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Abstract

We consider a finite population mixed model that accommodates
response errors and show how to obtain optimal estimators of the
finite population parameters in a pretest-posttest context. We illustrate
the method with the estimation of the difference in gain between
two interventions and consider a simulation study to compare the
empirical version of the proposed estimator (obtained by replacing variance
components with estimates) with the estimator obtained via covariance
analysis usually employed in such settings. The results indicate that in
many instances, the proposed estimator has a smaller mean squared error
than that obtained from the standard analysis of covariance model.

Key words: analysis of covariance; BLUP; optimal estimator; random
permutation model, .

Resumen

Se considera un modelo mixto para poblacién finita que tiene en cuenta
el error de respuesta y que arroja estimadores 6ptimos de los pardmetros
de la poblacién finita, para analizar datos de estudios con estructura del
tipo pretest-posttest. Se ilustra el método estimando la diferencia en
ganancia entre dos intervenciones y se considera un estudio de simulacién
para comparar la versién empirica del estimador propuesto (obtenido
al reemplazar las componentes de varianza con sus estimativas) con el
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estimador obtenido via andlisis de covarianza, que es usualmente empleado en
este tipo de estudios. Los resultados indican que en muchas circunstancias,
el estimador propuesto tiene menor error cuadratico medio que el obtenido
del andlisis estandar usando el modelo de covarianza.

Palabras clave: andlisis de covarianza; BLUP; estimador éptimo; modelo
de permutacién aleatoria.

1. Introduction

Pretest-posttest studies are frequently used in areas such as Biology, Medicine,
Psychology etc. The objective, in general, is to assess the effects of some
kind of intervention (a treatment, for example) on some response distribution.
The procedure consists of measuring the response variable before and after an
intervention. We motivate our proposal via a study conducted at the Faculty
of Medicine of the University of Sdo Paulo, Brazil, designed to evaluate the
homogeneous resistance of the respiratory system (HRRS) of mice under two
experimental conditions. Each of 29 mice exposed to synthetic air (pretest) had
the HRRS measured. A group of 15 mice was selected at random from the 29 and
again submitted to synthetic air in the posttest period [control group (C)]. The
remaining 14 mice were exposed to a mixture of Helium-Oxygen [treatment group
(7)] in the posttest period. All mice had posttest HRRS measured. A profile plot
of the data is shown in Figure 1.
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FIGURE 1: Profile plot of homogeneous resistance of the respiratory system (HRRS) of
mice.
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Statistical analyses of pretest-posttest studies have been addressed by
numerous authors, among which we mention Brogan & Kutner (1980), Laird
(1983), Stanek IIT (1988), Knoke (1991), Singer & Andrade (1997), Bonate (2000),
Yang & Tsiatis (2001), Leon, Tsiatis & Davidian (2003), Aoki, Achcar, Bolfarine
& Singer (2003) and Alencar, Singer & Rocha (2012).

In particular, the analysis of covariance model considered in Laird (1983) is
suited for the setup described above. It assumes that the pretest HRRS, Y7,
i=1,...,n, are fixed and that

Kg* :N2+Th+ﬁ(ytﬁ_?1)+ehiv 7::17...,71}1, h':C7T7 (1)

n
where Y1 = n ' Y V3, 7.+ 7, =0, e, and e,; are uncorrelated random
i=1
measurement errors such that E(e.;) = E(e,;) = 0, V(e.;) = V(e ;) = o2
The term psy corresponds to the average posttest HRRS, § represents the common
linear regression coefficient relating the posttest HRRS (Y;2*) to the pretest HRRS
(Y%) and 7, (7,) corresponds to the effect of the ventilation with C (7)) on the
average posttest HRRS.

A scatterplot of the HRRS along with the corresponding least squares

—

regression line, E(YA*) = fia +7) —|—B(Y[§ —Y1), h =C,T, is displayed in Figure 2.
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FIGURE 2: Scatter plot for the pretest and posttest measurements and expected curves
under model (1).

In many practical situations, the assumptions underlying model (1) may not
hold or may be difficult to verify as in Figure 2, where the straight lines generated
by model (1) do not fit the data appropriately. To bypass this problem, we follow
the ideas of Stanek III & Singer (2004) and propose an alternative model stemming
directly from finite population sampling without additional assumptions and thus
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is design-based. We assume that response error may be present in the observed
values.

In Section 2 we describe the finite population mixed model for the analysis
of pretest-posttest designs. In Section 3 we present a simulation study designed
to compare the performance of the proposed estimators to that of the standard
analysis of covariance estimators. Section 4 is dedicated to the analysis of the
motivating example. We conclude with a brief discussion in Section 5.

2. The Finite Population Mixed Model for Pretest-
Posttest Designs With Response Error

We define a finite population as a collection of N identifiable units, labeled
s, s =1,...,N, using a notation similar to that employed in Stanek III, Singer
& Lencina (2004). In particular, we assume the existence of three quantities
associated to unit s, namely, the pretest response 51, the posttest response for
unit s exposed to the control treatment, y%, and the posttest response for unit
s exposed to active treatment, y’,. Also, we assume that if any unit could be
submitted to both treatments, the three values would be observed (possibly) with
response error. In practice, unit s is randomly submitted to one treatment, C or
T, and therefore y$, and y/, are regarded as the potential responses of unit s in the
posttest. The potential response approach (or potential observation approach) has
been considered by different authors such as Leon, Tsiatis & Davidian (2003) under
a pretest-posttest context, Rubin (2005) under a different design of experiments
context and Pfeffermann (2017) under an observational study context.

We formalize the process of simple random sampling without replacement
by introducing a finite population model according to which any permutation
of units in the population can be selected with equal probability (N!)~1. We
assign a new label, ¢ = 1,..., N, to each unit according to its position in the
permutation and represent the pretest and the potential posttest responses by
a N x 3 random matrix [Yl,Yg,YZ—] where Y| = (Yi1,...,Yi1,...,Yn1) " and
Yh=y . Yh . YR, h=C,T.

To associate the values y; = (Yi1,---,Ys1,---,yN1)| and yh =
(Yoo syl yhy) T, R =C, T, to Y71, Yg and YZ—, we consider

Y1 Y5 Y] =Uly, y5 y] (2)

where U = [Uy,...,Un]|" is a N x N matrix with U; = (U;y,...,U;n)" and
U;s is an indicator random variable that takes on a value 1 if unit s is selected in
position ¢ in the permutation and zero otherwise. Letting the subscript S indicate
expectation with respect to permutation of units, we have Eg(U) = N~'J y and
Vs (vec(U)) = (N — 1)~ (Py ® Py) where J, = 1,1/, 1, is an a x 1 column
vector with all elements equal to 1, Py = I, — b 'J,, Py = P, I, is an
a X a identity matrix, and vec and ® respectively denote the vec operator and the
Kronecker product [see Harville (1997), for example].
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To include response error both in the pretest and in the posttest response we
consider the model

YT Y5 Y]']=Ully, v5 yJ)+(E:1 E5 EJ) (3)

where Y5 = (Yi5,..., Y5, ., Vi), Yo = (Y, ... vk . YT, h =
C,T and [E; Eg E;] is a random matrix with E; = (Ey1,...,Ee,...,Ex1) "
and EY = (Ey, .. Ely .. E%,)T, h=C,T for which Eg(Es) = Eg(E") =0,
Vr(Es) = 0%, Vg(EL) = (6%)%. We also assume that the variables Fy;, ES,,
EJl,and Uy, s=1,..., N, are uncorrelated. The subscript R denotes expectation

with respect to the response error distribution.

In particular, for position ¢ in a permutation,

N N
Y = Z Uis(Ys1 + Es1) = p1 + da + Z UisEs1,

s=1 s=1
N N (4)
VA = Ui(yly + Bly) = ph +dly + > Ui El,
s=1 s=1

N N N
where d;; = Z Ui55517 with 6s1 = Ys1 — M1, M1 = Nt Z Ys1, d?z = Z Uis5?27
s=1

s=1 s=1

N
with 8% = y" — pb and pb = N=1 Sy, h = C,T. Note that u} can
s=1

N
be reparametrized as ub = p1 + 7 + a where v = (2N)7! Y (% + y%,) and
s=1

an = pi = p1 =7,
Then, the mixed model for finite populations pretest-posttest designs with
response error may be expressed as

Z* = ved(Y; Y$" Y]) = (L@ 1y)u+d+ E° (5)

where p = (1 pS 13 )7 corresponds to a vector of populational (fixed effects)
pretest and posttest means, p1, xS and pd, d = [d] (dS)T (d])T]T, with
dy = (du,..., dia,...,dy1)" and dg = (d}y,..sdy, . diy) T b =C, T, is a
vector of random effects, and E* = [E] (ES)T (E])T]T, with E; = Y - Y,
and Eg = Yg* — Yg7 h = C,7T, denoting the vector of the permuted response
errors.

The vector of populational means and covariance matrix of Z* are given
respectively by

Esr(Z") = (I3 ® 1),

and

Vsr(Z*) = diag{ciIy, 751N, 75 *IN} + 2 ® Py,
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where P, is defined in the sequence to expression (2) and

N N
72 = Eg ZoglUis =N o2,
= s=1
. (6)
—h2 Z NAZ (052)27
s=1 s=1

011 031 091
_ C CcC CT
Y=|05 03 03 (7)

T CT TT
021 0Og2 O3

N N
)~ ;(ysl —m)? ofy = (N -1)7! le(ysg 1) (ys1 — ),
N

5L2h/ = (N B 1)_1 Z:l(yQQ - M}2L>(yg2, - Mg/)7 h=CT,n=CT.
Target random variables and optimal predictors.

with Jg11 = (N -

In general, our interest is to estimate (predict) linear combinations of the form

N
T= Z (1Y + cRY5) + Z Y +chYih) (8)

i=1 i=1

where the ¢, %, ¢/, and cJ, are known constants attached to position i in
the permutation. Depending on the choice of c§;, ¢, ¢/ and ¢}, the quantity
T may represent a parameter or a random effect. Here we are concerned with
the estimation of linear combinations of the parameters of model (5), i.e., of the
elements of the vector .

To specify the average response difference (posttest minus pretest) for the C

intervention,
N
—1 C
T = N (VS
i=1
we use ¢, = N71 ——N‘landclvg:cz;:o,izl,...,]\f.

To specify the average response difference (posttest minus pretest) for the T
intervention,

Tr=N- IZ ~Ya),

— —1 _ _ .
weuse ch =N"1 ¢ =-N1tandc,=c, =0,i=1,...,N.

To specify the average response difference between the interventions C and T,
N
T = N-'Y (V- Z ~Ya). 9)
i=1
weusec), =c,=N"landc,=c=-N"1i=1,...
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To estimate/predict T in expression (8), under the finite population mixed
model (5) based on a simple random sample obtained without replacement, we
assume, without loss of generality, that

i) the first n positions in the random permutation, i.e., i = 1,...,n, correspond
to the selected units in a simple random sample of size n from the finite
population,

ii) for the first ne selected units, i.e., for i = 1,...,n¢ (< n), we observe Y;;
and Y directly or indirectly (when there is response error), but we do not
observe Yg, because we suppose that the first ne units are only exposed to
the C intervention

iii) for the remaining n — n¢ (= ny) selected units, i.e., for i =ne¢ +1,...,n, we
observe Y;; and Y] directly or indirectly (when there is response error), but
we do not observe Y5, because we assume that the last ny selected units are
only exposed to the 7 intervention.

As a result, T in expression (8) can be rewritten as

T=17% 4+7® (10)

with

ne n

T = Z (1Y + Y5 + Z (chYia +chY])

=1 i=nc—+1

and
N ne N
T = Z (Cz'clyﬂ + szyzg) + Z (CZIYM + Cszylg) + Z (CZIYil + CngZT) .
i=nc—+1 =1 i=nc—+1

Given that T() is observed, to estimate 7" in expression (8), we must predict 7(?)
and this may be accomplished via standard methods to obtain minimum variance
unbiased linear predictors.

In the first step, we partition Z* in expression (5) into the sample and the
remainder via the pre-multiplication of Z* by

K;
K = 11
(%) (1)
where
100 @ (I"c+nTO(nc+nT)><(N*nc*nT))
K= 0 1 0) ® (I"c OncX(N—"c))
00 1) ® (O"TX"C Iny OnTX(N—nc—nT))
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and

b2 (O(ancfnT)x(ncJﬁnT) IN—nC—nT)
K= 010 ® (O"TX"C I, OnTX(N—"C—”T))
&

0 0 1 (I"c O"CX(N—”C))

In the case where N = n¢ + ny, the matrices K7 and K can be written as

1 0 0) ® In
Kin=|(0 1 0) @ (In, Onoxn,)
00 1) @ (0n xn, In)
and
KII’N _ 0 1 O ® (OnTXnC InT)
0 0 1) ® (In, Ongxn,)
Letting
Z7i; K;;z*)’
it follows that
Z; = [Yl*,h s }/():Lc+n7—),17 Yf;, cee ,Yncc*,27 1/(27.-:-&-1),27 ) }/(ZL-:-&-nT),Q}T
and
Z;I = D/(T'LC+7L7—+1),17 o aY]:},h Yv(sz*chnT«i»l),Qy EERN} YI%?‘Q? )/(Z;Z+n7—+1),27 (RN Y]z:;
Y<$L2+1),27 s 7}/((';1L*C+n7—),21 Y17,—2*7 s ,Yn’];*,Q}T'
(12)
For the sake of simplicity and without loss of generality, we assume n¢ = ny = ng
and 0% = (052)2 = ((757;)27 s=1,..., N, under model (5). Then
ESR(ZF) = [HO ® 1no}#’7
ESR(ZFI) =Hp,
WSR(ZF) = V? = E%I4no + (Ea ® Ino) - Nﬁl(I4 ® an)Eb(I4 ® lno)Tv
WSR(Z?I) = V?I = 5?131\[74“0 + ”81H2T(14 ® 1n0)2a(1-4 ® 1"0)TH2
oS¢ 0
+ diag{X ® PN_ang, ( (2)2 UTT> Q@ P} — N—lHIEHI
22

I3® 1n_2p,

+ (N—2n0)_1 ( O s
no

) S(Is® 1E72n0|03x2n0)a

Covsr(Z},Z7) =Viyg=(5°®1,,)Hs — N '(I,®1,)HSH{
(13)
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with
10 10
2“:100201®e1ef+100200®e2e§,
01 0 0 0 1
0 0 1
>'=HZH,,
1 0 0
1 0 0
H, =
0 01 0}’
0 0 1
14
I3 ]-N—Qno ( )
H,=|/0 1 0 L ,
0 0 1 "o
r 0 0
0 0
Hj = | 040 x3(N—2n0) 10 @In, |,
i 0 1

H; - {[(2‘1)‘1 - 14} ®In0} H,

e; denotes the i-th column of the matrix I, and P,, u, 67 and ¥ are defined in
expressions (2), (5), (6) and (7), respectively.

An illustrative example designed to indicate the required elements for the model
specification in a simple setup is presented in the Appendix.

Finally, we minimize the expected mean squared error of the linear predictor
subject to an unbiased restriction, resulting in

T*=[D"(H])'HJ () 'Is@1,) +g] +9/,H3|AZ] (15)

where
_1.C T c T c c T T 17T
gr = [(cl1 +ci1)s -5 (C2n0,1 + 02n0,1)70127 <3 Chng2:Cng 1,290 - 76277,[],2} )
_ C T C T C C T
911 = [(Dngt11 T Cng1,1) -+ (CN1 T EN1)5 Cong 1,25+ - 5 CN2» Cong 1,20+ -+ »
T C C T T 1T
CN25Cng+1,25 -+ +1Cang,2:C12y -+ -9 Cn02] )

A=[I,+33(2") Y ®1,, , with 73[= 652 = 5] 2], defined in expression (6),
H,=H{(X*)"'GH,,

G=(I,21,)"A'(I,®1,,),

D=Hj(I4®1,,)" [(Ian, — A )g; — A” Hagy |+ H{ g1,

Z7 defined in expression (12) and X¢, H(, H; and H3 defined in expression
(14).
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The variance of the predictor T is

WSR(f* - T) = DT<HI)_1D +g}r(2a & Ino)(I4no - A_l)gI
- gITIH?TA_l (Ea ® Ino) Hsg,,
+2g] (B ®1I,) (Ian, — A7) Hsgy,

T of§ 0
+g;1diag X @ PN_2p,, 0 @ Py 0 911
o3

I3®1Nn_2p,

0 > 2([3@1—1\5_27“) |03><2n0)gII
2ng X3

o=t
_|_n0—19}FIH;F (I4 ® 1n0)2a (I4 ® 1n0)T HQQ[[
(16)

with P, and H respectively defined in expressions (2) and (14) and o5 h =C, T,
and X, in expression (7). Details are presented in the Appendix.

Given that 3, and @ [defined in expression (6)] are unknown, expressions (15)
and (16) cannot be computed. Moreover, ¢S] cannot be estimated since a unit
only receives one of the treatments, C or 7. To bypass this problem, we propose
to use an empirical version T of T*, where X and &3 are replaced by the following
estimates

A~ /\C ~
011 021 Ug—l
S — | g gCeo HCT
N= |03 03 03 (17)
=T =CT =TT
021 022 022
with
n m;
~ -1 * ** Ev4 -1 -1
J11 = (n - 1) Z(Yll - Yl ) =n Zyzh Y'Ll =m; Z}/iy;la
i=1 j=1
no no mg
~CC -1 5-Cx* 5-C* —1 37C*  37C* -1 C
G55 = (no— 1) (Vs = V5)% Vs =ng' Y Voo, Yo =m; ' > v53,
i=1 i=1 j=1
- T T - Tr =T =
~TT -1 TT*\2 7+ —1 T T+ —1 Tx
022 = (no—1) Z (Y 2 — Y, ) Yo =mng Z Yio ,Yio =m; ZYzjz )
i=ng+1 i=ng+1 j=1
no 0o

~ — —* —Cx, ,~—5Cx —Cx*, —Cx _ —*
051 = (no - 1) ! Z(Yu -Y; )(YiQ -Y; )7Y1 =Ny ! Y,
i=1 i=1

n

—~ _ —* 7T * 77—* —*
G =(mo—1)" Z Vi -YI)VE -Y3 )Y =ng' Z Yi,

i1=ng+1 i1=ng+1

i1 (respectively, Yg and ng2) i = 1,2,...,m;, denoting a set of pretest
(respectively, posttest under 1ntervention C and posttest under intervention 7T)
response measurements on the unit selected in position i. Here, 55 = 0 and

5 (zasl+§<afz>2+ 5 <A;5>),

i=no+1
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with 71 = (mg = 1) 7 85 (V1 — Vi (09 = (s = )7 2 (45 - V)7 and

igl 172
J=1 J=1
~T\ 2 _ . ST
(UZ;) = (mi — 1) ZI(YZZ; -Y, )2~
]_

3. Simulation Study

To compare the performance of the proposed estimator T* in expression (15)
and its empirical version, T}, with the estimator based on the analysis of covariance
model (27,), we Conducted smlulamon studies.

First we generated finite populations of size N = 300 from each of 17 underlying
distributions, namely

A) trivariate normal distributions of variables X (pretest), Y (posttest under
C treatment) and Z (posttest under T treatment) such that E(X) = 2,
E(Y) =5, E(Z) = 10, Var(X) = V(Y) = V(Z2) = 1, Cov(X,Y) =
—0.3, 0.2 or 0.5, Cov(X,Z) = —0.4, 0.2 or 0.4 and Cov(Y, Z) = 0.2,

B) trivariate Poisson distributions of variables X (pretest), Y (posttest under
C treatment) and Z (posttest under 7 treatment) such that E(X) = 1,
E(Y) =09, E(Z) =11, V(X) = V(YY) = V(2) = 1, Cov(X,Y) = 0§,
Cov(X,Z) = pJ; and Cov(X,Y) = —0.3, 0.20r 0.5, Cov(X,Z) =
—0.6, 0.2 or 0.4 and Cov(Y,Z) = 0.2, where p§, is the correlation between
the pretest latent values and the posttest control latent values, and pg_l is
the correlation between the pretest latent values and the posttest treatment
latent values. In this case, the correlation is equal to covariance because the
variances are equal to one. We do not consider the pair Cov(X,Y) = 0.5
and Cov(X, Z) = —0.6 because for the sake of simplicity, the algorithm was
not designed to simulate trivariate distributions.

For each of the 17 generated finite populations, we set the values X, Y and Z,
respectively, as the latent (potential) values y,1, v$, and y%,, s = 1,...,300 and
computed the finite population parameters

N N
on=(N-1)"> (ya—1)" =N ya,
i=1 i=1
N N
o2 = (N —1)7" Z(yﬂ - 7,)% Jp=N"" Zyn,
i—1 i—1

o1 =(N=1)""> (ya — ) Wiz — Vo),

Mz

s
I
—
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letting

0S5, = —0.3,0.2 or 0.5,
pa, = —0.4,0.2 or 0.4 (trivariate normal distribution),
pd, = —0.6,0.2 or 0.4 (trivariate Poisson distribution).

We then selected 15,000 simple random samples without replacement with size
n = 20 from each finite population so that for each sample we obtained 20 vectors

(yi1,v5%,y5) T, i =1,...,n (= 20), letting y;1, i = 1,...,n, denote the 20 pretest
latent values, y%, 1 =1,...,n0 (= 10) denote the 10 posttest control latent values
and yg, t=mng+1,...,n, as the 10 posttest treatment latent values.

To each yi1, i =1,...,m,y5%, i =1,...,n9 (= 10) and y}%, i =ng+1,...,n we

added homoskedastic response errors, generated from a normal distribution with
mean zero and variance o1 = KV, where V' = 011 4+ 095 — 2015 with k denoting a
constant, obtaining the observed values Y;5;, ¢ =1,...,n, Yg;, i1=1,...,n9 and
Y;;FQ*, i=no+1,...,n,5=1,...,10, i.e., m; = 10. We repeated this setup with
x =0.0,0.05,0.10,0.15, 0.20.

For each sample, the estimator in expression (15) and its empirical version, f(j"
of expression (9), as well as the estimator based on the analysis of covariance
model (27,) were computed along with their means, the corresponding mean
squared errors (MSE) and mean absolute error (MAE). We also evaluated the
corresponding relative contribution of the bias to the MSE as [= 100x (estimate-
T)?/MSE]. On the other hand, for each of the eight scenarios considered under
the trivariate Poisson distribution, we used 100 simple random samples without
replacement with size n = 20 to evaluate the coverage of the non-parametric
confidence intervals (applied to T and to 27, ), based on the BC, (bias corrected
and accelerated) method with o = 0.05 and 2000 bootstrap samples proposed by
Efron & Tibshirani (1993).

All the simulations and the example were implemented using R Software, (R
Core Team, 2021). The results are displayed in Figures 3, 4, 5, 6 and 7 and show
that the empirical estimator fe* is a good competitor to the analysis of covariance
estimator, 27,, especially for non normal distributions. In general, the MSE and
the MAE increase as &; increases, except when pJ;, = —0.6 under the trivariate
Poisson distribution. Coverage was shorter for o = 0.05 and neither iﬁ" nor 27,
had better performance with respect to the each other. Also, the MSE decreases
as the sample size increases and the relative contribution of the bias to the MSE
was less than 1% for all the simulations.
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FIGURE 3: MSE of TA"*, f‘e* and 27,.. Data generated from a trivariate normal distribution

and ng = 10.
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FIGURE 4: MSE of 7%, T and 27.. Data generated from a trivariate Poisson distribution
and ng = 10.
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FIGURE 5: MAE of T - f; and 27,. Data generated from a trivariate normal distribution
and ng = 10.
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FIGURE 6: MAE of T, T and 27.. Data generated from a trivariate Poisson distribution
and ng = 10.
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FIGURE 7: Estimated coverage of T and 27,. Data generated from a trivariate Poisson
distribution and no = 10.

4. Example

Turning back to the example described in Section 1, we have ne = 15 and
ny = 14. Since, for simplicity, we assumed that ne = ny = ng in Section 2, we
deleted the last observation of the control group (C). The simplicity of expression
(15) depends on ng = ny = ng. The proposed estimator, f*, could be obtained
when ne # ng but require extensive modification to the notation and to the
computations.

In this example, we are interested in the estimation of the difference between
the average HRRS for interventions C and 7 . We have a sample of n = 28
animals and assume two values, namely N = 100 and N = 500 for the size of the
corresponding finite population. We let

011 = (n— 1)_1 (Y3 _?1)2

v

s
Il
-

Gon=m-1)"") (V3-Y,)’

M-

o
Il
A

o1 =(n—1)7" Y (Vi - Y1) (V55— Y>)

M-

«
I
—
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-

>

. . n
with Y: = n 13 V4 and Y; = n"1 > V3% We assume that the response
i=1

K2 =
error variance o2 = (5)? = (73 )2 kV, where k = 0.0 or k = 0.10 and
V =511 + 022 — 2012. Note that if there is no response error, kK = 0. Also, m; =1

for all i because we have one response measurement per unit.

The proposed estimator fe* and the covariance analysis model estimator in
model (1), namely 27, along with their respective non-parametric confidence
intervals based on the BC, (bias-corrected and accelerated) method with a = 0.05
proposed by Efron & Tibshirani (1993) are shown in Table 1. The R code is
available from https://github.com/LuzM-GitHub/Pretest-Posttest.

TaBLE 1: Difference (x107%) in average HRRS between the interventions C and 7 along
with their respective non-parametric confidence intervals (x1072).

Confidence interval limits

Estimate  Lower Upper Length
T* (N =100,k = 0) -12.2 -26.1 4.7 30.9
27, -10.5 -24.8 5.0 29.8
T* (N =500,k = 0) -12.2 -25.9 5.2 31.1
27, -10.5 -24.9 5.8 30.7
T* (N = 100, k = 0.10) -12.2 -26.7 6.0 32.7
T* (N = 500, = 0.10) -12.2 -26.4 5.0 31.4

From Table 1, we observe that as N increases, the estimate T; remains the
approximately the same, indicating that the size of the population exerts small
effect on the corresponding confidence intervals. We also note that the confidence
interval for the analysis of covariance model estimate (27, ) is slightly shorter, but
at the price of a less general model.

5. Conclusion

Although the only assumption required by the proposed finite population
estimators is that the data be obtained by a possibly conceptual simple random
sampling scheme, their performance is comparable to that of estimators based on
the usual normal analysis of covariance model for a variety of problems where a
finite population is exposed to two kinds of intervention. Target quantities may
correspond to the average gain for the finite population units expressed as the
linear combinations of their individual latent values. In fact, for asymmetrically
distributed data and n = 20, the proposed estimator, T, has a smaller MSE than
27,, the estimator stemming from a standard analysis of covariance model.
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In particular, when ¥ in expression (7) is unknown, we can estimate T* with
different pretest sample variances separately for each group (C or T), i.e., taking

5, 0 &5 0
=T =T
N 0 o 0 o ~b ~
¥ = ~C 1 ~ccC 21 and ¥ = IioZ}IiI(—)r
o5, 0 055 0
0 o, 0 &7

n n
where 5§, = (no — 1) Y. (V7 = V9 )%, 6T = (o - 7' > (Vo -V )%
i=1 i=ng+1
and Y, Yf*, YZ—*, 5., 611, 655, 61,7 and & are defined in expression (17). In
this case, when there is no response error, the estimator T* in expression (15) is
equal to the estimator obtained via standard analysis of covariance.

If the interest lies on the difference between the posttest latent value, y¢ (or
yZ—) and the pretest latent value y, for the s-th unit in the population, the model
can be extended, but this requires the extended variable approach proposed in
Stanek IIT & Singer (2004) and Stanek ITI, Singer & Lencina (2004).
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Appendix. Illustrative Example with a Finite
Population of Size 7

For illustrative purpose, we consider a hypothetical population of size N =7
and assume that the response error in the pretest and posttest for unit s can take
only two possible equally likely values given by plus or minus oy (= 0%, = ¢]3),

with g11 = ]., 0921 = 3, 031 = ].O, 041 = 7, 051 = 6, 061 — 5 and g71 = 0.05.
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We consider the selection of a simple random sample of size n = 6 without
replacement, letting the first ng = 3 selected units be exposed to intervention
C and the remaining ng = n — ng = 3 units be exposed to intervention 7.

Lety,=(35 7 15 4 6 55 9)

ys = (1225 135 7.75 105 15 12.25 18.5)T,
y] =(6.75 95 825 95 13 10.25 18.5)
Ei=(En Exn Esi Eun FEs Ea E?l)T
EC:(E1Cz ES, E§ Ef, ES, Eg EC)
] = (e, B, E} Eh B EL E)

It follows that p; = 5.214, u§ = 12.821, uJ = 10.821, &7 = 31.429[= 552 =
=T2
75 °] and

6.071 7.815 7.732
¥ =1|7815 11.536 11.036
7.732 11.036 15.119

Then we have,

5.214 5.214
Esr(Z3) = [Ho®13] | 12.821 | , E . (Z7) = Hy [ 12.821 |,
10.821 10.821

1

V? =31.429115 + (£° ® I) - (I, ®13) »b (I4®13)T7

1
Vi, = 314291, + §H;r (I, ©13) 3% (I, ® 13) " Hy

6.071 7.815 7.732
1 11.536 0
+ diag (1 - 1> 7.815 11.536 11.036 |, ( 0 15 119) ® P3
7.732 11.036 15.119 '

6.071 7.815 7.732
— -H, 7815 11.536 11.036 | H,
7.732 11.036 15.119

7.815 11.536 11.036 | (I3|03x¢),

6.071 7.815 7.732
I;
“(ors)
7.732 11.036 15.119

O6x3
6.071 7.815 7.732

1
Vi =(2"@Is) Hy — - (I, ©15) Ho | 7.815 11.536  11.036 H/
7732 11.036 15.119
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with
6071 0  7.815 0 7
0  6.071 0 7.732 3

> = H, =
7815 0 11536 0 |’ ! (8 (1) 2)@13 ’
0 7732 0  15.119

6.071 6.071 7.815 7.732
6.071 6.071 7.815 7.732
7.815 7.815 11.536 11.036 |’
7732 7.732 11.036 15.119

and Hj = {{(2@)*1 > 14} ®13}H2.

»b = Hjy; = |012x3 ® I3

o = O O
— O O O

If a realization of the random matrix U in expression (2) is

0000100
0000 0O01
0100 00O
u=10 01 0 0 0 Of,
100 0 0 0 O
0 000O0T1O0
0001 0O0O0

i.e., the selected units are s = 5, s = 7 and s = 2 for the C treatment, s =3, s =1
and s = 6 for the T treatment so that s = 4 is not selected, we have

Y (weuy = 6+ E51,9+ Er1,7+ Eo1, 1.5+ F31,3.5+ E11,5.5 + Egi, 4+ Eq1) |
Y oy = (15+ B, 18.5 + ES,,13.5 + ES,,7.75 + ES,,12.25 + EY,,

12,25 + ES,,10.5 + ES,) |
Y] iv—u = (13+ EL, 185+ EL,, 9.5+ E],,8.25 + EL,,6.75 + EJ,,10.25 + E,,

95+ EL)
Zi—uy = (6 + E51,9+ Er1, 7+ Ep1, 1.5+ E31,3.5 + E11,5.5 + Eg1, 15 + Ef,,

18.5+ ES,, 13.5 + ES,,8.25 + EL, 6.75 + EJ5,10.25 + ),
Zi1 =y = (44 E41,105 4+ E5,9.5+ EL,7.75 + E$,,12.25 + EY,,12.25 + Eg,,

13+ EZ,, 185+ EL,, 9.5+ EL) .

Derivation of Egg(Z*) and Vggr(Z™) in Expression (5)

Given that Eg(U) = N~1Jy and Vg[vec(U)] = (N — 1)"}(Py ® Py) we
have

Esr(Z") = Es {vec [U(y, v§ y])]} + Esr {vecU(E, B E)]}

= (3@ 1) (m pS wl) ',
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because Egg (UisEq1) = Eg (Uis) Er(Es1) = 0, Egg (UisES) = Es (Uss) %
Er (ESCQ) = 0 and [Eggr (UisESTQ) = Eg (Uis) Er (Ez;) = 0, where u1, uS e ul
are defined in expression (4), and

Vsr(Z*) =Es {Vgs(Z*)} + Vs {Egs (Z")}

where

Epjs (Z27) = vec [U (y; 95 y7)]
and

Vs (2%) = (Is 2 U) Vs {vec [(E1 ES EQT)} } (I;2U)",
with

N N ) N 9

oo {21 5 8T )]}t { | D] | D e8] [ D et}
Then

Vyp (Z2*) = diag {53In,55 2 In,05 2IN} + £ ® Py

SR

with P, = I, —a~'J,, ¥ defined in expression (7), and 7, 75 > and 7, 2 defined
in expression (6).

Development of the Linear Predictor of 7' in Expression (8)

and its Variance Under Model (5)

In order to obtain the best linear predictor of

N N

T=3 (Yo +c3YE) + ) (ch¥a +chYi),

i=1 i=1
under model (5), we consider the following three conditions:
a) it must be a linear function of the sample random variables, i.e.,

T = (9] +a")Z;
where Z7 and g; are defined in expressions (12) and (15), respectively,

b) it must be unbiased, i.e.,

Esr (97 +a') Z]] =Es (9 Z1 +9/,Z11)
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where

T
— C C T T
ZI - (Ylla R }/277,0,17Y12a ) Yn027 Y—(n0+1)727 LR }/271,0’2) )

C C T T
Zir= (Y(2no+1),1v s YNL Yangan) 200 VN2 Yang )20 0 Yz
T
C C T T
Y(n0+1),27 s >Y2no,275/12’ s 7Yn02) ’

with g;; defined in expression (15) [recall that Egg[Z7] = Eg[Z;] and
Esr[Z27,] = Es [Z11]].

¢) it must minimize WSR(JA“* -T), ie.,

Vsr(T* —T) = Vsr ((g/ +a")Zi -9/ Z1—9],Z11] (A1)
= (QIT + aT) Vi(gi+a)+9/Vigr+9/,,Vig;—2 (QIT + aT) Vig;
~2(g9; +a")Vigr — 29 Vg
where
Vi=Vs(Z)=(Z@I,)-N1I,01,)2Ts21,,)",
V])[[ = (D(D\Vs(ZI, ZII) = (D(D\VSR(Z;,Z]]) = (D(DWSR(Z;, Z?I) = V?II)
subject to the constraint
(97 +a")Esr(Z7] — g/ Es(Z1) — g1, Es (Z11) = (A2)
CLTESR [Zﬂ — g}rIES (Z[[) = O

Using Lagrangian multipliers along with expressions (A1) and (A2) we must
solve the system

2Via+(Vi—=Vi)g; — Vg = [Ho® 1y Asx1 (A3)
[Ho®1,,)"a—H{g,, =0, (A4)

where V7 and V7 ;; are defined in expression (13), g; and g;; are defined in

expression (15), £ 3° H, and H, are defined in expression (14) and X is the
Lagrangian multiplier. The result is

a=V) '\Vrug—(Vi—Vigl- (A5)
(V;)_l(HO ® 1“0){(H0 ® 1”0)T(V?)_1(H0 ® 1710)}_1 X
{(Ho®1,,)" (V) [Vig, — (Vi —Vi)g] - Hig;}

Now, observing that

) (V) =) @ Inx
[AT N TTA N (1,01, ) HoE(I3 - N'H,X) ' H (8°) (1,1, )A™]
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i) [(Ho®1n,) (V) H(Ho® 1,,)] 7" = H;'(Is— N"'H,X)
i) (59 @ LA™\ (V] = V) = (Tin, — A7),
iv) (2 'eL,|AT 20, =20 I,]JA ' [(Z) 'eI,] = A™!, where ©

is defined in expression (7), X% and H are defined in expression (14) and
A and H, are defined in expression (15).

it follows that the expression (A5) simplifies to
a=A"Y(Z)"'HoH;'D® 1)) — [Iun, — A" |gr + A” Hagy;

We proceed to compute the variance of the proposed estimator, which may be
expressed as

Vargp(T* —T)=a Via+g; (Vi—-V)g,+2a (Vi —V)g; —2a' Vig:,+

Q}FIVIIQH
where
i)
Vi =Vs(Z)=+ny ' Hy (I4 ©1,)) 514 @ 1,,,) ' Ho
JCC 0 .
+dlag{2®PN2n07< 82 O_TT)®Pn0}_N1H12H1
22
_ Is®1n_

=+ (N — 2710) 1 ( 3 02n0><32n0> E(IS & 1—1\r/'—2n0 |03><2n0 )7

ii)

~ s, —17 * a —
a'Via=D'H;' D+g; (Vi-Vi)g;—g] (°®1I,,) (I, —A"")g;
—N7'g; H\SH{g; +g/;H; A~ (£°© I,,,) Hzgy,

-1
—2D" (H]) H{ (27 (Liol,) AN (Vi- Vg,
-1
+2D" [Hﬂ HS— 4@ 1no]T A_lHSQH - 291T Vi-Vi] A_IHBQH
—2g9] (B @ 1In,) A" Hsg;  +29; A (27 @ 1,) Hagyy,
iii)

-1
" (Vi-Vig, =D [H]| HJE Lo, A7 Vi-Vig,

—g, (Vi=-V)g,+g]A (V] -V))g,
+g[H; A (Vi -V))g,,
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iv)

-1
a' Vg =D' (HI) Hj (I4®1,,)" A" Hagy,
~N"'gH\XH{g,, —g] (Z*® I,,)Hsg;;
+9] A (2 ®1,,) Hag; + 9, H] A7 (3 @ I,)) Hsg,

cc
. o 0
QITIVHQU = QLdWQ {2 ® PN_2n,, < (2)2 UTT) ® P"o}gll
22

—~ N'g/,H\XH/g,,

I3® 1Nn_2p,

+ (N —2n0) " g, ( Oy w3
nog X

> 2 (Is © 159, [03x2n, ) 911
+ nalg}rIHQT (14 ® 1710) % (I4 ® 1710)T HQQ]],

where 0S§ and o, are defined in expression (7) and Ho, in expression (14),

respectively.

The resulting expression is given in expression (16).
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