u) = u2 and T2 is the
lifetime of a 2-out-of-3 system with q̃2(u) = 3u2 − 2u3, then for p = 0.2, 0.3 from
the previous proposition we obtain

(0.1582)E0.2(T1) ≤ E0.2(T2) ≤ (2.964)E0.2(T1)
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and

(0.062)E0.3(T1) ≤ E0.3(T2) ≤ (2.947)E0.3(T1)

In the following example, we consider a series system with dependent and
identically distributed (d.i.d) components and obtain the bounds of Ep(T ).

Example 5. If T = min(X1, X2, X3) is the lifetime of the series system with d.i.d.
components having a FGM survival copula as

C̃(u1, u2, u3) = u1u2u3[1 + α(1− u1)(1− u2)(1− u3)], 0 ≤ u1, u2, u3 ≤ 1, −1 ≤ α ≤ 1.

Then q̃(u) = u3[1 + α(1− u)3]. So, from Proposition 17, we obtain

0 ≤ E0.5(T ) ≤ (1.73)E0.5(X1).

Also, if L ≤ f(x) ≤M , then from Proposition 16 we obtain

0.19

M
≤ E0.5(T ) ≤ 0.19

L
.

Example 6. Suppose that T = min(X1, X2, X3) is the lifetime of series system
with d.i.d. components. If the component lifetimes are dependent with the
Clayton-Oakes survival copula as

C̃(u1, u2) =
u1u2

u1 + u2 − u1u2
, 0 ≤ u1, u2 ≤ 1.

Then q̃(u) = u
2−u . Hence, from Proposition 17, we obtain

(0.5)E0.1(X1) ≤ E0.1(T ) ≤ (1.07)E0.1(X1).

Also, if L ≤ f(x) ≤M , then from Proposition 16 we obtain

0.35

M
≤ E0.1(T ) ≤ 0.35

L
.

Proposition 19. Let T1 and T2 be the lifetimes of two coherent systems with the
same structure and with i.i.d. components having the same copula and common
distributions F and G, respectively. If X ≤disp Y , then for any 0 < p ≤ 1 we have

Ep(T1) ≤ Ep(T2).

Proof . Since both systems have a common distortion function q̃ and the same
structure, then the proof follows from equation (3) and the assumption on the
dispersive order.

Corollary 1. Under the assumptions of Proposition 19, if X ≤hr Y and X or Y
is DFR, then Ep(T1) ≤ Ep(T2).

Corollary 2. Under the assumptions of Proposition 19, if X ≤su Y (X ≤∗
Y or X ≤c Y ), then Ep(T1) ≤ Ep(T2).
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Theorem 1. Let T1 and T2 be the lifetimes of two coherent systems with the
same structure and with i.i.d. components having common distributions F and G,
respectively. If Ep(X) ≤ Ep(Y ) and

inf
u∈A1

[
ϕp(q̃(u))

ϕp(u)

]
≥ sup
u∈A2

[
ϕp(q̃(u))

ϕp(u)

]
,

for A1 = {u ∈ [0, 1] : f(F̄−1(u)) > g(Ḡ−1(u))} and A2 = {u ∈ [0, 1] : f(F̄−1(u)) ≤
g(Ḡ−1(u))}, then Ep(T1) ≤ Ep(T2).

Proof . Since Ep(X) ≤ Ep(Y ), we have from (1) that

Ep(Y )− Ep(X) =

∫ 1

0

∆(u)du ≥ 0, 0 < p ≤ 1,

where ∆(u) =
ϕp(u)

gY (Ḡ−1
Y (u))

− ϕp(u)

fX(F̄−1
X (u))

. It follows from (3) that

Ep(T2)− Ep(T1) =

∫ 1

0

ϕp(q̃(u))

ϕp(u)
∆(u)du

=

∫
A1

ϕp(q̃(u))

ϕp(u)
∆(u)du+

∫
A2

ϕp(q̃(u))

ϕp(u)
∆(u)du

≥ inf
u∈A1

ϕp(q̃(u))

ϕp(u)

∫
A1

∆(u)du+ sup
u∈A2

ϕp(q̃(u))

ϕp(u)

∫
A2

∆(u)du

≥ sup
u∈A2

ϕp(q̃(u))

ϕp(u)

∫
A2

∆(u)du

≥ 0.

So, the proof is completed.

Corollary 3. Under the assumptions of Theorem 1, if q̃ is strictly increasing in
(0, 1) , then Ep(X) ≤disp Ep(Y ) if and only if Ep(T1) ≤disp Ep(T2).

Proof. The proof follows from Theorem 2.9 of Navarro et al. (2013).

Corollary 4. Suppose that T is the lifetime of a coherent system with i.i.d.
components and with distortion function q̃, then the FCPE of the random lifetime
T is obtained as

FCPEp(T ) = Ep(T ) + CEp(T ), 0 < p ≤ 1,

where

CEp(T ) =

∫ 1

0

ϕp(q̃(1− u))

fX(F−1
X (1− u))

du,

is the FCPE of T and F−1(1− u) = sup{x : F (x) ≤ 1− u}.
Proof. The proof follows from De�nition 2 and equation (3).
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4. Conclusions

In this work we �rst obtained some results of FCRE and fractional cumulative
paired entropy. Also, a dynamic version of the FCRE is considered. We
studied this measure of uncertainty for the coherent system's lifetime consisting of
dependent and identically distributed components. We obtained upper and lower
bounds of Ep(T ) based on a representation of distortion function of the component
survival function. Finally, we can obtain some results of FCPEp(T ) in coherent
systems for future researches.
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