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Abstract
In this paper, we provide a review on both fundamentals of social

networks and latent space modeling. The former discusses important
topics related to network description, including vertex characteristics and
network structure; whereas the latter articulates relevant advances in
network modeling, including random graph models, generalized random
graph models, exponential random graph models, and social space models.
We discuss in detail several latent space models provided in literature,
providing special attention to distance, class, and eigen models in the context
of undirected, binary networks. In addition, we also examine empirically the
behavior of these models in terms of prediction and goodness-of-fit using
more than twenty popular datasets of the network literature.
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Resumen
En este artículo, proporcionamos una revisión sobre los fundamentos

de redes sociales y el modelamiento de espacio latente. La primera trata
temas importantes relacionados con la descripción de la red, incluidas las
características de los vértices y la estructura de la red; mientras que la
segunda articula avances relevantes en el modelado de redes, incluidos
modelos de grafos aleatorios, modelos de grafos aleatorios generalizados,
modelos de grafos aleatorios exponenciales y modelos de espacio social.
Discutimos en detalle varios modelos de espacio latente proporcionados en
la literatura, prestando especial atención a los modelos de distancia, clase
y eigen, en el contexto de redes binarias no dirigidas. Además, también
examinamos empíricamente el comportamiento de estos modelos en términos
de predicción y bondad de ajuste utilizando más de veinte conjuntos de datos
populares de la literatura de redes.
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1. Introduction

The study of information that emerges from the interconnectedness among
autonomous elements in a system (and the elements themselves) is extremely
important in the understanding of many phenomena. The structure formed by
these elements (individuals or actors) and their interactions (ties or connections)
is commonly known as a graph, social network, or just network. Examples
of networks are common in many research areas including: Finance (studying
alliances and conflicts among countries as part of the global economy),
social science (studying interpersonal social relationships and social schemes
of collaboration such as legislative cosponsorship networks), biology (studying
arrangements of interacting genes, proteins or organisms), epidemiology (studying
the spread of a infectious disease), and computer science (studying the Internet, the
World Wide Web, and also communication networks), among many others. Just
a few examples are enough to see that both entities and connections in networks
are varied and diverse, ranging from people to organizations, and friendship to
communication, respectively.

Since the mid 90s there has been an increasing development of statistical
methods aiming to improve our understanding of how actors’ attributes and
relations affect the overall structure and behavior of a system. To that end
statistical methods essentially aim to do three things. First, to summarize the
patterns that characterize the structure of a network along with its individual
entities. Second, to create (stochastic) models that provide a way to explain
the process under which a network came to be as it is. And third, to predict
missing or future relations taking into account the structural properties of the
network and the local rules governing its actors. In contrast to a vast quantity
of deterministic methods developed in the physics literature, the implementation
of statistical models allow us to report measures of uncertainty associated with
parameter estimates and predictions.

This review is structured as follows: Sections 2 and 3 review fundamental
concepts on networks including basic definitions and networks topology. Section
4.4 provides details about network modeling, paying special attention to latent
space models. Section 5 presents our approach to Bayesian inference through
Markov chain Monte Carlo methods. Section 6 discusses details about distance,
class and eigen models, including important properties, prior elicitation, and
applications. Finally, Section 7 summarizes our main remarks.

2. Fundamentals

Generally speaking, network data consists of a set of actors, variables measured
on such actors (nodal attributes) and variables measured on pair of actors (dyads).
This specific type of data in its simplest form comes in the form of a dichotomous
variable indicating the presence or absence of a connection of interest (e.g.,
friendship, collaboration, alliances and conflicts, and so forth) between a pair
of actors: This is known as a binary network. Also, it is quite common to find
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networks in which edges are equipped with weights (e.g., the amount of time spent
together between individuals, costs of transactions between companies, number of
conflicts between countries, distance between objects, and so forth) characterizing
the corresponding connection between a pair of actors. Such kind of networks are
known as weighted or valued networks.

It is also frequent to characterize relations as undirected or directed. An
undirected (symmetric) relation has one and only one value per pair of actors;
on the other hand, a directed (asymmetric) relation has two values per pair of
actors, one value representing the perspective of each pair member. Accordingly, a
network is said to be an undirected network if every relation in it is undirected, and
it is called directed network or digraph otherwise. Examples of directed networks
include the network of citations between academic papers and the network of
email messages between coworkers, since each relation is unidirectional. On the
other hand, examples of undirected networks include the network of friendship
relations and the network of sexual contact between individuals, since there is no
directionality implicit in the relation.

A binary network is often represented as a graph in which vertices (nodes)
correspond to the actors and edges (ties or links) correspond to the connections
between dyads. Another useful way of representing network data is through a
matrix commonly known as adjacency matrix or sociomatrix. For binary networks
with I nodes, the adjacency matrix Y = [yi,i′ ] is an I × I binary matrix such
that yi,i′ = 1 if there is a link from node i to node i′, and yi,i′ = 0 otherwise.
Analogously, the adjacency matrix of a weighted network is defined in such a way
that yi,i′ is equal to the corresponding weight associated with the relation from
node i to node i′, and it is equal to zero otherwise. The main diagonal of an
adjacency matrix is full of structural zeros if edges connecting nodes to themselves
are not allowed in the network. Note that the adjacency matrix of an undirected
network has to be symmetric; similarly, the adjacency matrix of a directed network
is possibly asymmetric.

From a statistical perspective, tools and methods for the analysis of network
data can be classified according to three main categories, namely, descriptive
methods, modeling and inference methods, and processes methods. First,
descriptive methods aim to visualize and numerically characterize the actors and
the overall structure of a network. Second, modeling and inference methods aim
to explain how a network might have arisen. And third, process methods aim
to study how interactions influence actors’ attributes. Broadly speaking, in this
paper we mostly review methods within the first and second categories.

3. Network Description

Visualization and description are fundamental processes when studying the
main features of a network. Graphical techniques and summary quantities, many
of them graph-theoretic in nature, have been designed in order to characterize
the role of the actors in a network (by describing their relative importance and
that of their relations) and the structural patterns of the system (by describing
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aspects of the network itself such as cohesion, connectivity, assortativity, among
many others).

Identifying structural attributes in a network is of great importance because
they lead to dependencies in the data. That is why taking into account such
dependencies is tremendously important when developing statistical models for
network analysis (see Section 4). Even though the concepts presented below
are easily extended to directed networks, for simplicity we devote the discussion
principally to undirected, binary networks. Two classic introductory books about
network fundamentals and methods are Wasserman & Faust (1994) and Scott
(2000). More contemporaneous reviews on network properties and measure
summaries can be found in Kolaczyk (2009) and Newman (2010).

In what follows, we consider some details about vertex characteristics along
with network structure as the main two aspects to be taken into account by the
analyst when the goal consists in characterizing the topology of a network. We
make such a distinction because the former describes specific node attributes,
whereas the latter characterizes global network attributes.

3.1. Vertex Characteristics

Frequently, the first step to characterize a network consists in describing its
vertices. The degree of a vertex refers to the number of edges connected to that
vertex; this quantity allows us to identify the most highly connected vertices in
the network. The degree distribution in most real-world networks is highly right-
skewed, and therefore very unlike the random graph case (see Section 4); indeed,
many of them follow power laws in their tails (i.e., pk ∝ k−γ where pk is the
fraction of vertices with degree k, and γ is some exponent greater than zero).
From a structural perspective, it is useful to look at the average neighbor degree
(two vertices are referred to as neighbors if they are joined by an edge) versus the
vertex degree in order to investigate how vertices of different degrees are linked to
each other.

Vertex centrality measures allow us to characterize the relative importance of
an actor in the network. Obviously, the definition of these measures depends on
the underling notion of “importance”. For instance, closeness centrality measures
suggest that a vertex is important if it is close to many other vertices, while
betweenness centrality measures label a vertex as important if it is between many
other pair of vertices. Centrality measures are usually based on the geodesic
distance, i.e., the length of the shortest path between vertices. Many other
centrality measures have been proposed over the years; see for example Kolaczyk
(2009, Ch. 4) for a review.

In addition to describing vertices’ characteristics, it is also very important to
characterize the network’s structure as a whole. In what follows, we review some
measures about this regard.
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3.2. Network Structure

Two fundamental aspects of the structure of a network are cohesion and
connectivity. Of course, there are several ways to assess cohesiveness attributes.
One way to do so simply consists in establishing whether or not the network is
connected (i.e, every vertex is reachable from every other vertex) or complete
(i.e, every vertex is joined to every other vertex), and enumerating pre-specified
subgraphs of interest such as dyads (pairs), triads (triples) or cliques (undirected
graph such that every two distinct vertices in the clique are adjacent).

There are also several measures specifically designed to describe connectivity
in a network. For instance, the density of a network, defined as the frequency of
realized edges relative to the number of potential edges, measures how close the
network is to being complete. In addition, the clustering coefficient or transitivity,
defined as the relative frequency of connected triples to triangles (three nodes
connected to each other by three edges), measures the density of triangles in the
network and therefore its transitivity. Density and clustering in the immediate
neighborhood of a vertex are also possible. Another way of examining connectivity
is related to the impact that vertex removal might have on the existence of paths
between pairs of vertices; this notion is commonly known as resilience. In many
real networks, only a few percent of hight degree vertices need be removed before
essentially all communication through the network is destroyed.

In most kinds of networks there are different types of vertices according
to certain attributes. Selective linking among vertices according to these
characteristics is usually called homophily or assortative mixing. Homophily
provides an explanation to patterns often seen in social networks, such as
transitivity (“a friend of a friend is a friend”), balance (“the enemy of my friend
is an enemy”), and the existence of cohesive subgroups of nodes (Hoff 2008, p.
1). Measures that aim to quantify the extent of homophily are called assortative
coefficients and essentially are variations of a regular correlation coefficient.
One common use of assortative coefficients consists in summarizing the degree
correlation of adjacent vertices.

As an extreme case of homophily, it is common to find subsets of actors that
demonstrate cohesive patterns with respect to the underlying relational framework.
Such groups of vertices have a high density of edges within them, with a lower
density of edges between groups. Networks evidencing this behavior are said to
have a community structure. In that regard, hierarchical clustering and spectral
partitioning are two classical methods often used to detect network communities in
the absence of external information. Specifically, hierarchical clustering methods
aim to algorithmically optimize a similarity measure in order to detect vertices in
the same communities (e.g., two vertices can be considered as similar if they have
the same neighbors). On the other hand, spectral partitioning methods attempt
to discover communities by iteratively using the eigen-decomposition of the graph
Laplacean. Development of procedures for community detection is a highly active
area of research. There are numerous reviews available; see Fortunato (2010), for
example.
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4. Modeling

Generally speaking, a statistical network model is a probability distribution on
a sociomatrix Y indexed by an unknown parameter θ ∈ Θ, p(Y | θ). Rather than
visualizing and describing topological characteristics of the network, statistical
models aim to study essential aspects of the stochastic mechanism under which a
given network might have arisen. Indeed, statistical network models allow us to
test for the significance of predefined features in the network, assess associations
between node/edge attributes and the network structure, and impute missing
observations. In contrast to deterministic and algorithmic models, statistical
models are also useful to quantify the uncertainty related to the unknowns in
the model (e.g, parameter estimates, predictions, and missing data imputations).

It is very important to emphasize that the nature of a network itself leads
to dependencies between actors, and also, between ties; for instance, reciprocity
and clustering are clear manifestations of dependence in network data. It is
indispensable to take such dependencies into account if we want to formulate
reasonable statistical models. A concise discussion of relevant models for cross-
sectional (also called static) networks is presented below. An extensive treatment
of these topics can be found for example in Goldenberg et al. (2010), Snijders
(2011), and Crane (2018).

4.1. Random Graph Models

Statistical models for networks have now over 50 years of history. The random
graph model (Gilbert 1959, Erdös & Rényi 1959, 1960, 1961) was one of the first
models for networks discussed in the literature. Under this model, an edge between
any pair of nodes is added to the graph independently with some fixed probability
θ. For example, the probability of an undirected, binary network under this model
is given by

p(Y | θ) =
∏
i<i′

θyi,i′ (1− θ)1−yi,i′ .

Random graphs tend to be sparse with small diameter (value of the longest geodesic
distance), low clustering, and an unrealistic degree distribution. Hence, most real-
world networks are rarely a plausible realization of a random graph. In spite of
such unrealistic behavior, random graph models are commonly used in defining
null classes of networks against which to assess the significance of structural
characteristics found in an observed network (Kolaczyk & Csárdi 2020, Sec. 5.5, for
example). Bollobás (1998) offers an extensive treatment of random graph models.

4.2. Generalized Random Graph Models

Motivated by real-world network attributes, generalized random graph models
arose as an extension of the original random graph aiming to mimic such attributes
through the inclusion of simple mechanisms. For instance, configuration models
(Bender & Canfield 1978) generate random networks with a pre-specified degree
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distribution. A shortcoming of such a model is that it fails at capturing homophily
and clustering, which are features frequently observed in social networks. On
the other hand, small-world models (Watts & Strogatz 1998, Newman & Watts
1999) produce high levels of clustering with small average distances, but generate
unrealistic degree distributions. In addition, both the configuration model and
the small-world model work with a fixed number of nodes and thus cannot be
used to model network growth (phenomenon in which the number of nodes in
the network increases over time). On the other hand, preferential attachment
models (Barabási & Albert 1999), designed to account for network growth and
preferential attachment (“the rich get richer” effect), yield networks with degree
distributions that tend to a power law. Nevertheless, this model still shares the
tendency towards low clustering. As a consequence, neither the configuration
model, the small-world model, nor the configuration model should be viewed as
fully realistic models for networks. Chung & Lu (2006) is a classical reference on
generalized random graphs models.

4.3. Exponential Random Graph Models

Beyond generalized random graphs models, Frank & Strauss (1986) introduced
the so-called exponential random graphs models (ERGMs), also known as p∗

models (Wasserman & Pattison 1996), attempting to built more realistic models
to address the foregoing transitivity issue. Specifically, ERGMs can be written as

p(Y | X,θ) =
1

κ(θ)
exp

{
K∑

k=1

θkSk(Y,X)

}
(1)

where X is an array of predictors xi,i′ = (xi,i′,1, . . . , xi,i′,P ) specific to each dyad
(i, i′), each Sk(Y,X) is either a network statistic or a function of edge and vertex
attributes, θ = (θ1, . . . , θK) is a K-dimensional vector of unknown parameters, and
κ(θ) is a normalizing constant. Examples of network statistics include counts of k-
stars (k+1 nodes with one node being linked to the other k) and triangles. ERGMs
are appealing models for networks since the form of (1) explicitly tie parameters
to sufficient statistics, yielding an attractive interpretation. Furthermore, ERGMs
can be constructed to match beliefs on important structural features of the data.

Even though ERGMs have a natural appeal, they are computationally
challenging because the normalizing constant κ(θ) is generally unknown and
intractable in all but the simplest cases. An additional shortcoming is that ERGMs
tend to degenerate, i.e., the model places disproportionate probability mass on
only a few of the possible graph configurations. Also, ERGMs implicitly assume
that the network is observed for the whole population of interest, and therefore,
they are not well suited to make predictions on unobserved dyads. Finally, a
recognized limitation of ERGMs is that they are weak at capturing local features
of networks and as a consequence may lead to poor model fitting in real-world
networks (Snijders 2002, Handcock et al. 2003). Frank & Strauss (1986) also
proposed models with Markov structure that provide forms of dyad dependence
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(homogeneous monadic Markov models). A detailed review of ERGMs can be
found in Robins et al. (2007) and Lusher et al. (2012).

4.4. Social Space Models

The use of random effects in the context of generalized linear models is a
popular alternative to model networks. Specifically, consider a model in which the
yi,i′s are conditionally independent with probabilities of interaction

Pr [yi,i′ = 1 | β, γi,i′ ,xi,i′ ] = g−1(xT
i,i′β + γi,i′), i < i′, (2)

where β = (β1, . . . , βP ) is an (unknown) vector of fixed effects, xT
i,i′β =∑P

p=1 βp xi,i′,P is a linear predictor representing patterns in the data related to
known covariates xi,i′ , γi,i′ is an unobserved specific random effect, representing
any additional patterns in the data unrelated to those of the predictors, and g(·)
is a (known) link function.

Following results in Aldous (1985) and Hoover (1982), see also Hoff (2008)
for details, it can be shown that if the matrix of random effects [γi,i′ ] is jointly
exchangeable, there exists a symmetric function α(·, ·) such that γi,i′ = α(ui,ui′),
where u1, . . . ,uI is a sequence of independent latent random variables (vectors).
The impact of such latent variables on (2) is largely dictated by the form of α(·, ·).
Therefore, it is mainly through α(·, ·) that we are able to capture relevant features
of relational data.

A number of potential formulations for α(·, ·) have been explored in the
literature to date; for instance, see Nowicki & Snijders (2001), Hoff et al. (2002),
Schweinberger & Snijders (2003), Hoff (2005), Handcock et al. (2007), Linkletter
(2007), Hoff (2008), Krivitsky & Handcock (2008), Hoff (2009), Krivitsky et al.
(2009), Li et al. (2011), Raftery et al. (2012a), and Minhas et al. (2019). Some
of these approaches are discussed bellow (see also Table 1). Other important
approaches in a multilayer setting include Salter-Townshend & McCormick (2017),
Durante et al. (2018), and Wang et al. (2019). See also Section 7 for a discussion.

4.4.1. Class Models

Nowicki & Snijders (2001) assume that each actor i belongs to an unobserved
latent class ui ∈ {1, . . . ,K}, and a probability distribution describes the
relationships between each pair of classes. Here, the latent effects are specified
as α(ui, ui′) = θϕ(ui,ui′ )

, for a symmetric K ×K matrix Θ = [θk,ℓ] of real entries
θk,ℓ such that 0 < θk,ℓ < 1, with ϕ(u, v) = (min{u, v},max{u, v}). Latent
class models, also known as stochastic block models (SBMs), effectively capture
stochastic equivalence (pattern in which nodes can be divided into groups such
that members of the same group have similar patterns of relationships). However,
models based on distinct clusters may not fit well when many actors fall between
clusters (Hoff et al. 2002). Recent extensions of this approach are given in Kemp
et al. (2006), Xu et al. (2006), and Airoldi et al. (2009).
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4.4.2. Distance Models

Hoff et al. (2002) assume that each actor i has an unknown position ui ∈ RK in
an Euclidean social space (space of unobserved latent characteristics that represent
potential transitive tendencies in network relations), and that the probability
of an edge between two actors may increase as the latent characteristics of the
individuals become more similar, i.e., when the actors become closer in the social
space. To this end, the latent effects are specified as α(ui,ui′) = −∥ui − ui′∥,
where ∥ · ∥ denotes the Euclidean norm. Latent structures based on distances
naturally induce homophily (pattern in which the relationships between nodes
with similar characteristics are stronger than those between nodes with different
characteristics), which is a main feature frequently seen in real social networks.
Also, modeling positions as belonging to a low-dimensional Euclidean space
provides a model-based alternative of data reduction to graphically represent
social network data. Even though latent distance models inherently account for
reciprocity and transitivity, they may not be appropriate for networks exhibiting
hight levels of clustering.

4.4.3. Projection Models

Hoff et al. (2002), in the same context of latent distance models where ui ∈ RK ,
propose that the probability of an edge between two actors may increase as the
overture of the angle formed by the corresponding latent positions becomes wider.
Specifically, actors i and i′ are prone to having a tie if the angle between them is
small (uT

i ui′ > 0), neutral to having ties if the angle is a right angle (uT
i ui′ = 0),

and averse to ties if the angle is obtuse (uT
i ui′ < 0). The latent effects are

specified as α(ui,ui′) = uT
i ui′/∥ui′∥, which corresponds to the signed magnitude

of the projection of ui in the direction of ui′ . Such a quantity can be thought
of as the extent to which i and i′ share characteristics, multiplied by the activity
level of i.

4.4.4. Bilinear Models

Hoff (2005), considering again a K-dimensional social space, assumes that
interaction probabilities rely on symmetric multiplicative interaction effects. Such
interaction for a dyad (i, i′) is expressed in terms of a bilinear effect, i.e., the
inner product between unobserved characteristic vectors specific to actors i and
i′. Hence, the latent effects are specified as α(ui,ui′) = uT

i ui′ . According to
Hoff (2008), bilinear models are able to generalize distance models (but not class
models) and reproduce different degrees of balance and clusterability.

4.4.5. Spatial Process Models

Linkletter (2007), extrapolating ideas from Hoff’s latent distance model to a
covariate space, assumes that pairwise connections are conditionally independent
given a latent spatial process evaluated at observed covariates. Thus, the
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probability of an edge between actors i and i′ depends on a relative difference
between observed covariates xi and xi′ , through latent effects expressed as
−∥z(xi) − z(xi′)∥, where z(·) is a latent real-valued function. Note that in
this context, the z(xi) are actually unobserved, and the covariates xi represent
attributes measured to learn about social relations.

4.4.6. Cluster Models

Handcock et al. (2007), Krivitsky & Handcock (2008), and Krivitsky et al.
(2009) generalize Hoff’s latent distance model in an effort to recreate a model
that allow the practitioner to model both transitivity and homophily, and
simultaneously find clusters of actors in a model-based fashion when the number
of groups in the data is known. As in Hoff et al. (2002), the latent effects are
given by α(ui,ui′) = −∥ui − ui′∥, except that now, actors’ positions are drawn
from a finite spherical multivariate normal mixture. Thus, the position of each
actor is drawn from one of G groups, where each group is centered on a different
mean vector and dispersed with a different spherical covariance matrix, which
allow latent positions form cluster of actors within the latent space. Note that the
model of Hoff’s distance model is essentially the case with G = 1.

4.4.7. Eigen Models

Hoff (2008) and Hoff (2009), based on the principles of eigen-analysis, assume
that the relationship between two nodes as the weighted inner-product of node-
specific vectors of latent characteristics ui ∈ RK . Here, the latent effects have the
form α(ui,ui′) = uT

i Λui′ , where Λ is a K ×K diagonal matrix. These models,
also known as eigenmodels, generalize latent class and latent distance models in the
sense that they can compactly represent the same network features, but not vice
versa. As a result, eigenmodels can represent both positive or negative homophily
in varying degrees, and stochastically equivalent nodes may or may not have strong
relationships with one another (Hoff 2008).

Table 1: Summary of latent space models.

Model Latent effects Latent space

Class α(ui, ui′ ) = θϕ(ui,ui′ )
ui ∈ {1, . . . ,K}

Distance α(ui,ui′ ) = −∥ui − ui′∥ ui ∈ RK

Projection α(ui,ui′ ) = uT
i ui′/∥ui′∥ ui ∈ RK

Bilinear α(ui,ui′ ) = uT
i ui′ ui ∈ RK

Spatial process α(xi,xi′ ) = −∥z(xi)− z(xi′ )∥ xi ∈ XP

Cluster α(ui,ui′ ) = −∥ui − ui′∥ ui ∈ RK

Eigen α(ui,ui′ ) = uT
i Λui′ ui ∈ RK
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5. Computation

For a given K the posterior distribution of the parameters can be
explored using Markov chain Monte Carlo (Gamerman & Lopes 2006,
MCMC) algorithms in which the posterior distribution is approximated using
dependent but approximately identically distributed samples Υ(1), . . . ,Υ(B), with
Υ = (u1, . . . ,uI ,ϕ), where ϕ has as elements the rest of the model parameters.
Point and interval estimates can be approximated from the empirical distributions.
Details about MCMC algorithms implemented here can be found in Appendix A.

6. Illustrations

In what follows, we present some examples in which we fully implement some of
the latent space models described in Section 4.4. We illustrate the characteristics
of these models by analyzing popular datasets in the network literature. Special
attention is given to latent class, distance, and eigen models.

6.1. Florentine Families Dataset

Here, we illustrate a fully Bayesian implementation of the distance model by
reproducing the analysis of the florentine families dataset given in Hoff et al. (2002,
Section 4.2). The system is composed of I = 15 prominent families, for which
yi,i′ = 1 between families i and i′ if there is at least one marriage between them. We
considered this as an undirected relation, whose corresponding adjacency matrix
Y is displayed in Panel (a) of Figure 1.

We consider a latent space with K = 2 dimensions, which also will help us
to demonstrate the graphical capabilities of the model. Indeed, setting K = 2
simplifies visualization and interpretation, and is therefore particularly useful when
the main goal of the analysis is to provide a description of the social relationships.
Following Section 4.4, we implement a model of the form,

yi,i′ | ζ,ui,ui′
ind∼ Ber (expit (ζ − ∥ui − ui′∥)) ,

where expit(x) = 1/(1 + e−x) is the inverse of the logit function, ζ is a fixed
effect representing the average propensity of observing an edge between two given
actors, and u1, . . . ,uI are unobserved positions in R2. In order to proceed with
a fully Bayesian analysis and make inference about the model parameters, we
must specify prior distributions for ζ and each ui. A standard prior choice that
seems to work well in practice is ζ | ω2 ∼ N(0, ω2) and ui | σ2 iid∼ N(0, σ2 I),
where I denotes the identity matrix. We complete the formulation of the model
by letting ω2 ∼ IGam(aω, bω) and σ2 ∼ IGam(aσ, bσ). Sensible elicitation of the
hyperparameters aω, bω, aσ, and bσ is fundamental to ensure appropriate model
performance. To this end, we set aω = 2 and bω = 100, which places a diffuse prior
distribution for ζ. Similarly, we mimic a heuristic given in Krivitsky & Handcock
(2008, Sec. 2.4) by setting aσ and bσ in such a way that a priori σ2 is vaguely
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Figure 1: Florentine families dataset.

Markov chain Monte Carlo (MCMC) algorithms can be used to explore the
posterior distribution p(ζ,U, ω2, σ2 | Y), where U = [u1, . . . ,uI ]

T is a I × K
matrix storing the latent positions by rows. By means of the MCMC procedure
outlined in Section Appendix A.1, we obtain 50, 000 samples of the posterior
distribution after a burn-in period of 10, 000 iterations. In this case and subsequent
illustrations, convergence was monitored by tracking the variability of the joint
distribution of data and parameters using the multi-chain procedure discussed in
Gelman & Rubin (1992).

Notice that an inherent difficulty estimating U is that any rotation, reflection
or translation of U produce the same likelihood value. Indeed, for any K × K
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orthogonal matrix Q, the likelihood associated with the reparametrization ũi =
Qui is independent of Q, since ∥ui − ui′∥ = ∥ũi − ũi′∥. To address this issue,
we restrict our attention to the Procrustean transformation of U closest to a
fixed (but arbitrary!) reference configuration U0. In particular, we consider a
post-processing step in which posterior samples are rotated/reflected to a shared
coordinate system. Thus, for each sample Υ(b), an orthogonal transformation
matrix Q(b) is obtained by minimizing the Procrustes distance,

Q̃(b) = argmin
Q∈SK

tr

{(
U0 −U(b)Q

)T (
U0 −U(b)Q

)}
, (3)

where SK denotes the set of K × K orthogonal matrices. The minimization
problem in (3) can be easily solved using singular value decompositions (Borg
& Groenen 2005, Section 20.2, for example). Once the matrices Q̃(1), . . . , Q̃(B)

have been obtained, posterior inference for the latent positions are based on the
transformed coordinates ũ

(b)
i = Q̃(b)u

(b)
i . In this case, we let U0 be the first value

of U after the burn-in period of the chain. We plot the latent positions for each
saved scan along with the corresponding point estimates for every family as shown
in Panel (c) of Figure 1. Actors 14 and 10 are above or below actor 1 for any
particular sample; the observed overlap of these actors is due to the bimodality of
the posterior distribution.

Finally, we check the posterior means of the interaction probabilities,

E [expit (ζ − ∥ui − ui′∥) | Y] ≈ 1

B

B∑
b=1

expit
(
ζ(b) − ∥u(b)

i − u
(b)
i′ ∥
)
,

to examine the in-sample fit of the model. Panel (b) of Figure 1 suggests that
these posterior estimates are consistent with the adjacency matrix Y plotted in
Panel (a), since we see high posterior probabilities where connections are observed.

6.2. Village Dataset

In order to provide a community detection example by means of a class model,
we consider the social and familial relationships among I = 99 households in a
specific village located in rural southern Karnataka, India (Salter-Townshend &
McCormick 2017). For these data, yi,i′ = 1 if household i and i′ have a social tie
by being related or attending temple together, for example. The adjacency matrix
Y associated with this network is depicted in Panel (a) of Figure 2.
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(a) Adjacency matrix. (b) Interacition probabilities
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Figure 2: Village dataset.

The main idea behind class models is that similar actors can be clustered
together into groups known as classes or blocks. Thus, the probability of having
an edge between two actor can be modeled as a function of their respective blocks,

yi,i′ | ui, ui′ , {ηk,ℓ}
ind∼ Ber

(
expit ηϕ(ui,ui′ )

)
,

where u = (u1, . . . , uI) are unobserved cluster indicators taking values in
{1, . . . ,K}, with K the number of classes (assumed as fixed), and ϕ(a, b) =
(min{a, b},max{a, b}). Notice that actors i and i′ belong to the same class if and
only if ui = ui′ . The community parameters η = {ηk,ℓ : k, ℓ = 1, . . . ,K, k ≤ ℓ}
suffer from symmetry constraints because Y is a symmetric adjacency matrix,
which makes ϕ(·, ·) necessary. A standard choice of prior distribution for the
community parameters is achieved by letting these parameters be conditionally
independent and follow a common distribution, ηk,ℓ | µ, τ2

iid∼ N(ζ, τ2).
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Following a standard practice in the community detection literature (Nowicki
& Snijders 2001, for example), it is commonly assumed that the entries of u
are exchangeable (Gelman et al. 2014, Sec. 1.2, for example) and follow a
categorical distribution on {1, . . . ,K}, Pr [ui = k | ωk] = ωk, k = 1, . . . ,K, where
ω = (ω1, . . . , ωK) is a probability vector such that

∑K
k=1 ωk = 1, satisfying

ω | α ∼ Dir
(
α
K , . . . , α

K

)
. In the limit, as K → ∞, this formulation has a

direct connection with a Chinese restaurant process prior (Ishwaran & Zarepour
2000, Sec. 3). The model is completed by placing a hyperprior distributions on
(ζ, τ2, α). A well-behaved choice is consist in independently letting ζ ∼ N(µζ , σ

2
ζ ),

τ2 ∼ IGam(aτ , bτ ), and α ∼ Gam(aα, bα), where µζ , σ2
ζ , aτ , bτ , aα, and bα are

hyperparameters.
Once again, a sensible elicitation of the hyperparameters is strongly

recommended to ensure appropriate model performance. To this end, we set
µζ = 0, σ2

ζ = 3, aτ = 2, and bτ = 3, which a priori vaguely centers the prior
interaction probabilities expit ηk,ℓ around 0.5 allowing a fair range of values in logit
scale, and aα and bα = 1, which places a diffuse prior distribution for α around 1.
Choosing K = 8 and following the MCMC algorithm provided in Section Appendix
A.2, we obtain 50, 000 samples of the posterior distribution p(u,η,ω, ζ, τ2, α | Y)
after a burn-in period of 10, 000 iterations, in order to compute the interaction
probabilities and pairwise co-membership probabilities, respectively,

E
[
expit ηϕ(ui,ui′ )

| Y
]
≈ 1

B

B∑
b=1

expit η
(b)
ϕ(ui,ui′ )

and

Pr [ui = ui′ | Y] ≈ 1

B

B∑
b=1

[
u
(b)
i = u

(b)
i′

]
,

where [·] denotes the Iverson bracket. We are quite confident about the in-sample
adecuacy of the model because the interaction probabilities shown in Panel (b)
of Figure 2 resemble very closely the adjacency matrix Y provided in Panel (a).
On the other hand, We can obtain a point estimate of the communities by taking
as input the co-membership probabilities shown in Panel (d) and employing the
clustering methodology proposed in (Lau & Green 2007, Sec. 4) with a relative
error cost of 0.5. Panel (c) provides a visual representation of such an estimate,
which exhibits 12 communities with sizes ranging from 1 to 17. Notice that the
pre-specified number of communities K used to fit the model does not have to
coincide necessarily with the number of communities provided by point estimate
of the partition.

6.3. Predictive Accuracy and Goodness-of-Fit

In order to compare the ability of distance, class, and eigen models to
predict missing links, we evaluate their out-of-sample predictive performance
through an exhaustive cross-validation experiment under a range of latent
dimensions, on 21 networks exhibiting different kinds of actors, sizes, and
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relations (see Table 2 for details about these datasets, which are freely
available on-line. See for example, http://networkrepository.com/, http:
//www-personal.umich.edu/~mejn/netdata/, http://vlado.fmf.uni-lj.si/
pub/networks/data/ucinet/ucidata.htm, and links there in.). Graphs for three
selected networks are shown in Figure 3.

Table 2: Network datasets for which a series of cross-validation experiments are
performed using distance, class, and eigen models. Dens., Trans., and Assor.
stand for density, transitivity, and assortativity, respectively.

Acronym No of actors No of edges Dens. Trans. Assor.
zach 34 78 0.139 0.256 -0.476
bktec 34 175 0.312 0.476 0.015
foot 35 118 0.198 0.329 -0.176
lazega 36 115 0.183 0.389 -0.168
hitech 36 91 0.144 0.372 -0.087
kaptail 39 158 0.213 0.385 -0.183
bkham 44 153 0.162 0.497 -0.391
dol 62 159 0.084 0.309 -0.044
glossgt 72 118 0.046 0.184 -0.158
lesmis 77 254 0.087 0.499 -0.165
salter 99 473 0.098 0.335 -0.064
polbooks 105 441 0.081 0.348 -0.128
adjnoun 112 425 0.068 0.157 -0.129
football 115 613 0.094 0.407 0.162
nine 130 160 0.019 0.163 -0.197
gen 158 408 0.033 0.078 -0.254
fblog 192 1,431 0.078 0.386 0.012
jazz 198 2,742 0.141 0.520 0.020
partner 219 630 0.026 0.107 -0.217
indus 219 630 0.026 0.107 -0.217
science 379 914 0.013 0.431 -0.082

(a) jazz (b) gen (c) netsciecne

Figure 3: Graphs for three selected networks from Table 2.
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We fit distance and class models following the same specification given in
the previous sections. Now, for the eigen model, we assume that the sampling
distribution is given by

yi,i′ | ζ,ui,ui′ ,Λ
ind∼ Ber

(
expit

(
ζ + uT

i Λui′

))
,

where ui = (ui,1, . . . , ui,K) is a vector of latent characteristics in RK and
Λ = diag [λ1, . . . , λK ] is a diagonal matrix of size K × K, which implies that
uT
i Λui′ =

∑K
k=1 λkui,kui′k is a quadratic form where λk weights the contribution

of each latent dimension (positively of negatively) to the plausibility of observing
an edge between actors i and i′. Following the same prior formulation given
for distance models, we let ζ | ω2 ∼ N(0, ω2) and ui | σ2 iid∼ N(0, σ2 I), along
with ω2 ∼ IGam(aω, bω) and σ2 ∼ IGam(aσ, bσ). We complete the specification
by assuming that λk | κ2 iid∼ N(0, κ2), where κ2 ∼ IGam(aκ, bκ). Lastly, vaguely
uninformative priors that have proven to work well in practice are obtain by setting
aω = aσ = aκ = 2 and bω = bσ = bκ = 3.

Thus, for each combination of model, dataset, and latent dimension K ∈
{2, 4, 8}, we run a 5-fold cross validation experiment as follows: First, we randomly
divide the data into five sets of roughly equal size. Next, for each set s, we fit
the model conditional on {yi,i′ : (i, i′) /∈ s}, and for each yk,ℓ assigned to s, we
compute E [yk,ℓ | {yi,i′ : (i, i′) /∈ s}], the posterior predictive mean of yk,ℓ using all
the data not in s. Then, using such predictions, we construct a binary classifier to
obtain the corresponding receiver operating characteristic (ROC) curve. Lastly,
we quantify the predictive performance of each ROC curve through the area under
the curve (AUC). In this context, the AUC is a measure of how well a given model
is capable of predicting missing links (the higher the AUC, the better the model is
at predicting 0s as 0s and 1s as 1s). In every case, inferences are based on 50, 000
samples of the posterior distribution after a burn-in period of 10,000 iterations,
by following the corresponding MCMC algorithm provided in Appendix A.

Table 3: Average AUC values to assess the predictive performance of distance, class,
and eigen models, using three selected networks provided in Table 2.

Network jazz gen netscience

K dist class eigen dist class eigen dist class eigen

2 0.914 0.721 0.910 0.596 0.779 0.723 0.950 0.670 0.845

4 0.949 0.749 0.940 0.668 0.822 0.727 0.944 0.747 0.957

8 0.971 0.742 0.876 0.742 0.822 0.785 0.944 0.820 0.849

For three selected networks, we report our findings in Table 3. In addition,
Figure 4 displays the results for the smallest value of K that maximizes the
AUC for all the datasets in Table 2. We note that there is no such a thing as
a “best” model in terms of prediction. A model in particular is more adequate
for a given network than another depending on the network’s structural features.
Distance models have an outstanding predictive performance for those networks
with predominant values of transitivity, as well as class models do for those
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networks exhibiting substantial assortativity levels. As expected, eigen models
tend to behave quite well predicting missing links under several scenarios since
they generalize both distance and class models, but the opposite is not true (Hoff
2008, Sec. 2.2). Lastly, from Table 2, it is quite evident that the choice of K is
key for assuring model performance.
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Figure 4: AUC values for distance, class, and eigen models using each network provided in
Table 2. These results correspond to the smallest value of K that maximizes the
AUC.

Next, in the same spirit of Gelman et al. (2014, Chap. 6) and Kolaczyk &
Csárdi (2020, Chap. 4), we replicate pseudo-data from all three fitted models
and calculate a battery of summary statistics (in our case, density, transitivity,
over the selected networks) for each sample from the posterior distribution.
This allows us to generate an estimate of the posterior predictive distribution
of the summaries, which can then be compared against the value observed in
the original sample (Figure 5). We see that all models are able to capture the
density of each network, although class models are more uncertain in regard
with the corresponding estimate. Furthermore, distance and eigen models are
clearly capable of reproducing transitivity patterns, unlike class models that
underestimate such feature. On the contrary, distance models tend to overestimate
assortativity values, whereas both class and eigen models successfully register
this characteristic. Not surprisingly, eigen models are able to capture most of
the structural features of the data and have less uncertainty attached to their
estimates.
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Figure 5: Posterior mean (black square) along with 95% and 99% credible intervals
corresponding to the empirical distribution of test statistics for replicated
data along with the observed value (red bullet) in three selected networks.

Finally, in order to asses the goodness-of-fit of each model, we complement the
results presented above by considering measures that account for both model fit
and model complexity. Such measures also serve as a tool for model selection,
since the value of latent dimension K can potentially play a critical role in the
results. The network literature has largely focused on the Bayesian Information
Criteria (BIC) as a tool for model selection, e.g. Hoff (2005), Handcock et al.
(2007) and Airoldi et al. (2009). However, BIC is typically inappropriate for
hierarchical models since the hierarchical structure implies that the effective
number of parameters will typically be lower than the actual number of parameters
in the likelihood. Two alternatives to BIC that address this issue are the Deviance
Information Criterion (Spiegelhalter et al. 2002, 2014, DIC),

DIC(K) = −2 log p(Y | Υ̂K) + 2pDIC,

with pDIC = 2 log p(Y | Υ̂K)− 2E [log p (Y | ΥK)],
and the Watanabe-Akaike Information Criterion (Watanabe 2010, 2013, WAIC),
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WAIC(K) = −2
∑
i<i′

log E [p (yi,i′ | ΥK)] + 2 pWAIC,

with pWAIC = 2
∑

i<i′

{
log E [p (yi,i′ |ΥK)] − E [log p (yi,i′ |ΥK)]

}
, where Υ̂K

denotes the posterior mean of model parameters assuming that the dimension
of the social space is K, and pDIC and pWAIC are penalty terms accounting
for model complexity. Note that in the previous expressions all expectations,
which are computed with respect to the posterior distribution, can be
approximated by averaging over Markov chain Monte Carlo (MCMC) samples (see
Section 5 for details). A key advantage of the WAIC criteria is its invariance to
reparameterizations, which makes it particularly helpful for models (such as ours)
with hierarchical structures, for which the number of parameters increases with
sample size (Gelman et al. 2014, Spiegelhalter et al. 2014). Table 4 presents the
results for the smallest value of K that minimizes the WAIC for all the datasets
in Table 2. We see that distance models and eigen models provide the best fit
according to the WAIC.

Table 4: Values of WAIC for distance, class, and eigen models using each network
provided in Table 2. These results correspond to the smallest value of K
that minimizes the WAIC.

net Dist Class Eigen
zach 378.7 377.5 296.8
bktec 565.1 636.0 592.9
foot 509.9 552.0 434.3
lazega 454.9 545.5 452.5
hitech 387.7 480.5 390.0
kaptail 603.6 721.7 604.7
bkham 591.2 579.9 454.3
dol 739.2 958.1 834.8
glossgt 775.1 893.7 805.0
lesmis 999.8 1,667.2 919.2
salter 2,200.3 2,789.7 2,275.7
polbooks 2,003.2 2,904.4 2,011.2
adjnoun 2,855.0 2,845.8 2,601.5
football 2,700.9 3,759.7 3,351.4
nine 1,101.5 1,384.0 1,070.2
gen 3,455.6 3,134.5 2,813.5
fblog 6,431.7 9,283.3 7,014.4
jazz 8,938.6 13,590.5 8,707.7
partner 5,163.2 5,488.1 4,624.0
indus 5,159.7 5,096.4 4,725.8
science 4,108.5 9,419.4 7,364.3
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Here, we have adopted a standard procedure to selecting the dimension of the
latent by means of the WAIC. However, the latent dimension can also be treated
directly as a model parameter by placing a prior distribution on it, in the same
spirit of Green & Hastie (2009). On the other hand, a similar approach discussed in
Guhaniyogi & Rodriguez (2020), which can be understood as a truncation of a non-
parametric process, could be incorporated here for selecting the latent dimension.
Nonetheless, based on the evidence provided by Guhaniyogi & Rodriguez (2020),
the results are likely to be quite similar.

7. Discussion

Our fundings show that the performance of the latent space models is case-
specific, in terms of both goodness-of-fit and prediction. Each model has
weaknesses and strengths. For example, class models are very suitable for networks
exhibiting high levels of clustering, whereas distance models are preferred to
represent major degrees of transitivity. However, eigen models seem to behave very
well under a great variety of scenarios, which is quite logical since it generalizes
(qualitatively) class and distance models (Hoff 2008).

Latent space models have proven to be extremely in all sorts of applications
involving social network data due to their flexibility and interpretability. Some
applications and extensions include modeling of multilayer networks (Salter-
Townshend & McCormick 2017, Durante et al. 2018), cognitive social structures
(Sosa & Rodriguez 2017), dynamic networks (Han et al. 2015, Hoff 2015, Sewell
& Chen 2015), record linkage (Sosa & Rodriguez 2018, 2019), and community
detection (Regueiro Martinez 2017, Paez et al. 2019), among many others, with
all sort of implications and ramifications, e.g., fast computation for “big networks”
(Raftery et al. 2012b, Salter-Townshend & Murphy 2013). For more reviews in
special topics related to latent space models, we refer the reader to Sweet et al.
(2013), Rastelli et al. (2015), Kim et al. (2018), and Minhas et al. (2019).

As a final note, we acknowledge that there are available many extensions of
the basic latent models presented here, which are quite common in the network
literature. Such modifications and extensions include incorporation of covariates
(with its many variants) and popularity parameters, for instance. See Raftery
(2017) for some ideas in this regard.
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Appendix A. MCMC algorithms

Our MCMC algorithm iterates over the model parameters Υ. Where
possible we sample from the full conditional posterior distributions as in Gibbs
sampling; otherwise we use adaptive versions of either Metropolis-Hastings or
Hamiltonian Monte Carlo steps. Alternatively, in the same spirit of (Albert & Chib
1993), Polya-Gamma random variables can be introduced in order to facilitate
computation (Polson et al. 2013).
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Appendix A.1. Distance model

The joint posterior distribution is given by:

p(Υ | Y) = p(Y | ζ, {ui}) p({ui} | σ2) p(σ2) p(ζ | ω2) p(ω2)

∝
I−1∏
i=1

I∏
i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′ ×

I∏
i=1

(σ2)−K/2 exp
{
− 1

2σ2 ∥ui∥2
}

× (σ2)−(aσ+1) exp

{
− bσ
σ2

}
× (ω2)−1/2exp

{
− 1

2ω2 ζ
2
}

× (ω2)−(aω+1) exp

{
− bω
ω2

}
,

where θi,i′ = expit(ζ − ∥ui − ui′∥) and Υ = (u1, . . . ,uI , ζ, σ
2, ω2) is the set of

model parameters.

For a given set of hyperparameters (aσ, bσ, aω, bω), the algorithm proceeds by
generating a new state Υ(b+1) from a current state Υ(b), b = 1, . . . , B, as follows:

1. Sample u
(b+1)
i , i = 1, . . . , I, according to a Metropolis–Hastings Algorithm,

considering the full conditional distribution:

p(ui | rest) ∝
I∏

i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′

×
i−1∏
i′=1

θ
yi′,i
i′,i (1− θi′,i)

1−yi′,i × exp
{
− 1

2σ2 ∥ui∥2
}
.

2. Sample ζ(b+1) according to a Metropolis–Hastings Algorithm, considering
the full conditional distribution:

p(ζ | rest) ∝
I−1∏
i=1

I∏
i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′ × exp

{
− 1

2ω2 ζ
2
}
.

3. Sample (σ2)(b+1) from p(σ2 | rest) = IGam
(
σ2 | aσ + I K

2
, bσ + 1

2

∑I
i=1 ∥ui∥2

)
.

4. Sample (ω2)(b+1) from p(ω2 | rest) = IGam
(
ω2 | aω + 1

2 , bω + 1
2ζ

2
)
.
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Appendix A.2. Class model

The joint posterior distribution is given by:

p(Υ | Y) = p(Y | {ξi}, {ηk,ℓ}) p({ηk,ℓ} | ζ, τ2) p(ζ) p(τ2) p({ξi} | ω) p(ω | α) p(α)

∝
I−1∏
i=1

I∏
i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′ × exp

{
− 1

2σ2
ζ
(ζ − µζ)

2
}

× (τ2)−(aτ−1) exp
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− bτ
τ2

}
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K∏
k=1

K∏
ℓ=k

(τ2)−1/2 exp
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− 1

2τ2 (ηk,ℓ − ζ)2
}

×
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i=1

K∏
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ω
[ξi=k]
k ×

Γ
(
α
K

)K
Γ(α)

K∏
k=1

ω
α
K−1

k × αaα−1 exp{−bα α},

where θi,i′ = expit(ηϕ(ξi,ξi′ )) and Υ = (η1,1, η1,2, . . . , ηK,K , ξ1, . . . , ξI , ω1, . . . , ωK ,
ζ, τ2, α) is the set of model parameters.

For a given set of hyperparameters (µζ , σ
2
ζ , aτ , bτ , aα, bα), the algorithm

proceeds by generating a new state Υ(b+1) from a current state Υ(b), b = 1, . . . , B,
as follows:

1. Sample η
(b+1)
k,ℓ , ℓ = k, . . . ,K and k = 1, . . . ,K, according to a Metropolis–

Hastings Algorithm, considering the full conditional distribution:

log p(ηk,ℓ | rest) ∝ sk,ℓ log(expit ηk,ℓ) + (nk,ℓ − sk,ℓ) log(1− expit ηk,ℓ)

− 1

2τ2
(ηk,ℓ − ζ)2

= sk,ℓ ηk,ℓ − nk,ℓ log(1 + exp ηk,ℓ)−
1

2τ2
(ηk,ℓ − ζ)2,

where sk,ℓ =
∑

Sk,ℓ
yi,i′ and nk,ℓ =

∑
Sk,ℓ

1, with Sk,ℓ = {(i, i′) : i <

i′ and ϕ(ξi, ξi′) = (k, ℓ)}.

2. Sample ξ
(b+1)
i , i = 1, . . . , I, from a categorical distribution on {1, . . . ,K},

such that:

Pr [ξi = k | rest] ∝ ωk ×
I∏
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η
yi,i′

ϕ(k,ξi′ )
(1− ηϕ(k,ξi′ ))
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η
yi′,i
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(1− ηϕ(ξi′ ,k))
1−yi′,i .

3. Sample ω(b+1) from p(ω | rest) = Dir
(
ω | α

K
+ n1, . . . ,

α
K

+ nK

)
, where nk is

the number of actors in cluster k ∈ {1, . . . ,K}.

4. Sample ζ(b+1) from N(m, v2), where

v2 =

(
1

σ2
ζ

+
K(K + 1)/2

τ2

)−1

and m = v2
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.
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5. Sample (σ2)(b+1) from

p(σ2 | rest) = IGam

(
σ2 | aτ + K(K+1)

4 , bτ + 1
2

K∑
k=1

K∑
ℓ=k

(ηk,ℓ − ζ)2

)
.

6. Sample α(b+1) according to a Metropolis–Hastings Algorithm, considering
the full conditional distribution:

log p(α | rest) ∝ log Γ(α)−K log Γ(α/K) +
α

K

K∑
k=1

logωk − (aβ − 1) logα− bα α.

Appendix A.3. Eigen Model

The joint posterior distribution is given by:

p(Υ | Y) = p(Y | ζ, {ui}, {λk}) p({ui} | σ2) p(σ2) p({λk} | κ2) p(κ2) p(ζ | ω2) p(ω2)

∝
I−1∏
i=1
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i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′ ×
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2
}
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{
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}
,

where θi,i′ = expit(ζ + uiΛui′) and Υ = (u1, . . . ,uI , λ1, . . . , λK , ζ, σ2, κ2, ω2) is
the set of model parameters.

For a given set of hyperparameters (aσ, bσ, aκ, bκ, aω, bω), the algorithm
proceeds by generating a new state Υ(b+1) from a current state Υ(b), b = 1, . . . , B,
as follows:

1. Sample u
(b+1)
i , i = 1, . . . , I, according to a Metropolis–Hastings Algorithm,

considering the full conditional distribution:

p(ui | rest) ∝
I∏

i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′

×
i−1∏
i′=1

θ
yi′,i
i′,i (1− θi′,i)

1−yi′,i × exp
{
− 1

2σ2 ∥ui∥2
}
.

2. Sample λ
(b+1)
k according to a Metropolis–Hastings Algorithm, considering

the full conditional distribution:

p(λk | rest) ∝
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I∏
i′=i+1

θ
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i,i′ (1− θi,i′)
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}
.
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3. Sample ζ(b+1) according to a Metropolis–Hastings Algorithm, considering
the full conditional distribution:

p(ζ | rest) ∝
I−1∏
i=1

I∏
i′=i+1

θ
yi,i′

i,i′ (1− θi,i′)
1−yi,i′ × exp
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− 1
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2
}
.
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2
, bσ + 1

2
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)
.
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6. Sample (ω2)(b+1) from p(ω2 | rest) = IGam
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.
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