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Abstract

In this paper we propose Bayesian methods to �t econometric regression
models, including those where the variability is assumed to follow a regression
structure. We formulate the main functions of the statistical R-package
BSPADATA, developed according to the proposed methods to obtain
posteriori parameter inferences. After that, we include results of simulated
studies to illustrate the use of this package and the performance of the
proposed methods. Finally, we provide studies to illustrate the applications
of the models and compare our results with that obtained by maximum
likelihood.
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Resumen

En este artículo proponemos métodos bayesianos para ajustar modelos de
regresión econométrica, incluidos aquellos en los que la variabilidad sigue una
estructura de regresión. Formulamos las principales funciones del Rpackage
estadístico BSPADATA, desarrollado según los métodos propuestos para
obtener inferencias de parámetros a posteriori. Luego, incluimos resultados
de estudios de simulación para ilustrar el uso de este paquete y el desempeño
de los métodos propuestos. Finalmente, proporcionamos estudios para
ilustrar las aplicaciones de los modelos y comparamos nuestros resultados
con los obtenidos por máxima verosimilitud.
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Introduction

Spatial econometrics is a branch of the economics whose origin dates back to the
Annual Meeting of the Dutch Association of Statistics 1974 (Anselin, 2001), and
that since its creation has been a support investigations in economics and ecology.
Usual models in the spatial econometrics are the spatial autoregressive models
and the spatial error models considered in this paper (Anselin, 1988). Despite the
popularity of the maximum likelihood methods to �t spatial econometric models,
these lead to speci�cation problems when the sample is very small, when there
are atypical data or when there is heterogeneity of variance across space. The
application of maximum likelihood methods to �t spatial economic models can be
found in Anselin (1988) and LeSage (1997).

Although the possibility applying Bayesian methods to �t econometric models
was considered in Hepple (1979), Anselin (1980) and Anselin (1982), it was only
in 1997 that James Lesage proposed Bayesian estimation of spatial autoregressive
models using MCMC algorithms (LeSage, 1997). He proposed a Bayesian
method to �t homoscedastic and heteroscedastic autoregressive models. For the
homoscedastic autoregressive models, he assumed di�use prior distribution for
(β, σ2, ρ). Thus, the conditional distributions of β and σ2 are the multivariate
normal distribution and the Chi-square distribution, respectively. In this model,
the conditional distribution of ρ is unknown, so he applied custom generation
via �rejection sampling methods�. For the heteroscedastic spatial autoregressive
models he assumed that the variance-covariance matrix is given by σ2V, where
V = diag(νi), where the ν′is are assumed to be n independent parameters to be
sampled using a Chi-square distribution.

In this paper we propose Bayesian methods to �t spatial econometric models
de�ned assuming multivariate normal prior distribution for β, inverse-gamma prior
distribution for σ and uniform distributions for the spatial association parameters
ρ and λ, all independent. But given that the posterior parameter distribution is
unknown, samples of it are obtained from the posterior conditional distributions
of parameter blocks, visited in sequence until convergence. Thus, samples of β and
σ−2 are proposed from a multivariate normal distribution and an inverse gamma
distribution, respectively, and accepted with probability 1. Samples of the spatial
association parameters ρ and λ, are proposed from a kernel transition function
given by a truncated normal distribution, applying the Metropolis Hastings
algorithm. If a uniform distribution is assumed as the kernel transition function,
Bayesian methods perform poorly.

In the spatial heteroscedastic econometric models, samples of the posterior
mean regression parameter distributions, β, and the association parameters, ρ
and λ, are obtained as in the homoscedastic regression models, but samples of
the variance regression parameters are obtained by using the MCMC algorithm,
as proposed in Cepeda-Cuervo (2001) and Cepeda-Cuervo & Gamerman (2005),
where samples of the posterior variance regression distribution are proposed from
a normal transition kernel de�ned by the combination of working observational
model and a normal prior distribution.
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To �t Bayesian homoscedastic and heteroscedastic regression models, we
developed the BSPADATA R-package, which is available to users at https:

//cran.r-project.org/web/packages/BSPADATA/. To evaluate the performance
of the proposed Bayesian method and of the BSPADATA R-package, we developed
simulated and applied analyses, and we compared our result with that obtained
by applying maximum likelihood methods. We used the BSPADATA R-package
to �t the econometric models to two known datasets: level of crime in 49 districts
of Columbus, Ohio, and rate of occurrence of Leukemia in New York. In the �rst
one, the level of crime is explained by the average price of housing in each district
and by the average income of its inhabitants (Anselin, 1988; LeSage & Pace, 2009).
In a second application, the rate of occurrence of Leukemia in New York is the
variable of interest, and is associated with factors such as the potential exposure
and the proportion of cases per spatial unit (Waller, 1996).

After this introduction, the rest of the paper is organized into four sections
and an appendix. Section 1 includes the Bayesian homoscedastic econometric
regression models' de�nition, the full posterior conditional distributions and the
respective Bayesian algorithm formulation. Section 2 includes the Bayesian
heteroscedastic econometric regression models' de�nition, the full posterior
conditional distributions and the respective Bayesian algorithm formulation.
Section 3 presents results of three simulation studies related to SAR and
SARAR/SAC homoscedastic and heteroscedastic models. Section 4 reports results
of two application studies. Finally, the appendix contains some homoscedastic
and heteroscedastic functions of the BSPADATA R-package and some theoretical
developments of the proposed Bayesian methods.

1. Bayesian Homoscedastic Econometric Regression

Models

Let Ai, i = 1, 2, 3, . . . , n, be a partition of a region S. This partition induces
a neighborhood structure {Ni : i = 1, . . . , n}, where Ni denotes the set of
all subregions that are neighbors of subregion i. The most common neighbor
de�nitions are given by the physical �rst-order contiguity or by the distance
between regions; however, being neighbors does not necessarily connote geographic
proximity. If two subregions Aj and Ak, are in the neighborhood of region Ai, it
does not mean that the interdependence between Aj and Ai, and between Ak and
Ai are the same. This interdependence between Ai and Aj , j ̸= i, is characterized
by nonnegative real numbers wij , j ∈ {1, 2, . . . , n} − {i} such that

∑
j ̸=i wij = 1.

Thus, spatial interdependence of a spatial variable of interest can be written as
a symmetric weight matrix W , with zeros in the main diagonal and non-negative
entries outside the diagonal. Thus, assuming two spatial weight matrices W1 and
W2, the Bayesian econometric regression model is de�ned as follow: let Y be an
n-dimensional vector of a spatial variable of interest; X an N×K a design matrix;
W1 and W2 be N × N symmetric spatial weight matrices; (βt, ρ, λ)t a vector
of regression parameters, where β is a K-dimensional parameter vector and ρ and
λ are related to the spatial association of Y and ε, respectively. The general
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homoscedastic econometric model (SARAR/SAC) is given by:

Y = Xβ + ρW1Y + ε (1)

ε = λW2ε+ ν, (2)

where ν ∼ N(0,Ω), with 0 an n-dimensional vector of zeros and Ω = σ2IN×N .
For a Bayesian model speci�cation, we assume the following independent prior
distribution for the regression parameter: β ∼ N(b,B), σ2 ∼ Inv-Gamma(ζ, ϑ),
ρ ∼ U(1/ω1max

, 1) and λ ∼ U(1/ω2max
, 1), where ω1max

and ω2max
are the largest

negative eigenvalues of the symmetric spatial weight matrices W1 and W2,
respectively (Anselin, 1988).

The spatial autoregressive models (SAR) are de�ned from the homoscedastic
regression models de�ned by (1) and (2), by setting λ = 0. If ρ = 0, the spatial
error models (SEM) are de�ned.

1.1. Full Posterior Conditional Distributions

Assuming the general homoscedastic econometric model de�ned by equations
(1) and (2), the likelihood function is given by:

L(β, ρ, λ, σ2) ∝ |I− ρW1||I− λW2|(σ2n)−
1
2 exp

{
− 1

2σ2
νtν

}
, (3)

where ν = (I − λW2)[(I − ρW1)y − Xβ]. Thus, with the prior parameter
distributions de�ned above, the posterior parameter distribution, obtained by
applying Bayes' theorem, is given by:

π(β, σ2, ρ, λ) ∝ |σ2|−n/2|A||D| exp
{
− 1

2σ2
(Ay −Xβ)tDtD(Ay −Xβ)

}
×

exp

{
− 1

2
(β − b)tB−1(β − b)

}
ζϑ

Γ(ϑ)
(σ2)−ϑ−1 exp

(
− ζ/σ2

)
P (ρ)P (λ),

(4)

where A = I − ρW1, D = I − λW2 and, P (ρ) and P (λ) denote the prior of ρ
and λ, respectively (Cepeda-Cuervo, 2001; Cepeda-Cuervo & Gamerman, 2000).
Thus, the full posterior conditional distributions of:

1. β, π(β|σ2, ρ, λ), is a normal distribution N(b∗,B∗), where
b∗ = B∗(σ−2XtDtDAy +B−1b) and B∗ = (σ−2XtDtDX+B−1)−1.

2. σ2 is given by:

π(σ2|β, ρ, λ) ∼ Inv-Gamma

(
ζ +

n

2
,
k

2
+ ϑ

)
, (5)

where k = (Ay −Xβ)tDtD(Ay −Xβ).
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3. ρ is given by:

π(ρ|β, σ2, λ) ∝ |A| × exp

{
− c

2

(
ρ− d

c

)2}
P (ρ), (6)

where c = σ−2ytWt
1D

tDW1y and d = σ−2ytWt
1D

tD(y −Xβ).

4. λ is given by:

π(λ|β, σ2, ρ) ∝ |D| × exp

{
− c′

2

(
λ− d′

c′

)2}
P (λ), (7)

where c′ = σ−2(Ay −Xβ)tWt
2W2(Ay −Xβ) and

d′ = σ−2(Ay −Xβ)tWt
2(Ay −Xβ).

Note that the full conditional distributions of β and σ2 are known, while the full
conditional distributions of ρ and λ are analytically intractable. Therefore, to
propose a Bayesian algorithm to obtain samples of the posterior distribution, we
develop in Section 1.2 normal transition kernels to propose samples of the posterior
conditional distributions of ρ and λ.

1.2. Bayesian Algorithm

In order to obtain samples of the posterior distribution π(β, σ2, ρ, λ), we
propose an iterative process where samples of β, σ2, ρ and λ are obtained from
their full conditional posterior distributions. Thus, samples β are obtained from
the posterior conditional distribution π(β|σ2, ρ, λ) and samples of σ2 are obtained
from their posterior conditional distribution π(σ2|β, ρ, λ), which are a normal and
a gamma distributions, respectively.

To obtain samples of the full posterior conditional distribution of ρ and λ,
taking into account that these are analytically intractable, we propose truncated
normal kernel transition functions given by the normal distributions N(c∗, d∗),
restricted to the interval (1/ω1max

, 1), to obtain samples of ρ, and the normal
distribution N(c′∗, d′∗), restricted to the interval (1/ω2max

, 1), to obtain samples
of λ. In these kernel transition function de�nitions c∗, d∗,c′∗ and d′∗ are given by:

c∗ =
ytWt

1D
tD(y−Xβ)

ytWt
1D

tDW1y
d∗ = σ2

ytWt
1D

tDW1y

c′∗ =
(Ay−Xβ)tWt

2(Ay−Xβ)

(Ay−Xβ)tWt
2W2(Ay−Xβ)

d′∗ = σ2

(Ay−Xβ)tWt
2W2(Ay−Xβ)

,

where A and D are de�ned as in Section 1.1. Thus, samples of the posterior
distribution π(β, σ2, ρ, λ) can be obtained, given that samples of the full posterior
conditional distributions of ρ and λ can be obtained by applying the Metropolis
Hastings algorithm.

Revista Colombiana de Estadística - Theorical Statistics 45 (2022) 341�361



346 Edilberto Cepeda-Cuervo & Jorge Armando Sicacha

2. Bayesian Spatial Heteroscedastic Econometric

Models

Let Y be an n-dimensional vector of a spatial variable of interest. If Y, X, β,
ρ, λ, W1, W2, ε and ν are de�ned as in homoscedastic econometric models, the
Bayesian spatial heteroscedastic econometric model is de�ned by:

y = Xβ + ρW1y + ε (8)

ε = λW2ε+ ν, (9)

where ν ∼ N(0,Ω) with Ω a diagonal matrix, with diagonal entries given by
diag(g(Ωii)) = Zγ. In the variance regression structure, Z is an N × p design
matrix of dispersion regression structure, γ is a p-dimensional vector variance
regression parameter and g is an appropriate real function. For the Bayesian
model speci�cation, we assume the following independent prior distribution for
the parameter models: β ∼ N(b,B), γ ∼ N(g,G), ρ ∼ U(1/ω1max

, 1) and
λ ∼ U(1/ω2max

, 1), where ω1max
and ω2max

are de�ned as in Section 1.

2.1. Full Posterior Conditional Distributions

Assuming the model de�ned by equations (8) and (9), the likelihood function
is given by:

L(β,γ, ρ, λ) ∝ |I− ρW1||I− λW2||Σ|− 1
2 exp

[
− 1

2
ν′Σ−1ν

]
, (10)

where ν = (I−λW2)[(I−ρW1)y−Xβ]. Thus, with the prior distribution de�ned
above, the posterior parameter distribution, obtained by applying Bayes' theorem,
is given by:

π(β,γ, ρ, λ) ∝ |Σ|−1/2|A||D| exp
{

−
1

2
(Ay −Xβ)tDtΣ−1D(Ay −Xβ)

}
×

exp

{
−

1

2
(β − b)tB−1(β − b)

}
exp

{
−

1

2
(γ − g)tG−1(γ − g)

}
P (ρ)P (λ),

(11)

where A and D is de�ned as in Section 1.1. Thus, from 11, the full posterior
conditional distribution of:

1. β, π(β|γ, ρ, λ), is a normal distribution N(b∗,B∗), where
b∗ = B∗(XtDtΣ−1DAy + B−1b) and B∗ = (XtDtΣ−1DX + B−1)−1

(Cepeda-Cuervo, 2001; Cepeda-Cuervo & Gamerman, 2005).

2. γ is given by:

π(γ|β, γ, λ) ∝|Σ|−1/2 exp

{
− 1

2
(Ay −Xβ)tDtΣ−1D(Ay −Xβ)

}
×

exp

{
− 1

2
(γ − g)tG−1(γ − g)

}
.
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3. ρ is given by:

π(ρ|λ,γ,β) ∝ |A| exp
{
− c

2

(
ρ− d

c

)2}
P (ρ),

where c = ytWt
1D

tΣ−1DW1y and d = (y −Xβ)tDtΣ−1DW1y.

4. λ is given by:

π(λ|ρ,γ,β) ∝ |D| exp
{
− c′

2

(
λ− d′

c′

)2}
P (λ),

where c = (Ay −Xβ)tWt
2Σ

−1W2(Ay −Xβ) and

d = (Ay −Xβ)tWt
2Σ

−1(Ay −Xβ).

The full conditional distribution of β is known, while the full conditional
distribution of γ, ρ and λ are analytically intractable. Thus, in order to propose a
Bayesian algorithm to obtain samples of the posterior parameter distribution, we
develop in Section 2.2 normal transition kernels to propose samples of the posterior
conditional distributions of γ, ρ and λ.

2.2. Proposed Bayesian Algorithm

To obtain samples of the posterior parameter distribution of θ = (βt,γ, ρ, λ)t,
we propose an interactive process, where samples of β are obtained from their
posterior conditional distribution π(β|γ, ρ, λ), obtained in Section 2.1, while
samples of γ, ρ and λ are obtained by applying the Metropolis-Hastings algorithm,
proposing samples from the following kernel transition functions.

1. To obtain samples of the full posterior conditional distribution of γ, we
build a kernel transition function applying the method proposed in Cepeda-
Cuervo (2001), and Cepeda-Cuervo & Gamerman (2005) as follows. Given
that the random variables ti = (yi − µi)

2 ∼ σ2
i χ

2
1, i = 1, 2, . . . , n, have

mean and variance given by E(ti) = σ2
i and V (ti) = 2σ4

i , assuming
a di�erentiable dispersion link function g(.), that takes into account the
positivity of the variance, the working variables ỹi's are obtained by �rst-
order Taylor approximation of g around E(ti) = σ2

i . That is,

g(ti) ≃ g[E(ti)] + g′[E(ti)][ti − E(ti)] = ỹi, (12)

where g′ denotes the �rst-order derivative of g. For these variables,
E(ỹ) = g(E(ti)) and V ar(ỹ) = g′[E(ti)]

2V ar(ti). When g is the logarithmic
function, the working observation variables are given by:

ỹi = z
t
iγ

(c)
+

(yi − ρ(c)W1iyi − λ(c)W2iyi + λ(c)ρ(c)W2iW1iyi − xt
iβ

(c) + λ(c)W2ix
t
iβ

(c))2

exp(zt
i
γ(c))

− 1,
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for which E(ỹi) = zt
iγ

(c) and V ar(ỹi) = 2. Thus, the kernel transition
function to propose samples of the variance regression parameters γ is given
by the posterior distribution obtained by the combination of a normal prior
distribution and the working observational models given by ỹ ∼ N(zt

iγ
(c), 2):

qγ(γ
(c),γ(n)) = N(g∗,G∗),

where g∗ = G∗(G−1g + 0.5ZtỸ) and G∗ = (G−1 + 0.5ZtZ)−1.

2. To obtain samples of the full posterior conditional distribution of ρ, we
propose a normal transition kernel transition function N(c∗, d∗), where:

c∗ =
ytWt

1D
tΣ−1(y−Xβ)

ytWt
1D

tΣ−1DW1y
d∗ = 1

ytWt
1D

tΣ−1DW1y

with D = I − λW2, truncated by the interval (1/ω1max
, 1), where ω1max

is
the largest negative eigenvalue of the neighbor matrix W1 (Anselin, 1988).

3. To propose samples of the posterior conditional distribution of λ, we propose
a sample transition kernel given by a normal transition kernel N(c∗, d∗),
where

c∗ =
(Ay−Xβ)tWt

2Σ
−1(Ay−Xβ)

(Ay−Xβ)tWt
2Σ

−1W2(Ay−Xβ)
d∗ = 1

(Ay−Xβ)tWt
2Σ

−1W2(Ay−Xβ)

with A = I − ρW1. This normal distribution is truncated in the
range (1/ω2max , 1), where ω2max is the larger negative eigenvalue of the
neighborhood matrix, W2 (Anselin, 1988). It is implemented in the function
hetero_general of the library BSPADATA of R, (?).

To obtain samples of ρ and λ we also propose uniform kernel transition
functions in the intervals (1/ω1max , 1) and (1/ω2max , 1), respectively.

3. Simulated Studies

To illustrate the performance of the Bayesian methods proposed to �t spatial
econometric models, the results of two simulation studies are presented. In what
follows, we use a binary neighbor matrix of the Columbus data (?), standardized
by rows, where if two spatial units i and j have a common border, the (i, j)-input
of the binary neighbor matrix is 1 and, if spatial units i and j have no a common
border, the (i, j)-input of the binary neighbor matrix is 0.

3.1. A �rst Simulation Study

In a �rst study, we assume that the variable of interest follows a normal spatial
homoscedastic distribution model given by:

Y = Xβ + ρWY + ε, where ε ∼ N(0, σ2I), (13)
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as in equations (1) and (2), but with λ = 0. Thus, to generate a dataset
for the analysis, assuming two explanatory variables, samples of size n = 100
were generated from X1 ∼ U(0, 400) and X2 ∼ U(10, 23), respectively. In all
simulations, it is assumed that X0 = I100. With these samples and assuming β =
(18, 0.478,−1.3), the mean vector value was obtained from µ = (I − ρW)−1Xβ,
where W is the neighborhood matrix de�ned in ? and 0 < ρ < 1, in order to
assume spatial dependence. Assuming σ2 = 45, the variance-covariance matrix of
Y was obtained from V (Y) = σ2[(I−ρW)(I−ρW)]−1. Hence, a sample of Y was
obtained from a multivariate normal distribution N(µ, V (Y)). In this way, three
datasets were obtained, one for each of the three values of ρ = 0.12, 0.52 and 0.90.

To complete the Bayesian model speci�cations, we assume independent normal
distributions βk ∼ N(0, 105), k = 1, 2, 3, for the regression parameters, and
σ2 ∼ G(a, b), with a = b = 0.0001 for the variance parameters. With this
model speci�cation, the posterior parameter estimates, obtained by applying the
proposed Bayesian method and maximum likelihood methods are given in Table
1. The acceptance rate in the proposed Bayesian method is 79%.

Table 1: Homoscedastic SAR models: Parameter estimates

ρ real Método Valor β0 β1 β2 ρ σ2 BIC DIC

0.12

Bay
θ̂ 20, 595 0, 490 −1, 429 0, 081 54, 229 258, 551 894, 800

s.d. 6, 233 0, 008 0, 276 0, 033 11, 997

ML
θ̂ 21, 658 0, 489 −1, 460 0, 076 47, 957 258, 175

s.d. 8, 386 0, 008 0, 261 0, 035 9, 689

0, 52

Bay
θ̂ 20, 388 0, 483 −1, 321 0, 510 44, 225 251, 708 874, 179

s.d. 5, 523 0, 008 0, 231 0, 020 9, 625

ML
θ̂ 21, 596 0, 482 −1, 340 0, 506 38, 971 251, 284

s.d. 5, 613 0, 008 0, 219 0, 022 7, 878

0, 90

Bay
θ̂ 19, 617 0, 493 −1, 332 0, 895 97, 175 302, 857 1027, 753

s.d. 13, 237 0, 013 0, 374 0, 012 21, 272

ML
θ̂ 27, 708 0, 493 −1, 393 0, 888 86, 669 302, 293

s.d. 17, 383 0, 012 0, 368 0, 016 17, 60345

Table 1 shows that the Bayesian and maximum likelihood parameter estimates
are close to the true values, all of with small standard deviations, except for
estimates of σ2 when ρ = 0.90, in which there is a high spatial association of the
variable of interest.

3.2. A Second Simulated Study

In a second study, we assume that the variable of interest follows a spatial
structure given by:

Y = Xβ + ε, where ε = λW2ε+ ν and ν ∼ N(0, σ2I). (14)

Thus, assuming two explanatory variables X1 and X2, as in Section 3.1, βt =
(18, 0.026,−0.4) and σ2 = 45, the mean is given by µ = Xβ and the variance
given by V (Y) = σ2[(I−λW)(I−λW)]−1, whereW is the weighted neighborhood
matrix de�ned in ? and λ is a real number 0 < λ < 1. Thus, three samples of Y
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were obtained from a multivariate normal distribution N(µ, V (Y)). One for each
of the values of λ = 0.25, 0.55 and 0.85, as in Section 3.1.

To complete the Bayesian model speci�cations, we assume independent normal
distributions βk ∼ N(0, 105), k = 1, 2, 3, for the regression parameters, and
σ2 ∼ G(a, b), with a = b = 0.0001. The posterior parameter estimates, obtained
by applying the proposed Bayesian method and maximum likelihood methods are
given in Table 2. All are close to the true values. This shows the good performance
of the Bayesian estimation method. In this simulation, the acceptance rates of
samples of λ are lower when λ = 0.55 and when λ = 0.85, since they are smaller
than 30%. When λ = 0.25, the acceptance is bigger than 60%. The BIC and DIC
vales are smaller for λ = 0.25.

Table 2: SAR Homoscedastic model: posterior parameter estimates.

λ Método Valor β0 β1 β2 λ σ2 BIC DIC

0, 25

Bay
θ̂ 23, 130 0, 018 −0, 768 0, 383 43, 240 249, 349 869, 568

s.d. 5, 047 0, 008 0, 274 0, 245 9, 601

ML
θ̂ 23, 989 0, 017 −0, 800 0, 214 38, 668 248, 084

s.d. 4, 787 0, 008 0, 265 0, 188 7, 848

0, 55

Bay
θ̂ 15, 858 0, 031 −0, 438 0, 843 44, 082 260, 609 909, 672

s.d. 6, 941 0, 007 0, 235 0, 132 9, 607

ML
θ̂ 16, 838 0, 033 −0, 447 0, 520 41, 691 254, 807

s.d. 4, 454 0, 007 0, 232 0, 142 8, 638

0, 75

Bay
θ̂ 13, 313 0, 026 −0, 426 0, 902 48, 816 269, 141 931, 869

s.d. 9, 546 0, 008 0, 270 0, 078 10, 630

ML
θ̂ 14, 918 0, 025 −0, 465 0, 713 45, 971 263, 806

s.d. 5, 807 0, 008 0, 269 0, 100 9, 687

3.3. A Third Simulation Study

In this section, we present results of two simulations, one assuming the
SAR heteroscedastic model and other assuming the SARAR/SAC heteroscedastic
model.

1. SAR heteroscedastic model . In this case, we assume that the variable
of interest follows a spatial structure given by:

Y = Xβ + ρW2Y + ε, ε ∼ N(0,Ω) (15)

where Ω = diag(Ωii) and log(Ωii) = γ0 + γ1z1i + γ2z2i. To generate a
dataset for the analysis, a sample of size n = 100 was generated from each
of the following uniform distributions: X1 ∼ U(0, 400), X2 ∼ U(10, 23) and
X3 ∼ U(0, 10). Thus, assuming that X = (X0,X1,X2), where X0 = I100,
a 100-dimensional unit vector, the mean vector value was obtained from
µ = (I100 − ρW)−1Xβ, where W is the neighborhood matrix de�ned in
?, β = (−35, 0.35,−1.7)t, and ρ is a real number (0 < ρ < 1). To obtain
the variance of the variable of interest we assume that variance explanatory
variables are given by Z = (Z0,Z1,Z2), where Z0 = X0, Z1 = X1 and
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Z2 = X3. Thus, assuming that Ω is a diagonal covariance matrix, such that
log(Ωii) = −8 + 0.026x1 − 0.4x3, the variance-covariance matrix of Y was
obtained from V (Y) = (I − ρW)−1Ω(I − ρW)−1. Finally, with the mean
and the variance of Y thus obtained, three samples of the variable of interest
Y were obtained, one for each of values of ρ: 0.12, 0.52, 0.90.

Assuming independent normal distributions β ∼ N(0, I105) and γ ∼
N(0, I105), for the regression parameters, the SAR heteroscedastic model 15
was �tted to each of the three simulated datasets. The posterior parameter
estimates and standard deviations are reported in Table 3.

Table 3: Heteroscedastic SAR models: Parameter estimates

ρ θ̂/s.d. β0 β1 β2 γ0 γ1 γ2 ρ BIC DIC

0, 12
θ̂ −34, 975 0, 350 −1, 700 −9, 201 0, 026 −0, 226 0, 120 −155, 610 −369, 127

s.d. 0, 020 0, 002 0, 001 0, 616 0, 002 0, 073 0, 000

0, 52
θ̂ −35, 021 0, 350 −1, 696 −5, 786 0, 016 −0, 094 0, 516 −73, 282 −90, 000

s.d. 0, 069 0, 003 0, 005 0, 597 0, 000 0, 106 0, 001

0, 75
θ̂ −34, 806 0, 350 −1, 710 −4, 541 0, 012 0, 031 0, 749 −16, 782 49, 117

s.d. 0, 175 0, 000 0, 010 0, 680 0, 002 0, 094 0, 001

For all values of ρ, the mean regression parameter estimates are close to the
true values and all have small standard deviations. The estimates of variance
regression parameters, γi, i = 0, 1, 2, change with values of ρ: the di�erences
between true and estimated parameters increase with ρ. In all cases, the
estimates of ρ are close to the true values with smalls standard deviations.

2. General (SARAR/SAC) heteroscedastic model. In this section we
consider the model where the autoregressive e�ect is included in the error
term. That is, we assume that:

Y = Xβ + ρW1Y + ε,

where ε = λWε + ν and ν ∼ N(0,Ω). In this model, the explanatory
variables and the parameter vector are de�ned as in 15. The mean vector
value is obtained from µ = (I− ρW)−1Xβ, where W1 is the neighborhood
matrix de�ned in ?, β = (−35, 0.35,−1.7), and ρ is a real number (0 < ρ <
1). The variance-covariance matrix of Y is given by:

V ar(Y) = (I− ρW)−1(I− λW2)
−1Ω(I− ρW)−1(I− λW2)

−1,

where Ω is a diagonal matrix, with log(Ωii) = −8 + 0.026x1 − 0.4x3.
With the mean and the variance thus obtained, three samples of the
variable of interest Y were obtained, one for each of the vector values
(ρ, λ)=(0.12, 0.48), (0.45, 0.65) and (0.70, 0.20), from a multivariate normal
distribution N(µ, V ar(Y)). The parameter estimates obtained by applying
maximum likelihood and Bayesian methods are given in Table 4.

As in the SAR heteroscedastic models, for all values of ρ and λ, the mean
regression parameter estimates are close to the true values and all have small
standard deviations. The estimates of variance regression parameters, γi,
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Table 4: General (SARAR/SAC) heterocedastic models: parameter estimates

ρ λ θ̂/s.d. β0 β1 β2 γ1 γ2 γ3 ρ λ BIC DIC

0, 12 0, 48
θ̂ −34, 736 0, 349 −1, 712 −7, 252 0, 023 −0, 301 0, 120 0, 392 −92, 669 −187, 788

s.d. 0, 095 0, 000 0, 004 0, 602 0, 002 0, 070 0, 001 0, 030

0, 45 0, 65
θ̂ −33, 517 0, 349 −1, 706 −0, 813 −0, 001 −0, 176 0, 445 0, 953 2, 616 102, 289

s.d. 9, 400 0, 000 0, 016 0, 819 0, 002 0, 092 0, 005 0, 057

0, 70 0, 20
θ̂ −35, 382 0, 350 −1, 675 −2, 629 0, 004 −0, 373 0, 699 0, 231 −86, 014 −166, 748

s.d. 0, 115 0, 000 0, 005 0, 594 0, 002 0, 083 0, 001 0, 090

i = 0, 1, 2, change with values of ρ. Di�erences between true and estimated
parameters are smaller for ρ = 0.12 and the di�erences between γi − γ̂i,
i = 1, 2, . . . , n increase when ρ increases. The estimates of ρ and λ, are
close to the true values and all have small standard deviation, except when
ρ = 0.45 and λ = 0.65.

4. Applications

4.1. Columbus Crime Data

In order to compare the results obtained by applying the proposed Bayesian
method with that obtained by applying maximum likelihood, the Columbus crime
data presented in Anselin (1988) were analyzed. These data are related to the
crime level in 49 districts of Columbus (Ohio), associated with income measures
and housing values. In this analysis, it is assumed that the variable of interest
is CRIME, denoting residential burglaries and car thefts for every 1000 homes,
and that the explanatory variables are HOUSE, average value of the residence in
USS 1000, and INC, average household income in USS 1000. The neighborhoods
matrix, available in the dataset columbus, is given by the standardized binary
contiguity by rows.

In the analysis of this dataset, the following homoscedastic models were �tted:
SAR model (16), SEM model (17) and the general (SARAR/SAC) homoscedastic
model (18), where ε ∼ N(0, σ2) and νi ∼ N(0, σ2).

CRIME = β0 + β1HOUSE + β2INC + ρW1CRIME + ε (16)

CRIME = β0 + β1HOUSE + β2INC + ε ε = λW2ε+ ν (17)

CRIME = β0 + β1HOUSE + β2INC + ρW1CRIME + ε ε = λW2ε+ ν(18)

All cases assumed the following prior distributions: β ∼ N(0I3, 10
4I3×3),

ρ ∼ N(0, 104) and σ2 ∼ GammaInv(0.01, 0.01), where I3×3 is the 3 × 3 identity
matrix.

For SAR, SEM and General homoscedastic regression models, the parameter
estimates and respective standard deviation, obtained by applying Bayesian
methods (B) and obtained by applying maximum likelihood (ML) are given in
Table 5. The acceptance rates are: 62.88% for ρ in the SAR models, 40.73% for λ
in the SARAR/SAC models and, 73.77% for ρ, 71.11% for λ in the SARAR/SAC
model.
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Table 5: SAR, SEM and General (SARAR/SAC) homoscedastic regression models:
Parameter estimates

SAR homoscedastic regression models

Meth. β0 β1 β2 σ2 ρ λ BIC DIC

θ̂ B 47.441 −0.308 −1.079 120.672 0.441 −− 300.203 1010.982

s.d. 7.087 0.099 0.343 26.660 0.125 −− 327.51 −−
θ̂ ML 54.201 −0.305 −1.254 107.460 0.315 −− −− −−
s.d. 7.295 0.094 0.317 10.366 0.134 −− −− −−

SEM homoscedastic regression models

θ̂ B 60.484 −0.336 −0.936 123.714 −− 0.685 306.146 1043.28

s.d. 8.068 0.099 0.392 27.440 0.220 −− −−
θ̂ ML 59.893 −0.302 −0.941 98.575 −− 0.562 304.262 −−
s.d. 5.366 0.090 0.331 19.8737 0.134 −− −−

General (SARAR/SAC) homoscedastic regression models

θ̂ B 28, 676 −0, 125 −0, 963 93, 504 0, 726 −1, 408 321, 595 1069, 836

s.d. 6, 640 0, 076 0, 232 20, 753 0, 087 0, 335 −− −−
θ̂ ML 47, 784 −0, 282 −1, 026 95, 604 0, 091 0, 167 342, 849

s.d. 9, 903 0, 090 0, 326 19, 475 0, 197 0, 297 −− −−

In general, the parameter estimates of the models obtained by applying
Bayesian methods and maximum likelihood methods agree (Table 5). The
maximum likelihood estimates presented in the table are those reported by (Neath
& Cavanaugh, 2012). Although estimates related to the SAR model 16 show
di�erences between parameter estimates of σ2 and λ, the BIC values associated
with the posterior parameter estimates are smaller than the BIC value associated
with estimates obtained by applying maximum likelihood. For the General
homoscedastic model 18, the ML and Bayesian parameter estimates of β are very
similar, despite the di�erences of standard errors. In this model, although the ML
and Bayesian parameter estimates of σ2 and λ also present larger di�erences, in
both parameter estimates and standard errors the BIC indicates that the best �t
is obtained when the Bayesian method is applied. The best model (that with the
lowest DIC and BIC values) is the homoscedastic SAR model.

4.2. Leukemia in New York Data

In this section we analyze the New York dataset presented in Waller & Gotway
(2004), associated with the risk factors of leukemia in New York between 1978 and
1982. This dataset is related to the following variables:

� Z: Proportion of patients with leukemia in the population at risk. This ratio
was transformed in Waller & Gotway (2004) for use in models where normal
errors are assumed.

� PCTAGE65P : Percentage of people in each space unit 65 years of age.

� PCTOWNHOME: Percentage of people in each space unit with their own
home.
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� PEXPOSURE: Potential exposure to risk factors de�ned as the
inverse distance between each spatial unit and the nearest site where
trichloroethylene is found.

Given that this dataset has been used in various epidemiological studies for
di�erent purposes (Waller, 1996; Gangnon & Clayton, 1998; Waller & Gotway,
2004), we only try to understand the Bayesian method proposed and the use of
the BSPADATA r-package, not to understand the behavior of leukemia rates.
Thus, we �t the model presented in Waller & Gotway (2004) given by:

Z = β0 + β1PCTAGE65P + β2PCTOWNHOME + ρW1Z+ ε

ε = λW2ε+ ν,

where ν is a normal error term of mean 0 and diagonal variance matrix Ω, which
have diagonal values given by Ωii = exp(γ0 + γ1PEXPOSUREi), i = 1, . . . n.
In this case we assume W1 = W2, where W1 is a matrix obtained from the
listw_NY object of the dataset NY_data of R (?). It is a matrix of binary
contiguity, standardized by rows, where if a pair of spatial units, i and j, are
neighbors, then the input [i, j] of the matrix is di�erent from 0, guaranteeing that
the sum of each row of the matrix is 1. The vector pair β and γ have normal prior
distributions, N(0.10000I).

For SAR, SEM, and General (SARAR/SAC) heteroscedastic regression models,
the parameter estimates and respective standard deviations, obtained by applying
the proposed Bayesian methods, are given in Table 6. The acceptance rates are:
50.92 % for λ and 60.65 % for ρ in the SAR model, 50.90 % for λ and 41.15 % for
ρ in the SEM model and; 50.22 % for λ , 0.06 % for ρ and 22.31 % for λ in the
general (SARAR/SAC) heteroscedastic model.

Table 6: Leukemia application: Parameter estimates.

SAR heteroscedastic regression models

Method β0 β1 β2 γ0 γ1 ρ λ BIC DIC

θ̂ −0, 397 3, 622 −0, 418 −0, 594 −0, 164 0, 298 −− 64, 903 1059, 569

s.d. 0, 143 0, 617 0, 171 0, 164 0, 078 0, 099 −− −−
SEM heterocedastic regression models

θ̂ −0, 458 3, 887 −0, 464 −0, 570 −0, 175 0, 372 −− 69, 909 1087, 139

s.d. 0, 163 0, 634 0, 200 0, 163 0.077 0, 128 −− −−
General (SARAR/SAC) heteroscedaastic models

θ̂ −0.345 2.493 −0.071 −1.044 −0.176 −1.816 0.996 209, 042 1527, 007

s.d. 4.872 0.525 0.197 0.162 0.077 0.134 0.005

The results show agreement between parameter estimates of the SARAR/SEC
and SAR models, but the BIC (DIC) value of the SAR model are the smallest.
However, the parameter estimates of β and γ do not agree with the parameter
estimates of the homoscedastic general model, which have a bigger BIC (DIC)
value and smaller acceptance rates.

As in the �rst aplication of the Columbus crime data, from the BIC
(DIC) values we conclude that the homoscedastic and heteroscedastic general
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(SARAR/SAC) models do not �t are not �t the respective datasets well, possible
due to misidenti�cation of problems, taking into acount that in these aplications
we assume that W1 = W2.

5. Conclusions

In this paper we propose Bayesian methods for econometric regression models,
including those where the variability is assumed to follow a regression structure.
We also introduce the BSPADATA R-package, which can be used to �t Bayesian
econometric regression models by applying the Bayesian method proposed by
Cepeda-Cuervo (2001) and Cepeda-Cuervo & Gamerman (2005), and summarize
the results of the posterior inferences obtained in studies of simulations and
applications. In these simulations, we consider spatial homoscedastic regression
models with ρ = 0.12, 0.52, 0.90 and λ = 0 and with ρ = 0 and λ = 0.25, 0.52, 0.90,
and SEM heteroscedastic regression models with ρ = 0.12, 0.52, 0.75. In all of
them, the posterior inferences show good performance of the proposed Bayesian
methods: all the parameter estimates are close to the true parameter values and
the respective standard deviations are small. However, researches and students can
develop new simulations using the BSPADATA R-package to verify the performance
of the Bayesian methods proposed here, assuming di�erent values of the variance in
the homoscedastic econometric models and diferent variancee regression structures
in heteroscedastic models. Finally, we provide results of the applications of the
models and compare our results with that obtained by maximum likelihood.

In the Bayesian method proposed to �t spatial econometric models, the normal
transition kernel shows good performance for β, γ or σ, and ρ in �tting of spatial
econometric models. However, if the kernel transition function is a Gaussian one,
the results are better than if the kernel is a uniform distribution, so the review of
the simulations allows us to identify at least a possibility of extending this Bayesian
method, proposing a new kernel transition function for λ.

Appendix A.

The BSPADATA R-package is the computational implementation of the spatial
econometric models proposed in sections 1 and 2, under an innovative Bayesian
approach. This package is composed of six functions. Three of them (hom_sar,
hom_sem and hom_general) �t the Bayesian homoscedastic econometric
regression models presented in section 1, and the other three (hetero_sar,
hetero_sem and textithetero_general) to �t the Bayesian heteroscedastic
econometric regression models presented in Section 3.

These functions enable obtaining posterior parameter estimates as their
standard errors. Users can also retrieve the Markov chains associated with each
parameter and their graphical representation. Besides this, they can obtain the
Bayesian information criteria (BIC), the deviance information criterion (DIC) and
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the acceptance rates for those parameters, whose sampling involves a Metropolis-
Hastings step.

Appendix A.1. Homoscedastic Models

The BSPADATA R-package functions hom_sar, hom_sem and hom_general
can be used to �t the Bayesian homoscedastic SAR, SEM and General spatial
econometric models, respectively. The syntaxes of these functions are:

� hom_sar

hom_sar(y,X,W,nsim,burn,step,b_pri,B_pri,r_pri,lambda_pri,

beta_0,sigma2_0,rho_0,kernel,plot,chains)

� hom_sem

hom_sem(y,X,W,nsim,burn,step,b_pri,B_pri,r_pri,lambda_pri,

beta_0,sigma2_0,lambda_0,kernel,plot,chains)

� hom_general

hom_general(y,X,W1,W2,nsim,burn,step,b_pri,B_pri,r_pri,

lambda_pri,beta_0,sigma2_0,rho_0,lambda_0,kernel,mateq,

plot,chains)

For these functions, y, X ,W1 and W2 represent the response variable, the
explanatory variables and the spatial contiguity matrices, respectively. W1 and
W2 are assumed equal by default in the hom_general function. On the other hand,
nsim, burn and step are the number of simulations, the burn-in period of the chain
and a parameter that indicates how often a sample does not have to be discarded.
b_pri, B_pri, r_pri and lambda_pri are the parameters for the prior distributions
of β and σ2. Finally, beta_0,sigma2_0 , rho_0 and lambda_0 are the initial values
of each chain. For ρ and λ, the transition kernel is chosen through kernel. It can
be either normal or uniform . The mateq parameter in the hom_general function
indicates whether or not W1=W2 is assumed. The plot parameter is a logical input
that indicates whether or not the chains of each parameter are to be shown, and
the logical parameter chains indicate if the Markov chains are to be saved and
returned.

Appendix A.2. Heteroscedastic Models

The hetero_sar, hetero_sem and hetero_general functions can be used to �t
the SAR, SEM and General heteroscedastic models. The syntax of these functions
is:

� hetero_sar

Revista Colombiana de Estadística - Theorical Statistics 45 (2022) 341�361



Spatial Econometric Models: A Bayesian Approach 357

hetero_sar(y,X,Z,W,nsim,burn,step,b_pri,B_pri,g_pri,G_pri,

beta_0,gamma_0,rho_0,kernel,plot)

� hetero_sem

hetero_sem(y,X,Z,W,nsim,burn,step,b_pri,B_pri,g_pri,G_pri,

beta_0,gamma_0,lambda_0,kernel,plot)

� hetero_general

hetero_general(y,X,Z,W1,W2,nsim,burn,step,b_pri,B_pri,g_pri,

G_pri,beta_0,gamma_0,rho_0,lambda_0,kernel,mateq,plot)

For these three models, y,X, Z,W1 and W2 represent the response variable, the
explanatory variables of the mean model, the explanatory variables of the
dispersion model and the spatial contiguity matrices, respectively. W1 and W2

are equal by default in the hetero_general function. On the other hand, nsim,
burn and step are the number of simulations, the burn-in period of the chain
and how often a sample does not have to be discarded. b_pri, B_pri, g_pri and
G_pri are the parameters of the prior distributions of β and γ. Finally, beta_0,
gamma_0, rho_0 and lambda_0 are the initial values for the Markov chains. The
parameter kernel stands for the distribution of the transition kernels of ρ y λ. It
can be either normal(default) or uniform. For the hetero_general function, the
mateq parameter indicates whether or not W1=W2 is assumed. The plot parameter
is a logical input that indicates if the chains of each parameter are to be shown
and the logical parameter chains indicate if the Markov chains are to be saved
and returned.

Table 7 sumarize the six BSPADATA R-package functions.

Table 7: BSPADATA R-package functions

Function Description

hom_sar Bayesian �t of the Bayesian homoscedastic Spatial Autorre-
gresive (SAR) Model with normal error term

hom_sem Bayesian �t of the Bayesian homoscedastic Spatial Error
Model (SEM) with normal error term

hom_general Bayesian �t of the Bayesian homoscedastic general model with
normal error term

hetero_sar Bayesian �t of the Bayesian heteroscedastic Spatial Autorre-
gresive (SAR) Model with normal error term

hetero_sem Bayesian �t of the Bayesian heteroscedastic Spatial Error
Model (SEM) with normal error term

hetero_general Bayesian �t of the Bayesian heteroscedastic general model
with normal error term
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Appendix B. Proofs

Appendix B.1. General Homoscedastic Regression Models

From the posterior distribution 4, the conditional posterior distributions of ρ
and λ are given by:

1. Posterior conditional distribution of ρ:

π(ρ|β, σ2, λ) ∝ |A| exp
{
− 1

2σ2
(Ay −Xβ)tDtD(Ay −Xβ)

}
P(ρ)

where where A and D are de�ned as in Section 1.1. Thus,
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where c = ytWt
1D

tDW1y y d = (y −Xβ)tDtDW1y.

2. Posterior conditional distribution of λ

π(λ|β, σ2, ρ) ∝ |D| × exp

{
− 1

2σ2
(Ay −Xβ)tDtD(Ay −Xβ)

}
P(λ),

Thus,
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De�ning e = Ay −Xβ, it can be written as:

π(λ|β, σ2, ρ) ∝ |I− λW2| exp
{
− 1

2σ2

[
λ2(etWt

2W2e)− 2λ(etW2e)
]}

P(λ).

If c = etWt
2W2e and d = etW2e, then:
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where c = (Ay−Xβ)′W′
2W2(Ay−Xβ) y d = (Ay−Xβ)′W2(Ay−Xβ).
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Appendix B.2. General Heteroscedastic Regression Models

From the posterior conditional distribution 11, the posterior conditional
distributions of γ, ρ and λ are given by:

1. Posterior conditional distribution of γ:

π(γ|β, ρ, λ) ∝ |Σ|−1/2
exp

{
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}
.

This posteriori conditional distribution does not have a known functional
form. Thus we propose a Bayesian method based on working variables, in
order to obtain samples of the posterior distribution of γ, based on Cepeda-
Cuervo (2001) and Cepeda-Cuervo & Gamerman (2005).

2. Posterior conditional distribution of ρ:

π(ρ|β,γ, λ) ∝ |I− ρW1| exp
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3. Posterior conditional distribution of λ.
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W2 − λW

t
2Σ

−1
+ λ

2
W

t
2Σ

−1
W2)(Ay − Xβ)

]}
P(λ)

(19)
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De�ning e = Ay −Xβ, we get:

π(λ|β,γ, ρ) ∝ |I− λW2| exp
{
1

2

[
λ2(etWt

2Σ
−1W2e)− 2λ(etΣ−1W2e)

]}
P(λ)

If c = etWt
2Σ

−1W2e and d = etΣ−1W2e, then:

π(λ|β,γ, ρ) ∝ |I− λW2| exp
{
− c′

2

[
λ2 − 2λ

d′

c′
+

b′2

c′2
− d′2

c′2

]}
P(λ)

∝ |I− λW2| exp
{
− c′

2

(
λ− d′

c′

)2}
P(λ),

where c = (Ay −Xβ)tWt
2Σ

−1W2(Ay −Xβ)
and d = (Ay −Xβ)tΣ−1W2(Ay −Xβ).

With these results for the heteroscedastic general model, the formulas of the
heteroscedastic and SAR models can be obtained.[
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