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Abstract

In this article, �rst new divergences are de�ned by using Tsallis divergence
and a measure of discrepancy between equilibriums associated with two
distributions is proposed. Then utilizing the progressively Type-II censored
sample, we construct goodness of �t tests for exponentiality based on the
estimation of proposed divergences. To investigate the performance of the
mentioned tests, Monte Carlo simulations are performed. In order to study
the power, the alternatives are considered according to the failure rate
function. The powers of the proposed tests are then compared with other
existing tests. As regards the last step of the study, in order to explain the
use of the proposed tests, three examples are presented.

Key words: Cumulative residual Tsallis divergence; Exponential distribu-
tion, Goodness of �t test; Monte Carlo simulation; Tsallis divergence.

Resumen

En este artículo, las primeras nuevas divergencias se de�nen utilizando
la divergencia de Tsallis y se propone una medida de discrepancia entre los
equilibrios asociados con dos distribuciones. Luego, utilizando la muestra
censurada progresivamente Tipo II, construimos pruebas de bondad de ajuste
para exponencialidad basadas en la estimación de divergencias propuestas.
Para investigar el desempeño de las pruebas mencionadas, se realizan
simulaciones Monte Carlo. Para estudiar la potencia, se consideran las
alternativas según la función de tasa de falla. Los poderes de las pruebas
propuestas se comparan luego con otras pruebas existentes. En cuanto al
último paso del estudio, para explicar el uso de las pruebas propuestas, se
presentan tres ejemplos.

Palabras clave: Bondad de ajuste; Distribución exponencial; Divergencia
Tsallis; Divergencia Tsallis residual acumulada; Simulación Monte Carlo.
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1. Introduction

Because of the importance of exponential distribution in reliability and lifetime
models, many tests with complete samples and some procedures under censored
data have been presented in previous studies, attempting to determine the
appropriateness of an exponential model for a given dataset. Type-I and Type-
II censoring schemes are the most popular ones among the di�erent censoring
schemes. One of the disadvantages of these censoring schemes is the impossibility
to withdraw units during the experiment, so a generalization of the classical
Type-II censoring scheme, known as the progressive Type-II censoring scheme
(PCS Type-II), was proposed by analysts to pull back units amid the experiment.
PCS has gotten signi�cant consideration in the statistical writing (Balakrishnan
& Aggarwala, 2000; Balakrishnan, 2007).

There are several goodness of �t tests available in the literature based on
censored data for exponentiality test. Lim & Park (2007) provided a di�erent
version of Kullback�Leibler (KL) information with the Type-II censored data for
the exponential and normal distributions. Balakrishnan et al. (2007) estimated the
joint entropy of a sample with PCS Type-II and proposed a test for exponentiality
based on corresponding KL information to the aformentioned joint entropy. Lin
et al. (2008) proposed a simple method for testing goodness of �t based on Type-II
censored data. Yousefzadeh & Arghami (2008) estimated Shannon entropy by a
new estimator of distribution function and used it for testing exponentially and
normality. Wang (2008) introduced a test statistic for the exponential distribution
and obtained the exact distribution of the test statistic under the null hypothesis.
Habibirad et al. (2011) extended the goodness of �t test based on KL information
for PCS Type-II data for three distributions. Salinas et al. (2012) proposed
goodness of �t tests for the Gumbel distribution with Type-II right censored
data. Pakyari & Balakrishnan (2013) developed some goodness of �t tests for the
exponential distribution based on Type-I censored samples. Recently; Park & Lim
(2015) generalized the cumulative residual KL (CRKL) information to the censored
case and used the estimate of modi�ed version of CRKL as a goodness of �t test
statistic with the Type-II censored data. Alizadeh Noughabi & Balakrishnan
(2015) developed a general goodness of �t test for Type-II censored data by
using a new estimate of KL information for Type-II censored data. Also, they
considered testing for exponentiality under Type-II censored data as a special case
of this general test. Baratpour & Habibirad (2016) constructed two goodness of
�t tests based on the CRKL and cumulative KL (CKL) information for testing
exponentiality with PCS Type-II data. Alizadeh Noughabi (2017) introduced a
general goodness of �t test for PCS Type-II data based on a new estimate of KL
information and then used the proposed test statistic for testing exponentially
based on PCS Type-II data.

The present paper aims to construct some tests using extentions of Tsallis
divergence based on the PCS Type-II sample for exponentiality test. The article is
divided to the following sections: Section 2 presents some preliminaries. In Section
3, the new divergences are introduced by using extentions of Tsallis divergence and
then test statistics are construcred. The powers of the proposed tests and existing
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tests are then obtained through Monte Carlo simulations in Section 4. Finally,
using some examples, Section 5 illustrates the performance of all the tests.

2. Preliminaries

In this section, some preliminary aspects are provided and in the next section
the proposed tests are introduced.

The PCS can be described as follows. Under this general censoring scheme,
n units are placed on a life testing experiment and only m(< n) are completely
observed until failure. The censoring occurs progressively in m stages. At the time
of the �rst failure (the �rst stage) X1:m:n, R1 of the remaining n−1 surviving units
are randomly removed from the experiment. At the second failure (the second
stage) X2:m:n, R2 units are randomly removed from the remaining n − 2 − R1

units, and so on. The procedure is continued until all the remaining surviving
Rm = n−m−R1−· · ·−Rm−1 units are removed from the experiment at the time
of the mth failure (the mth stage) Xm:m:n. We will denote the m order observed
failure times by X1:m:n < X2:m:n < · · · < Xm:m:n and the PCS with the vector
R = (R1, . . . , Rm), which is �xed previously. If R = (0, . . . , 0), then no censoring
is performed at any of the m stages and corresponds to the complete sample. If
R = (0, . . . , 0, n−m), we obtain the Type-II right censoring.

Let X be a non negative absolutely continuous random variable having
cumulative distribution function (cdf) F , and the probability density function
(pdf) f . Then the Shannon (1948) information measure is de�ned as

H(X) = −
∫ ∞

0

f(x) ln f(x)dx.

Rao et al. (2004) introduced a new uncertainty measure, the cumulative residual
entropy (CRE), which for a non negative random variable X is de�ned as follows:

CRE(F ) = −
∫ ∞

0

F̄ (x) ln F̄ (x)dx.

Similar to the CRE, Di Crescenzo & Longobardi (2009) proposed the cumulative
entropy (CE) through

CE(F ) = −
∫ ∞

0

F (x) lnF (x)dx.

Consider two nonnegative and absolutely continuous random variables X and Y
with pdfs f and g, cdfs F and G, respectively. Then, the KL informations as a
measure of discrepancy between f and g is given by

KL(f : g) =

∫ ∞
0

f(x) ln
f(x)

g(x)
dx,

and the Tsallis divergence between f and g is de�ned as (Tsallis, 1988)

DT (f, g) =
1

α− 1

[∫ ∞
0

fα(x)g1−α(x)dx− 1

]
, α(6= 1) > 0. (1)
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Baratpour & Habibirad (2016) suggested an extension of the KL information to
the survival function, which is CRKL, as follows:

CRKL(F : G) =

∫ ∞
0

F̄ (x) ln
F̄ (x)

Ḡ(x)
dx− [E(X)− E(Y )],

where F̄ (x) and Ḡ(x) are the survival functions of random variables X and Y ,
respectively.

Park et al. (2012) considered another extension to the cumulative distribution,
which is called CKL and de�ned as follows:

CKL(F : G) =

∫ ∞
0

F (x) ln
F (x)

G(x)
dx− [E(Y )− E(X)].

Let w(t) be a non-negative function, so that 0 < E(w(t)) <∞, then we can de�ne
the weighted random variable X∗ with density function

f∗(t) =
w(t)fX(t)

E(w(X))
, t ≥ 0. (2)

The equilibrium distribution results as a special case when w(t) = 1
rX(t) , where

rX(t) = fX(t)
F̄X(t)

is failure rate function of X; then X∗ is said the equilibrium random

variable associated with X. The pdf of X∗ is f∗(t) = F̄X(t)
E(X) (Gupta & Kirmani,

1990).

Let f∗ and g∗ be the equilibrium pdfs respectively associated with f and g.
Then, we de�ne the Tsallis divergence based on equilibrium distributions as follows:

DT (f∗, g∗) =
1

α− 1

[
Eα−1(Y )

Eα(X)

∫ ∞
0

F̄α(x)Ḡ1−α(x)dx− 1

]
, α( 6= 1) > 0. (3)

Suppose that x1:m:n < x2:m:n < · · · < xm:m:n are progressively Type-II right
censored data with the PCS R = (R1, R2, . . . , Rm) from a continuous distribution
function F (x). Based on progressively Type-II right censored data, the cdf
estimator can be written as

Fm:n(x) =


0, x < x1:m:n

αi:m:n, xi:m:n ≤ x < xi+1:m:n, i = 1, 2, . . . ,m− 1

αm:m:n, x ≥ xm:m:n

(4)

where αi:m:n = E(Ui:m:n) is the expected value of the Type-II progressively
censored order statistic from the uniform distribution on (0,1), which is given
by Balakrishnan & Sandhu (1995) as

αi:m:n = 1−
m∏

j=m−i+1

{
j − 1 +Rm−j+1 + . . .+Rm
j +Rm−j+1 + . . .+Rm

}
.

The testing of interest in this article, is

H0 : F (x) = F0(x) vs H1 : F (x) 6= F0(x),
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where F0(x) = 1−exp(−xθ ) with x > 0, θ > 0, and θ is the unknown parameter.
The performance of the proposed tests is, then, compared to exponentiality tests
for PCS Type-II data in the literature. These tests are as follows:

� The test statistic proposed by Balakrishnan et al. (2007)

T (w, n,m) = −H(w, n,m) +
m

n

[
log

(
1

m

m∑
i=1

(Ri + 1)Xi:m:n

)
+ 1

]
,

where H(w, n,m) = 1
n

∑m
i=1 log

(
xi+w:m:n−xi−w:m:n

E(Ui+w:m:n)−E(Ui−w:m:n)

)
− (1− m

n ) log(1−
m
n ).

� The test statistic proposed by Alizadeh Noughabi (2017)

TA(w,m, n) = − 1

n

m∑
i=1

log

[
exp(−Xi−w:m:n/θ̂)− exp(−Xi+w:m:n/θ̂)

E(Ui+w:m:n)− E(Ui−w:m:n)

]

+
1

n

m∑
i=1

Ri log

[
1−m/n

exp(−Xi:m:n/θ̂)

]
.

3. Extentions of Tsallis Divergence and Test

Statistics

In this section new measures of distance between two distributions that are
similar to Tsallis divergences are de�ned.

De�nition 1. Let X and Y be two non negative and absolutely continuous
random variables with cdfs F and G and pdfs f and g, respectively. Then
cumulative residual Tsallis (CRT) and cumulative Tsallis (CT) divergence between
these distributions are respectively as follows:

CRT (F : G) =
1

α− 1

[∫ ∞
0

F̄α(x)Ḡ1−α(x)dx− αE(X)− (1− α)E(Y )

]
, (5)

CT (F : G) =
1

α− 1

[ ∫ ∞
0

Fα(x)G1−α(x)dx

− α
∫ ∞

0

F (x)dx− (1− α)

∫ ∞
0

G(x)dx

]
, 0 < α < 1.

(6)

Lemma 1. CRT(F:G)≥ 0 and equality holds i� F = G.

Proof . By applying the Hölder inequality, we obtain∫ ∞
0

F̄α(x)Ḡ1−α(x)dx ≤
(∫ ∞

0

F̄ (x)dx

)α(∫ ∞
0

Ḡ(x)dx

)1−α

, 0 < α < 1, (7)
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and by using the Young inequality, we get(∫ ∞
0

F̄ (x)dx

)α(∫ ∞
0

Ḡ(x)dx

)1−α

≤ α
∫ ∞

0

F̄ (x)dx+ (1− α)

∫ ∞
0

Ḡ(x)dx. (8)

Therefore, by (7) and (8) and dividing by α − 1, the desired inequality follows.
In the Hölder inequality, equality holds i� F̄ = cḠ (c is a positive constant) and
in the Young inequality, equality holds i�

∫∞
0
F̄ (x)dx =

∫∞
0
Ḡ(x)dx. Thus, c = 1

and CRT (F : G) = 0 i� F = G.

Lemma 2. CT(F:G)≥ 0 and equality holds i� F = G.

Proof . The proof is similar to the Lemma 1.

Remark 1. Note that limα→1 CRT = CRKL and limα→1 CT = CKL.

In order to construct test statistics, the given properties in Lemma 1 and 2 can
be taken as proper motivators.

3.1. Testing Procedures Based on the Extentions of Tsallis

Divergence

In this section, by utilizing (4) and estimating new divergences, test statistics
are constructed for testing exponentiality with the PCS Type-II data and then
some competing tests are considered to be compared with the mentioned tests.
Accordingly, letting F (x) = Fm:n(x) and G(x) = F0(x) in (5), we have

CRT (Fm:n : F0) =
1

α− 1

[ ∫ xm:m:n

0

(1− Fm:n(x))αe−
x
θ (1−α)dx

− α
∫ xm:m:n

0

(1− Fm:n(x))dx− (1− α)

∫ xm:m:n

0

e−
x
θ dx

]
,

= − θ

(α− 1)2

[m−1∑
i=0

(1− αi:m:n)α
(
e−

xi:m:n
θ (1−α) − e−

xi+1:m:n
θ (1−α)

)]

− α

α− 1

[m−1∑
i=0

(1− αi:m:n)(xi+1:m:n − xi:m:n)

]
+ θ(1− e−

xm:m:n
θ ),

(9)

where α0:m:n = x0:m:n = 0. Dividing (9) by
∫ xm:m:n

0
(1 − Fm:n(x))dx, we obtain

the proposed test as follows:
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CRTmn = − θ̂

(α− 1)2

[m−1∑
i=0

(1− αi:m:n)α
(
e−

xi:m:n
θ̂

(1−α) − e−
xi+1:m:n

θ̂
(1−α))

m−1∑
i=0

(1− αi:m:n)(xi+1:m:n − xi:m:n)

]

+
θ̂(1− e−

xm:m:n
θ̂ )∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n)
− α

α− 1
,

(10)

where θ̂ = 1
m

∑m
i=1(Ri+1)xi:m:n is the maximum likelihood estimate (MLE) based

on the PCS Type-II sample.

Similarly, for (6), we have

CT (Fm:n : F0) =
1

(α− 1)

[m−1∑
i=1

(αi:m:n)α
∫ xi+1:m:n

xi:m:n

(
1− e−

x(1−α)
θ

)
dx

]

− α

α− 1

[m−1∑
i=1

(αi:m:n)(xi+1:m:n − xi:m:n)

]
+

∫ xm:m:n

0

(1− e− xθ )dx.

(11)

Dividing (11) by
∫ xm:m:n

0
Fm:n(x)dx, we obtain the proposed test as follows:

CTmn =
1

(α− 1)

[m−1∑
i=1

(αi:m:n)α
∫ xi+1:m:n

xi:m:n

(
1− e−

x(1−α)

θ̂

)
dx

m−1∑
i=1

(αi:m:n)(xi+1:m:n − xi:m:n)

]

+

∫ xm:m:n

0
(1− e−

x
θ̂ )dx

m−1∑
i=1

(αi:m:n)(xi+1:m:n − xi:m:n)

− α

α− 1
,

(12)

where θ̂ is the MLE of based on the PCS Type-II sample.
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3.2. Testing Procedures Based on Equilibrium Distributions

for the Tsallis Divergences

Similar to the subsection 3.1, using (3) based on the PCS Type-II data, we
obtain the proposed test as follow:

D∗Tmn =
1

α− 1

[
θ̂α−1

∫ xm:m:n

0
(1− Fm:n(x))αe−

x
θ̂

(1−α)dx( ∫ xm:m:n

0
(1− Fm:n(x))dx

)α − 1

]

=− θ̂α

(α− 1)2

[m−1∑
i=0

(1− αi:m:n)α
(
e−

xi:m:n
θ̂

(1−α) − e−
xi+1:m:n

θ̂
(1−α)

(
m−1∑
i=0

(1− αi:m:n)(xi+1:m:n − xi:m:n))α

]

− 1

α− 1
,

(13)

where α0:m:n = x0:m:n = 0 and θ̂ is the MLE of the PCS Type-II sample.

Note that all the three proposed test statistics are scale-invariant.

4. Simulation Study

For large values of the proposed test statistics, the null hypothesis will be
rejected. The power values of the proposed tests depend on two things, the α
values and type of failure rate function of alternatives. Thus, the alternatives are
selected according to the type of failure rate function as follows:

� Increasing failure rate (IFR): Gamma and Weibull (shape parameter 2),

� Decreasing failure rate (DFR): Gamma and Weibull (shape parameter 0.5),

� Non-monotone failure rate (NFR): Log-normal (shape parameter 0.5), Log-
normal (shape parameter 1).

Since the α values have an important role in determining the power of the proposed
tests, then the α value that maximizes the power, is considered according to the
type of failure rate function. Moreover since the CTmn and CRTmn statistics have
not good performance, respectively, for alternatives with IFR and DFR functions,
thus the CTmn and CRTmn statistics are recommended for DFR function and IFR
function, respectively.

The α value, for DT∗
mn

and CRTmn statistics, when the alternatives have the
IFR function, is suggested to be 2 and 0.01, respectively and for D∗Tmn and CTmn
statistics, when the alternatives have the DFR function, is suggested to be 0.01.
For alternatives with NFR functions, the α value is suggested 0.01 for the proposed
statistics. The power values are determined for the 27 censoring schemes used
by Pakyari & Balakrishnan (2012). These censoring schemes are given in Table
1. To obtain the power values 50,000 random samples for several sample sizes
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and PCS, are generated. Results showed that, when the alternative model is the
exponential model, signi�cance level of the test is concluded. Also by following
Alizadeh Noughabi (2017), the values of w which maximize the power of the TA
statistic are chosen.

Table 1: Progressive censoring schemes used in the Monte Carlo simulations.

Scheme No. n m (R1, . . . , Rm)

[1]

20

8

R1 = 12, Ri = 0 for i 6= 1

[2] R8 = 12, Ri = 0 for i 6= 8

[3] R1 = R8 = 6, Ri = 0 for i 6= 1, 8

[4]

12

R1 = 8, Ri = 0 for i 6= 1

[5] R12 = 8, Ri = 0 for i 6= 12

[6] R3 = R5 = R7 = R9 = 2, Ri = 0 for i 6= 3, 5, 7, 9

[7]

16

R1 = 4, Ri = 0 for i 6= 1

[8] R16 = 4, Ri = 0 for i 6= 16

[9] R5 = 4, Ri = 0 for i 6= 5

[10]

40

10

R1 = 30, Ri = 0 for i 6= 1

[11] R10 = 30, Ri = 0 for i 6= 10

[12] R1 = R5 = R10 = 10, Ri = 0 for i 6= 1, 5, 10

[13]

20

R1 = 20, Ri = 0 for i 6= 1

[14] R20 = 20, Ri = 0 for i 6= 20

[15] Ri = 1 for i = 1, 2, . . . , 20

[16]

30

R1 = 10, Ri = 0 for i 6= 1

[17] R30 = 10, Ri = 0 for i 6= 30

[18] R1 = R30 = 5, Ri = 0 for i 6= 1, 30

[19]

60

20

R1 = 40, Ri = 0 for i 6= 1

[20] R20 = 40, Ri = 0 for i 6= 20

[21] R1 = R20 = 10, R10 = 20, Ri = 0 for i 6= 1, 10, 20

[22]

40

R1 = 20, Ri = 0 for i 6= 1

[23] R40 = 20, Ri = 0 for i 6= 40

[24] R2i−1 = 1, R2i = 0 for i = 1, 2, . . . , 20

[25]

50

R1 = 10, Ri = 0 for i 6= 1

[26] R50 = 10, Ri = 0 for i 6= 50

[27] R1 = R50 = 5, Ri = 0 for i 6= 1, 50

Tables 2-4 present power values of the proposed tests and the existing tests at
the signi�cance level 0.10 based on the type of failure rate function. According to
these tables, it can be said that the proposed tests are evidency consistent because
with increasing sample size, the test power close to 1. Table 2 (for alternatives
with IFR functions) indicates that, almost in the most cases, the TA statistic has
higher power than other tests. Also, we can see that, the di�erence of powers
of the CRTmn and TA statistics do not di�er much. Although the TA statistics
have good powers. One of the disadvantages of this statistic is that we should
calculate the power values for three di�erent values of window size w, and, for
di�erent censoring schemes, there is not a window size w of same value. While if
Balakrishnan et al. (2007) had considered w values proposed by Alizadeh Noughabi
(2017) for each censorship plan, they would have had higher powers compared to
TA.
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Table 2: Power of the proposed tests for the alternatives with the IFR function at the
signi�cance level 0.10 for several schemes.

W(2) G(2)

Scheme No. D∗
Tmn

CRTmn T TA D∗
Tmn

CRTmn T TA

[1] 0.858 0.893 0.892 0.896 0.610 0.614 0.648 0.231

[2] 0.643 0.661 0.634 0.627 0.488 0.457 0.459 0.486

[3] 0.776 0.748 0.725 0.712 0.549 0.513 0.512 0.454

[4] 0.879 0.938 0.916 0.949 0.684 0.613 0.722 0.484

[5] 0.811 0.803 0.783 0.799 0.612 0.533 0.583 0.603

[6] 0.807 0.898 0.891 0.949 0.633 0.573 0.675 0.226

[7] 0.896 0.959 0.958 0.976 0.714 0.658 0.765 0.651

[8] 0.900 0.903 0.922 0.920 0.691 0.658 0.686 0.688

[9] 0.914 0.958 0.970 0.983 0.702 0.680 0.772 0.633

[10] 0.939 0.942 0.953 0.965 0.666 0.756 0.814 0.232

[11] 0.726 0.716 0.678 0.683 0.594 0.538 0.550 0.597

[12] 0.817 0.841 0.812 0.815 0.684 0.634 0.646 0.527

[13] 0.963 0.988 0.988 0.995 0.765 0.791 0.899 0.670

[14] 0.945 0.933 0.918 0.922 0.794 0.724 0.759 0.806

[15] 0.905 0.963 0.970 0.991 0.768 0.756 0.862 0.465

[16] 0.977 0.996 0.998 1.000 0.800 0.827 0.942 0.882

[17] 0.992 0.994 0.991 0.990 0.892 0.842 0.879 0.904

[18] 0.993 0.997 0.996 0.995 0.900 0.863 0.902 0.901

[19] 0.979 0.989 0.993 0.998 0.756 0.850 0.934 0.591

[20] 0.941 0.930 0.898 0.901 0.825 0.747 0.776 0.834

[21] 0.980 0.978 0.970 0.974 0.857 0.816 0.851 0.738

[22] 0.992 0.999 1.000 1.000 0.815 0.906 0.980 0.945

[23] 0.998 0.999 0.998 0.996 0.957 0.927 0.933 0.965

[24] 0.964 0.992 0.999 1.000 0.773 0.871 0.960 0.849

[25] 0.994 0.999 1.000 1.000 0.831 0.924 0.991 0.981

[26] 1.000 1.000 1.000 1.000 0.971 0.956 0.973 0.985

[27] 1.000 1.000 1.000 1.000 0.960 0.961 0.979 0.984

For each censoring scheme, the greatest powers are in bold.

Since usually the CRTmn statistic for the scheme R = (n − m, 0, . . . , 0)
shows higher power than the other schemes, so this statistic for early censoring is
recommended. In Table 3 for alternatives with DER functions, the CTmn statistic
has higher power than D∗Tmn and the other existing tests except in the censoring
scheme 24. In this table, the scheme R = (n−m, 0, . . . , 0) generally indicates better
power than the other schemes. It can be concluded that early censoring situations
seem to possess higher power. Therefore for alternatives with DER functions, the
use of CTmn statistic for the case of early censoring is recommended. Table 4
shows that the TA and CRTmn statistics have approximately higher powers than
the other tests, but for di�erent censoring schemes a general conclusion cannot be
suggested.
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Table 3: Power of the proposed tests for the alternatives with the DFR function at the
signi�cance level 0.10 for several schemes.

W(0.5) G(0.5)

Scheme No. D∗
Tmn

CTmn T TA D∗
Tmn

CTmn T TA

[1] 0.661 0.717 0.064 0.303 0.420 0.467 0.014 0.161

[2] 0.005 0.291 0.069 0.213 0.010 0.219 0.047 0.166

[3] 0.002 0.448 0.073 0.252 0.005 0.323 0.040 0.177

[4] 0.750 0.806 0.341 0.476 0.455 0.511 0.097 0.230

[5] 0.002 0.590 0.272 0.387 0.006 0.398 0.134 0.250

[6] 0.752 0.792 0.344 0.489 0.496 0.546 0.109 0.258

[7] 0.812 0.869 0.416 0.605 0.471 0.544 0.104 0.291

[8] 0.069 0.847 0.402 0.564 0.016 0.613 0.147 0.318

[9] 0.830 0.889 0.437 0.637 0.509 0.587 0.111 0.315

[10] 0.728 0.787 0.217 0.442 0.448 0.508 0.050 0.227

[11] 0.003 0.345 0.152 0.270 0.005 0.278 0.112 0.226

[12] 0.003 0.672 0.187 0.381 0.005 0.567 0.111 0.287

[13] 0.866 0.919 0.661 0.748 0.530 0.615 0.234 0.395

[14] 0.000 0.760 0.543 0.600 0.001 0.570 0.336 0.421

[15] 0.628 0.864 0.627 0.756 0.336 0.636 0.309 0.485

[16] 0.934 0.971 0.865 0.892 0.583 0.695 0.381 0.520

[17] 0.000 0.959 0.829 0.830 0.001 0.779 0.487 0.551

[18] 0.415 0.979 0.854 0.866 0.079 0.821 0.460 0.550

[19] 0.866 0.922 0.673 0.765 0.539 0.630 0.246 0.429

[20] 0.000 0.726 0.524 0.566 0.001 0.586 0.375 0.450

[21] 0.000 0.916 0.677 0.745 0.001 0.795 0.429 0.553

[22] 0.965 0.990 0.949 0.960 0.638 0.769 0.519 0.639

[23] 0.000 0.980 0.928 0.904 0.000 0.857 0.670 0.677

[24] 0.898 0.947 0.924 0.952 0.572 0.665 0.570 0.700

[25] 0.983 0.997 0.989 0.985 0.682 0.821 0.680 0.711

[26] 0.178 0.997 0.986 0.969 0.007 0.928 0.783 0.742

[27] 0.918 0.999 0.990 0.978 0.402 0.934 0.765 0.741

For each censoring scheme, the greatest powers are in bold.

5. Illustrative Examples

In this section, the proposed tests procedure are investigated by three examples.
In the �rst example, the real dataset with n = 19 and m = 8 is considered, and in
the second example, a real dataset with n = 32 and m = 20 is applied. Finally a
real dataset with n = 20 and m = 10 is used in Example 3. In the examples, the
D∗Tmn statistic has the same results for the α values equal to 2 and 0.01.

Example 1. Nelson (1982) reported data on times to breakdown of an in-sulating
�uid in an accelerated test which was done at di�erent test voltages. From these
data, Viveros & Balakrishnan (1994) produced a PCS Type-II sample of size from
observations which was recorded at 34 kilovolts.
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Table 4: Power of the proposed tests for the alternatives with the NFR function at the
signi�cance level 0.10 for several schemes.

L(0,0.5) L(0,1)

S.N D∗
Tmn

CRTmn CTmn T TA D∗
Tmn

CRTmn CTmn T TA

[1] 0.254 0.990 0.000 0.995 0.999 0.134 0.280 0.123 0.304 0.364

[2] 0.956 0.993 0.938 0.987 0.987 0.348 0.468 0.287 0.428 0.440

[3] 0.993 0.998 0.453 0.995 0.996 0.410 0.469 0.082 0.437 0.459

[4] 0.008 0.996 0.001 0.996 1.000 0.194 0.269 0.189 0.285 0.353

[5] 0.975 1.000 0.955 0.997 0.999 0.285 0.497 0.185 0.415 0.484

[6] 0.022 0.994 0.000 0.991 0.998 0.164 0.316 0.157 0.283 0.310

[7] 0.001 0.998 0.001 0.997 0.999 0.241 0.250 0.240 0.260 0.351

[8] 0.967 1.000 0.866 1.000 1.000 0.175 0.451 0.084 0.399 0.486

[9] 0.001 0.997 0.001 0.998 1.000 0.236 0.262 0.232 0.269 0.336

[10] 0.615 0.996 0.037 1.000 1.000 0.137 0.283 0.123 0.483 0.581

[11] 0.996 1.000 0.995 0.999 0.999 0.561 0.701 0.492 0.614 0.652

[12] 0.999 1.000 0.295 1.000 1.000 0.513 0.691 0.021 0.635 0.653

[13] 0.016 0.999 0.052 1.000 1.000 0.255 0.225 0.256 0.440 0.588

[14] 1.000 1.000 1.000 1.000 1.000 0.478 0.784 0.379 0.667 0.758

[15] 0.937 1.000 0.000 1.000 1.000 0.201 0.500 0.093 0.520 0.618

[16] 0.001 0.999 0.056 1.000 1.000 0.340 0.181 0.343 0.414 0.588

[17] 1.000 1.000 1.000 1.000 1.000 0.250 0.708 0.146 0.648 0.758

[18] 0.999 1.000 0.985 1.000 1.000 0.170 0.569 0.107 0.619 0.743

[19] 0.251 0.999 0.364 1.000 1.000 0.227 0.213 0.230 0.579 0.736

[20] 1.000 1.000 1.000 1.000 1.000 0.695 0.897 0.620 0.801 0.858

[21] 1.000 1.000 0.698 1.000 1.000 0.509 0.799 0.028 0.779 0.793

[22] 0.002 0.999 0.408 1.000 1.000 0.390 0.137 0.403 0.540 0.764

[23] 1.000 1.000 1.000 1.000 1.000 0.411 0.863 0.323 0.837 0.894

[24] 0.004 0.999 0.002 1.000 1.000 0.243 0.245 0.245 0.496 0.751

[25] 0.001 0.999 0.474 1.000 1.000 0.449 0.113 0.464 0.572 0.773

[26] 1.000 1.000 1.000 1.000 1.000 0.178 0.672 0.153 0.782 0.880

[27] 1.000 1.000 1.000 1.000 1.000 0.106 0.462 0.190 0.762 0.878

These progressively censored data are given in Table 5. Table 6 indicates
the critical values and test statistics. Based on Table 6, all of the tests at the
signi�cance level 0.10, show that this progressively Type-II right censored sample
comes from an exponential distribution.

Example 2. The data of the study by Spineili & Stephens (1987) is considered
in this example which consists of the modules of repute of woods. By randomly
generating observations from these data, Balakrishnan & Lin (2003) considered
PCS Type-II data. The data and the employed PCS are presented in Table 7.
Pakyari & Balakrishnan (2012) concluded that for the given PCS Type-II data,
the Weibull model is accepted at the signi�cance level 0.05. The critical values
and test statistics for the proposed tests and the other tests of this paper, were
calculated in Table 8. The results of Table 10 show that, all of the test statistics
reject the null hypothesis of exponentiality at the signi�cance level 0.10. It should
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Table 5: Progressively censored sample generated from the times to breakdown data
on insulating �uids tested at 34 kilovolts, given by Viveros & Balakrishnan
(1994).

i 1 2 3 4 5 6 7 8

xi:8:19 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35

Ri 0 0 3 0 3 0 0 5

Table 6: Test statistics and critical values of the tests.

D∗
Tmn

CRTmn CTmn T
TA

w = 1 w = 2 w = 4

Test statistic 0.8185 0.0225 -0.0100 -0.0906 -0.0135 -0.0598 -0.1227

Critical value 1.1615 0.0706 -0.0099 0.0662 0.2095 0.0975 0.0579

be note that the obtained values for test statistics in Alizadeh Noughabi (2017) in
Example 2 are not correct. These values were modi�ed in Table 10.

Table 7: Spinelli and Stephens's data and the PCS Type-II.

i 1 2 3 4 5 6 7 8 9 10

xi:20:32 43.19 49.44 51.55 56.63 67.27 78.47 86.59 90.63 94.38 98.21

Ri 0 2 0 0 2 0 0 0 0 0

i 11 12 13 14 15 16 17 18 19 20

xi:20:32 98.39 99.74 100.22 103.48 105.54 107.13 108.14 108.94 110.81 116.39

Ri 2 2 0 0 0 0 1 1 0 2

Table 8: Test statistics and critical values of the tests.

D∗
Tmn

CRTmn CTmn T
TA

w = 1 w = 2 w = 4

Test statistic 0.4437 -0.5495 -0.0097 0.5973 0.6709 0.5778 0.5416 1

Critical value 0.2451 -1.8690 -0.0098 -0.0315 0.1583 -0.0381 -0.0518

Example 3. Pakyari & Balakrishnan (2012) randomly generated a PCS Type-II
sample of size m = 10 from n = 20 observations based on the wire connection
strength data from Nelson (1982, Table 5.1, p. 111). The data, and the PCS
employed are given in Table 9. Nelson (1982) and Pakyari & Balakrishnan
(2012) concluded that normal model is strongly supported for describing the wire
connection strength data. The test statistics and the critical values are presented in
Table 10. Based on Table 10, as expected the exponential model at the signi�cance
level 0.10, is supported by none of the test statistics. It should be note that the
obtained values for test statistics in Alizadeh Noughabi (2017) in Example 1 and
the conclusions drawn from it are not correct. These values were modi�ed in
Table 10.
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Table 9: Wire connection strength data and the PCS Type-II.
i 1 2 3 4 5 6 7 8 9 10

xi:10:20 550 750 950 1150 1150 1150 1350 1450 1550 1850

Ri 0 2 1 0 3 0 0 2 0 2

Table 10: Test statistics and critical values of the tests.

D∗
Tmn

CRTmn CTmn T
TA

w = 1 w = 2 w = 4

Test statistic 0.9139 0.1710 -0.0099 0.2537 ∞ 0.2554 0.2842

Critical value 0.8316 0.1144 -0.0100 0.1858 0.3117 0.2136 0.1770

6. Conclusion

We de�ned new divergence measures as generalizations of the Tsallis divergence
and considered testing exponentiality based on the PCS Type-II sample. In order
to compare the power values of proposed tests with the power values of existing
tests, we utilized Monte Carlo simulations. The simulation results showed that,
for alternative hypothesis with IFR and DER functions, the di�erence of powers
of CRTmn and TA tests are not remarkable. Due to the problems stated for
the TA test, the CRTmn test for the censorship scheme R = (n−m, 0, . . . , 0) it is
suggested. Moreover, the CTmn test for alternative hypothesis with DER function,
for almost all censorship schemes, has higher power than the other existing tests.
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