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Abstract

The survival competing risks model in discrete time based on multino-
mial logistic regression, proposed by Luo et al. (2016), models the non-linear
and irregular shape of hazard functions by incorporating a time-dependent
spline into the multinomial logistic regression. This model also directly in-
cludes longitudinal variables in the regression. Due to the issues arising from
including both baseline and longitudinal covariates in the extended form as
proposed, and considering that the latter may be subject to error, this ar-
ticle suggests an extension of the existing model. The proposed extension
utilizes the concept of joint models for longitudinal and survival data, which
is an effective approach for integrating simultaneousness both baseline and
time-dependent covariates into the survival model.

Key words: Discrete time; Joint model; Longitudinal model; Logistic re-
gression; Survival model.

Resumen

El modelo de supervivencia de riesgos en competencia en tiempo discreto
basado en regresión logística multinomial sugerida por Luo et al. (2016),
modela la forma no lineal e irregular de las funciones de riesgo, incorpo-
rando un spline dependiente del tiempo en la regresión logística multinomial.
Dicho modelo también incluye variables longitudinales directamente en la re-
gresión. Debido a los problemas derivados de la inclusión tanto de covariables
basales como longitudinales en la forma ampliada que hace la propuesta, y
considerando que estas últimas pueden estar sujetas a error, este artículo
sugiere una ampliación del modelo existente. La extensión propuesta utiliza
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el concepto de modelos conjuntos para datos longitudinales y de superviven-
cia, que es un enfoque eficaz para integrar simultáneamente en el modelo de
supervivencia tanto las covariables basales como las dependientes del tiempo.

Palabras clave: Modelo conjunto; Modelo de supervivencia; Modelo longi-
tudinal; Regresión logística; Tiempo discreto.

1. Introduction

Classification models, such as logistic regression, are useful for estimating the
probability of an event based on other variables. We can also analyze the time to
such an event by including it as a covariate in the model. However, to properly
model event times, it is preferable to use survival models, such as the Cox model
(Cox, 1972). The widespread use of logistic regression to model survival times be-
gan to be re-evaluated with the Cox model (Cox, 1972). An undoubtedly logical
conclusion, since the logistic model does not consider the length of the follow-up
time Myers et al. (1973). However, it wasn’t until the early 1980s that mathemati-
cal comparisons emerged. Elandt-Johnson (1980) demonstrated how the likelihood
of the logistic model approximates the partial likelihood of the Cox model when
the event rate is low and follow-up time is not too long. Green & Symon (1983)
showed that the estimation of the logistic regression model parameters is biased
and loses precision as the follow-up time increases, and also concluded that: “In
principle it would appear that the Cox model is superior to the logistic model
since it utilizes time of response and hence incorporates more information." This
discussion continued to evolve with studies such as Annesi et al. (1989), which
reached similar conclusions as those already mentioned but generalizing to several
qualitative and quantitative covariables.

When there are many tied survival times, the Cox model relies on approxi-
mations to estimate parameters, which can be computationally intensive and yield
subpar results. On the other hand, it is worth noting that when the probabilities
of survival events are low, both the Cox model and the logistic regression models
produce similar outcomes. Therefore, when the probabilities of survival events are
low and there are tied survival times, logistic regression can be a useful alternative
for modeling time-to-events. This conclusion can be extended to the analysis of
competing risks using multinomial logistic regression models, i.e., discrete-time
survival models. A model of this type was proposed by Begg & Gray (1984) based
on time-dependent covariates.

Luo et al. (2016) extended the multinomial regression model proposed by Begg
& Gray (1984) by incorporating a time-dependent spline, which provides flexibility
to the model when facing irregular risk behaviors and partially solves the loss of
fit problem caused by long follow-up times. The purpose of Luo et al. (2016) was
to estimate the probability of loan default at different time points, for credit risk
assessment. The approach considers time-dependent covariates, treating each ob-
served time point as a separate data line. The authors justified this data handling
approach by noting that credit information is often recorded in this format. How-
ever, in practice, longitudinal data may also be available intermittently for each

Revista Colombiana de Estadística - Applied Statistics 46 (2023) 145–161



A Joint Model of Competing Risks in Discrete Time with Longitudinal Information 147

subject and may be subject to errors. Furthermore, including both baseline covari-
ates and longitudinal data in the model presents challenges because individuals
with a longer credit history have a stronger influence on their baseline covariates
than those who have recently started their credit, resulting in biased estimations.
Because of this, we propose an extension to this model.

A useful method for integrating baseline and time-dependent covariates into
the survival model is to jointly model longitudinal and survival data, where lon-
gitudinal information is summarized and incorporated into the survival model. In
the credit risk context addressed by Luo et al. (2016), where the database also
includes baseline covariates, the problem can be treated using joint modeling of
longitudinal and competing risks data. Several proposals have been made in this
area, such as those by Elashoff et al. (2007), Elashoff et al. (2008), Williamson
et al. (2007), Li et al. (2009), or Teixeira et al. (2019). Since these proposals use
semiparametric survival models, they also face the tie problem mentioned earlier.
Hence, it is also reasonable to consider using multinomial regression in such cases,
particularly when the probabilities of the survival events are low.

In this paper, we extend the important model proposed by Luo et al. (2016)
for modelling competing risks in discrete time based on longitudinal information.
We do this through the concept of joint modeling to analyze situations where
it is necessary to include both baseline and longitudinal variables in the model.
We specifically illustrate its application using a credit database. The subsequent
sections, provide a concise overview of survival data analysis using logistic regres-
sion and the theory of joint modelling of longitudinal and survival data. Lastly,
we present our proposal along with an application. This paper is based on the
master’s thesis of Salazar (2021).

2. Modeling Survival Data with Logistic Regres-
sion

After introducing the notation, we will provide a brief and clear explanation
of the well-established relationship between the Cox model and logistic regres-
sion. This relationship is crucial as it justifies the use of logistic regression for
survival analysis, and we will utilize it in our application. Next, we will introduce
a multinomial regression model suitable for time-to-event analysis, for which we
will provide an extension to enhance its capabilities.

Notation: In the multinomial model, we analyze a discrete time-to-event
variable denoted as T , an event indicator δ, and a vector of independent covariates
X⃗. In the model proposed by Luo et al. (2016), the covariates are considered time-
dependent, hence the notation X⃗(t).

The variable T represents the duration from the start date until the occu-
rrence of an event, while δ indicates the different outcomes. If there are more
than two possible outcomes, it suggests a competing risks scenario. In the case
of two outcomes, we assume that the time to event T can be right-censored non-
informatively by a censoring time C. Here, the observed data for each subject
i = 1, . . . , n is denoted as (Yi, δi), where δi = I(Ti ≤ Ci) indicates whether Yi is
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an uncensored value of Ti, and Yi = minTi, Ci.
To model the time-to-event variable T jointly with a longitudinal process, we

denote the longitudinal variable that represents that process as Z.
Relationship Between Cox Model and Logistic Regression: In Green

& Symon (1983) there is a simple illustration through hazard ratio (HR) and
odds ratio (OR) to understand the relationship between the logistic regression
model and the Cox model. For simplicity we assume that these models have a
single binary covariate X, where X = 1 represents a characteristic of interest. For
the Cox model, letting T the time to event and p = λ(t | X = x) = λ0(t)e

xβ

then HR = p1

p0
= λ(t|X=1)

λ(t|X=0) = eβ . On the other hand, in the logistic regression
model, the logit of π = Pr(X = 1) is defined as the natural logarithm of the
odds of the survival event of interest: ln π

1−π = Xβ. The odds ratio is given by
OR = ODDS|X=1

ODDS|X=0 = p/(1−p)|X=1
p/(1−p)|X=0 = eβ . Assuming that the probability of the

survival event is very small (p → 0), then the ODDS = p
1−p → p and therefore:

HR =
p1
p0

≈
p1

1−p1

p0

1−p0

= OR.

Since the interpretation of the hazard ratio (HR) is more intuitive than that of
the odds ratio (OR), the advantage of the logistic model becomes evident under
the analyzed condition. However, the equivalence between Cox and multinomial
models, when the event rate is low, is diminished when there are long follow-up
times (Green & Symon, 1983).

The conditions for using logistic regression to model time-to-event data also ap-
ply to the multinomial model used for competing risks analysis. Although compet-
ing risks are characterized by univariate time, they are included in the multivariate
survival analysis because there are multiple reasons for follow-up termination (see
Houggard, 2000). This adds complexity to the models, further supporting the use
of multinomial regression as an alternative for modeling competing risks.

Survival Model in Discrete Time: In order to incorporate the effect of
time into the multinomial model, Luo et al. (2016) introduced a spline regression
as a covariate. The proposed model has the same structure as the classical multi-
nomial regression model, where the link function is the generalized logit or natural
logarithm of the ODDS for the event type δ:

ln

(
h(t, δ | x⃗(t))
1− h(t | x⃗(t))

)
= Θ

(
t, x⃗(t), ξ⃗δ

)
(1)

Θ(t, x⃗(t), α⃗δ, β⃗δ) = α1δx1(t) + · · ·+ αpδxp(t) + S(t, β⃗δ),

where Θ
(
t, x⃗(t), ξ⃗δ

)
represents the predictive function, h(t | x⃗(t)) =

∑
δ h(t, δ |

x⃗(t)) the overall risk function and h(t, δ | x⃗(t)) the conditional probability that
the δ-type event occurs at time t given covariates and that the event has not
yet occurred. Covariates have associated parameter vectors ξ⃗δ = {α⃗δ, β⃗δ}, in-
dicating that each competing risk has its own model. The parameter vector
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α⃗δ = {α1δ, . . . , αpδ} is associated with the covariates x⃗(t), while βδ is the pa-
rameter vector for a spline regression. The innovation of this proposal lies in the
inclusion of a time-dependent cubic spline as a covariate, providing flexibility to
the model and capturing irregularities and peaks in the risk accurately. This also
partially solves the loss of fit caused by long follow-up times.

h(t, δ | x⃗(t)) =
exp

(
Θ(t, x⃗(t), ξ⃗δ)

)
1 +

∑
δ exp

(
Θ(t, x⃗(t), ξ⃗δ)

) .
For this model, the data must be in an expanded format, where each subject has a
record for each observed time point. To estimate the parameters, we assume that
there are n independent individuals and consider the following likelihood function,
where δ = 0, 1, 2 and δ = 0 represents the reference event. If kit = δi ∗ I{t = ti},
where I{·} is an indicator function, then:

L =

n∏
i=1

h(ti, 1 | X⃗i(ti))
I{δi=1}h(ti, 2 | X⃗i(ti))

I{δi=2}
ti−1∏
t=1

(
1− h(t | X⃗i(ti))

)

=

n∏
i=1

ti∏
t=1


exp

(
Θ
(
ti, x⃗i(ti), α⃗1, β⃗1

))
1 + exp

(
Θ
(
ti, x⃗i(ti), α⃗1, β⃗1

))
+ exp

(
Θ
(
ti, x⃗i(ti), α⃗2, β⃗2

))



I{kit=1}

∗


exp

(
Θ
(
ti, x⃗i(ti), α⃗2, β⃗2

))
1 + exp

(
Θ
(
ti, x⃗i(ti), α⃗1, β⃗1

))
+ exp

(
Θ
(
ti, x⃗i(ti), α⃗2, β⃗2

))



I{kit=2}

∗


1

1 + exp
(
Θ
(
ti, x⃗i(ti), α⃗1, β⃗1

))
+ exp

(
Θ
(
ti, x⃗i(ti), α⃗2, β⃗2

))



I{kit=0}

.

3. Survival and Longitudinal Data Joint Models

We have two general models: selection models and mixed models. In the
selection model, the joint density function fZ,T is modeled as fT |ZfZ . In the mixed
model, it is modeled as fZ|T fT . Both types of models are applicable to longitudinal
and survival studies, but mixed models are commonly used for longitudinal studies
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with informative dropouts, while selection models are used for survival studies
where longitudinal information serves as an event marker. These two approaches
can also be combined synergistically. Joint modeling benefits both processes: the
survival process helps correct biases in the longitudinal model due to informative
dropouts, and appropriate longitudinal adjustments serve as markers for the event.
Most studies have focused on models with normal random effects for longitudinal
data and proportional hazards models for the time-to-event, both linked with
random effects. In this paper, we are particularly interested in the competing risk
survival model based on random effects selection models.

The Model and its Maximum Likelihood Estimation: The following
example represents a specific case of a joint model. In this case, we have a set
of times for subject i = 1, . . . , n, denoted as t̃i = (ti1, . . . , tini). The longitudinal
covariate for subject i is measured at these times t̃i, and the corresponding values
can be represented as Zi = (Zij : tij ≤ Ti), where j = 1, . . . , ni. It’s important to
be careful and differentiate between the time to event for subject i, denoted as ti,
and the time for the longitudinal response at time j for subject i, denoted as tij .
The covariates in the risk model are assumed to be fixed over time.

Zi(tij) = b0i + b1itij + ei(tij)

hi(t) = h0(t) exp
(
αT X⃗i + η(b0i + b1it)

)
.

Usually, it is assumed that the errors follow a normal distribution with mean 0
and variance σ2

e . The random effects bi = (b0i, b1i)
T are also assumed to follow

a normal distribution with mean B and variance Σ. As a result, the density
function fZ is a normal distribution with a mean of b0i + b1itij and a variance of
σ2
e . Typically, a semiparametric model is used for T .

To simplify the longitudinal model, it is expressed without a fixed component
and only considers the random effects b0i and b1i. The inclusion of these random
effects in the survival model it is assumes that, when considering the longitudinal
history, the risk is influenced by the constant rate of change in the underlying
smooth trend (Tsiatis & Davidian, 2004). If the random effects are included as
η1b0i+η2b1i+η3(b0i+b1it), the parameters η1, η2 and η3 quantify the association of
the longitudinal process with the time to event, induced through the intercept, the
slope and the current value of the longitudinal covariate, respectively (Henderson
et al., 2000). In the current value effect, a linear trend is assumed for the longitu-
dinal covariate. If Ω = {h0(·), α, η, σ2

e , B,Σ} represents the model parameter set,
the likelihood for the observed data is:

L(Ω) =

n∏
i=1

∫
bi

{
ni∏
j=1

fZ(zij | bi;σ2
e)}fT (Yi, δi | X⃗i, bi;h0, α, η)fb(bi | B,Σ)dbi

 .

(2)
In the distribution function fT , right censoring is assumed according to the fol-
lowing criteria based on the Cox model (see Lawless, 2003):
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fT (Yi, δi | X⃗i, bi;h0, α, η) =
[
h0(Yi) exp(α

T X⃗i + η(b0i + b1it))
]δi

exp

[
−
∫ Yi

0

h0(u) exp(α
T X⃗i + η(b0i + b1it))du

]
.

(3)

According to Tsiatis & Davidian (2004), the main assumptions the likelihood
has in (2) are: a) conditional on the random effects, Z and T are independent, b)
the censoring mechanism and the longitudinal calendar are noninformative, c) The
longitudinal model does not consider the autocorrelation structure and focuses on
the relationship between the smooth trend and the time to event, d) random effects
are independent of the covariates X⃗, and e) the errors are mutually independent
and independent of all other variables.

For the estimation of semiparametric joint models, Wulfsohn & Tsiatis (1997)
introduced a method that maximizes the likelihood using an EM algorithm. This
algorithm has been widely adopted in recent proposals for the estimation process.

A recommended approach for joint estimation involves starting with the well-
known two-stage model, where the longitudinal and survival models are estimated
separately. The random effects obtained from the longitudinal model are then used
to estimate the survival model. While the two-stage model can result in biased
estimates for the joint model, the estimates obtained at this stage serve as a useful
starting point for maximizing the likelihood of the joint model. This maximization
can be achieved using EM algorithms, such as the one proposed by Wulfsohn &
Tsiatis (1997).

Properties of the Estimators: Zeng & Cai (2005) provided rigorous proof,
assuming normality of the random effects, of the strong consistency of maximum
likelihood estimators for joint models of repeated measurements and survival time.
They also derived the asymptotic distributions of these estimators, which follow a
multivariate normal distribution. The asymptotic results remain valid even if the
random effects exhibit slightly heavier tails than the normal density. Furthermore,
maximizing the joint likelihood leads to unbiased estimates for joint models.

The likelihood maximization procedures for parameter estimation and property
description are typically performed for semiparametric joint models, where the
survival model is semiparametric. However, these results can also be extended to
fully parametric joint models.

4. Joint Model of Competitive Risks in Discrete
Time with Longitudinal Information

This paper proposes an extension to the model introduced by Luo et al. (2016)
using a joint modeling approach. The data structure is illustrated in Table 1, which
shows three different event cases with the corresponding time-to-event, a baseline
covariate X, and a longitudinal variable Z. The data structure is similar to the
expanded framework proposed by Luo et al. (2016), but it is utilized differently
in our model. In our likelihood equations (6)-(9), the longitudinal information
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is not included in the multinomial model for each data line in the longitudinal
calendar. Instead, it is summarized using random effects, resulting in a single line
of information per individual in the survival model.

The extension is easily achieved by replacing the Cox model with the multino-
mial model in the joint model. We propose a dependency on random effects for the
longitudinal variable while ignoring fixed effects. When the goal is survival anal-
ysis, including the fixed part is not necessary. The specific choice of a quadratic
trend for Z is made to illustrate the model in the next section.

Zi(tij) = b0i + b1itij + b2it
2
ij + ei(tij) (4)

ln

(
hi(t, δ | x⃗i, bi)

1− hi(t | x⃗i, bi)

)
= Θ

(
t, x⃗i, bi, α⃗δ, η⃗δ, β⃗δ

)
(5)

Θ(t, x⃗i, bi, α⃗δ, η⃗δ, β⃗δ) = α1δx1i + · · ·+ αpδxpi +B(bi, η⃗δ) + S(t, β⃗δ).

Table 1: Format of the joint model database
Case Time Event Covariate Longitudinal

1 1 1 X1 Z11

1 2 1 X1 Z12

1 3 1 X1 Z13

1 4 1 X1 Z14

2 1 2 X2 Z21

2 2 2 X2 Z22

2 3 2 X2 Z23

3 1 0 X3 Z31

3 2 0 X3 Z32

3 3 0 X3 Z33

3 4 0 X3 Z34

3 5 0 X3 Z35

The term B(bi, η⃗δ) captures the various combinations that the effect of the longi-
tudinal variable can have on the time to event through its random effects. Here,
all components of X⃗ are baseline covariates and may differ for each competing risk
category.

In equation (6) for L(Ω), both fZ and fb maintain the same normality structure
as described in the previous section. However, fT now depends on the spline
parameters and undergoes a significant change. Specifically, takes the form of a
multinomial distribution, which is illustrated in a particular case where δ = 0, 1, 2.

L(Ω) =

n∏
i=1

∫
bi

{
ni∏
j=1

fZ(zij | bi;σ2
e)}fT (Yi, δi | X⃗i, bi;h0, α, η, β)fb(bi | B,Σ)dbi

 (6)

fb(bi | B,Σ) = (2π|Σ|)−1/2 exp{−0, 5(bi −B)TΣ−1(bi −B)} (7)
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fZ(zij | bi;σ2
e) = (2πσ2

e)
−1/2 exp{−0, 5(zi(tij)− b0i − b1itij − b2it

2
ij)

2/σ2
e} (8)

fT (Yi, δi | ΩT ) =


exp

(
Θ
(
Yi, x⃗i(t̃i), bi, α⃗1, η⃗1, β⃗1

))
1 + exp

(
Θ
(
Yi, x⃗i(t̃i), bi, α⃗1, η⃗1, β⃗1

))
+ exp

(
Θ
(
Yi, x⃗i(t̃i), bi, α⃗2, η⃗2, β⃗2

))



I{δi=1}

∗


exp

(
Θ
(
ti, x⃗i(ti), bi, α⃗2, η⃗2, β⃗2

))
1 + exp

(
Θ
(
ti, x⃗i(ti), bi, α⃗1, η⃗1, β⃗1

))
+ exp

(
Θ
(
ti, x⃗i(ti), bi, α⃗2, η⃗2, β⃗2

))



I{δi=2}

∗


1

1 + exp
(
Θ
(
ti, x⃗i(ti), bi, α⃗1, η⃗1, β⃗1

))
+ exp

(
Θ
(
ti, x⃗i(ti), bi, α⃗2, η⃗2, β⃗2

))



I{δi=0}

(9)

where I{·} is an indicator function. Although equations (3) and (9) are different,
they share a similar essence. In (3), the contribution of each individual is included
in the Cox model based on whether they have observed the event or not. In (9),
the contribution of each individual is included based on the odds of the competing
risk to which they belong.

There are various proposals for fitting joint models using standard software,
but the R packages FastJM (Li et al., 2022), JM, and JMbayes2 (Rizopoulos, 2010,
2016), are the ones that allow modeling longitudinal and survival data with com-
peting risks. However, these packages utilize a semiparametric model for compet-
ing risk and cannot be used to fit our fully parametric joint model. These packages
are continuously evolving and expanding their capabilities for joint modeling. It
is only a matter of time before other proposals, including ours, are incorporated
into these packages. In the meantime, when fitting models that are not directly
supported by standard software, approaches such as the one proposed by Guo &
Carlin (2004) can be utilized. One method from their proposal involves adapting
the SAS NLMIXED procedure (SAS Institute, 2013) to fit joint models. This
adaptation is straightforward and can only be used with fully parametric survival
models. In our case, we utilize this approach by adding the log-likelihood of a
multinomial model to the log-likelihood of the longitudinal model with normal
errors and normal random effects.
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Joint models pose computational challenges as they involve estimating two
processes simultaneously. While NLMIXED is a powerful tool for optimizing like-
lihoods and estimating nonlinear mixed models, it may not provide immediate
results for datasets with a large number of individuals, such as our application
with 912 individuals (on Core i7 computers with 12 MB of RAM). Furthermore,
the complexity of the likelihood function can result in different outcomes depend-
ing on the starting point used for numerical maximization. Estimation may require
an iterative process to find the optimal maximization point, which can be time-
consuming. To mitigate computation time, we initially use the two-stage model
mentioned earlier and then maximize the joint likelihood based on the outcomes
obtained from it.

5. Application

Although our model can be applied to any type of data, we will illustrate it
using a similar example to the one used by Luo et al. (2016). The dataset consists
of 912 individuals who took out a 36-month consumer loan. Each individual can
terminate the credit for three reasons: maturity (δ = 0), default (δ = 1), or
debt prepayment (δ = 2). The first and third events represent the attrition risk,
meaning that the customer pays off their balance. If the customer does not fall into
any of these three categories, their credit remains open. To simplify the model,
these individuals are included in the maturity group, assuming that they are all
regular customers. The dataset includes variables such as the duration of the
credit and the reason for its termination, baseline covariates like sex and age at
the beginning of the credit, and a longitudinal variable representing the monthly
balance of the customer’s main credit card.

The example involves a competing risks scenario, where the end of the loan
represents the time to event, which can occur due to three different causes. Al-
though we can determine the probabilities for all three events, our analysis focuses
on the default event. We model the time to loan termination using multinomial
logistic regression along with a longitudinal variable. In joint models for survival
analysis, a longitudinal variable is typically used as a marker for the event of inter-
est. However, in this discrete time problem, we include the longitudinal variable
to appropriately estimate the probability of default, assuming that it captures the
potential variations in risk. To ensure smooth trends in these probabilities, we in-
corporate smoothed longitudinal trajectories into the model using kernel regression
techniques (refer to Bowman & Azzalini, 1997).

Before presenting the results of our proposed model, let’s first discuss the
results obtained from the Cox model and the model by Luo et al. (2016). In the
Cox model, we treated prepayment and maturity times as censored data. Although
it is not appropriate to ignore competing risks and the longitudinal variable, we
did this to illustrate the outcomes of the most basic model. We included age as
a covariate, and the baseline risk was estimated using the kernel estimator (refer
to Klein & Moeschberger, 2005). The nonparametric nature of the baseline risk
estimation allowed us to overlook the truncation effect in the data. From the
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estimation results shown in Figure 1, three important findings can be highlighted.
First, there is a typical hump-shaped trend in the default risk, indicating that
the risk initially increases, reaches a peak, and then decreases over time. Second,
there is an inverse relationship between age and default risk, meaning that younger
individuals have a higher risk of default compared to older individuals. Finally,
the estimated default risk aligns with the overall kernel estimation at the average
age of 32 years.

On the other hand, when using a logistic model with age as the only covariate,
we obtained an estimated parameter of 0.036, which is quite close to the value of
0.032 obtained in the Cox model. The similarity in the estimates and the hazard
ratio (HR) and odds ratio (OR) derived from them suggest that the logistic model
is a suitable alternative for modeling the time to default.

According to the estimated Cox model, there are slight peaks at times 6 and 16
(see Figure 1). However, when comparing an adjusted model that considers these
peaks with another model that only includes the effect of the spline associated
with a single parameter β, the estimated probabilities are practically equal. To
keep the model simple, we include the time effect only with the spline, which
can be interpreted as the effect of elapsed time since the start of the credit. The
predictive function for the model by Luo et al. (2016), defined in Equation (1),
with only the significant covariates is as follows:

Θ(t, x⃗(t), α⃗δ, βδ) = α0δ + α1δAge(t) + α2δCreditCard(t) + βδS(t).

In this model, similar to the joint model, S(t) represents a cubic spline of the
event time.

Figure 1: Cox regression model for default time

The parameter estimation for the Luo et al. (2016) model, focusing solely on
the time to default, is presented in Table 2. It is worth noting that the estimation
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of the parameter associated with age differs when considering multiple lines of
information per individual, as opposed to the joint model where the age effect is
measured only once per individual (Table 3).

Table 2: Luo et al. (2016) model for the time to default
Parameter Estimation Standard Error p-value

Intercept α0 11,0382 1,1754 < 0,0001
Age α1 -0,0306 0,0134 0,0226

Credit Card α2 -356,450 30,742 < 0,001
Spline β -0,0784 0,0130 < 0,001

The first part of Figure 2 depicts the credit card balances for three individuals
aged 32, while the second part illustrates the corresponding default risk. We select
these people of that age because they are in the average risk trend to default. We
observe an inverse relationship between the balance and the risk, where higher
balances are associated with a lower risk of default. The most notable case is
individual 2, who has been on credit for 27 months and experiences a zero esti-
mated risk starting from the ninth month. Individual 3 exhibits a contradictory
result, with the risk decreasing almost to zero and then increasing during periods
without any default cases. Therefore, we can conclude that the estimated model
has difficulties in accurately determining the default risk.

Figure 2: Longitudinal variable trajectories and default risk under Luo et al. (2016)
model for 3 subjects

The inverse relationship between debt and default risk is intriguing as it appears
to go against common intuition. According to the obtained relationship, even
young individuals with high debt have low default risks, which seems contradictory.
However, this can be attributed to the fact that the high balances reflect a high
purchasing power of the customers included in the database. This aspect partially
explains the unexpected result.
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The joint model applied to this dataset corresponds to the one mentioned in
equations (4)-(5). The significant variables in the proposed survival model include
baseline age, random effects of the credit card balance incorporated as the current
value, and a regression spline to adjust for irregular risk components (refer to Table
3). Therefore, the predictive function of the model can be defined as follows:

Θ(t, xi, bi, α⃗δ, ηδ, βδ) = α0δ + α1δAgei + ηδ(b0i + b1itij + b2it
2
ij) + βδSi(tij).

Table 3: Joint model of the evolution of credit card balance and default time.
Parameter Estimation Standard Error p-value

Longitudinal

B0 0,057199 0,000710 < 0,0001
B1 -0,000071 0,000032 0,0278
B2 -0,000002 0,000001 0,0455
σ11 0,023510 0,000056 < 0,0001
σ12 -0,000624 0.000051 < 0,0001
σ13 0,000052 0.000620 0,9332
σ22 0,003073 0.000078 < 0,0001
σ23 -0,000132 0.004766 0,9779
σ33 0,000006 0.000002 0,0069
σ2
e 0,000403 0.000168 0,0164

Default T1

Intercept α10 -1,000 0,52611 0,0574
Age α11 -0,026 0,00458 < 0,0001

Current Value η1 -48,0 13,3333 0,0003
Spline β1 -0,059 0,01283 < 0,0001

Prepayment T2

Intercept α20 -4,998 2,37619 0,0357
Age α21 0,040 0,01250 0,0015

Current Value η2 -0,372 0,10625 0,0005
Spline β2 0,045 0,01030 < 0,0001

Based on the estimated joint model presented in Table 3, we observe an inverse
relationship between the covariates and default risk. Although the individual
trajectories of the card balance are not shown in the table due to space constraints,
they were estimated using the empirical Bayesian estimator of the random effects
(refer to Verbeke & Molenberghs 2000, section 7.2). With these trajectories, we
can estimate default probabilities, which are illustrated in Figure 3 using a similar
approach as in Figure 2 and featuring the same individuals. Figure 3 provides
insights into how the longitudinal variable influences the default risk trend and
even modifies its overall hump shape in certain cases.

Although we have observed different individual estimates for the default risk in
both models, they have a similar level of goodness of fit. The Nagelkerke pseudo
R2 (Nagelkerke, 1991) for the model by Luo et al. (2016) is 0.298, while for the joint
model it is 0.322. This suggests that the longitudinal model is accurately capturing
the underlying trend. Any loss of fit caused by the variability that the model
cannot capture is compensated by including the baseline variable appropriately,
resulting in an overall satisfactory fit.
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Figure 3: Longitudinal variable trajectories and risk of default under a joint model for
three individuals

In conclusion, the covariates have an impact on the default risk as follows:
The trend is determined by the longitudinal variable, which increases or decreases
proportionally over time depending on the baseline age and duration of the debt.
Generally, the projections obtained from the joint model are closer to the overall
trend of the risk determined by the kernel estimator compared to the results from
the model proposed by Luo et al. (2016). However, both models have quite similar
goodness of fit and limitations. They can generate probabilities greater than zero
at the end of the credit period where no default cases were observed, and the
probabilities can be high if the balance of the card is very low, although such cases
are rare.

Default probabilities play a crucial role for finance companies in establishing
reserves to address potential default issues among their clients. These probabilities
are based on the time elapsed from the start of the debt to the maturity date. It’s
important to note that individuals whose credits have already reached maturity
are included in the model solely for estimation purposes, and no reserves are
set aside for them. When using the classic Cox and logistic models to assign
these probabilities, each person is assigned a unique probability based on the
average trend of their covariates. However, alternative models such as our joint
model proposal or the one proposed by Luo et al. (2016) can provide different
probabilities for each individual based on their projected outcomes. This allows
for a more tailored and accurate assessment of default risk for each client.

6. Discussion

When modeling competing risks with longitudinal information, the model pro-
posed by Elashoff et al. (2007) and similar ones are typically the first alternatives
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to consider. However, these models have some disadvantages when it comes to
discrete time modeling, and they can be complex and not readily available in
standard software. On the other hand, if the conditions are met to apply the lo-
gistic model to the problem, the model proposed by Luo et al. (2016) can be used
with standard software. However, it’s important to note that simultaneous inclu-
sion of both baseline and longitudinal covariates is not suitable under this model
when there are customers with ongoing credits. This can create an imbalance in
the management of baseline covariates, affecting the accuracy and interpretation
of the results.

Joint models for survival data with longitudinal information offer a solution for
modeling competing risks by incorporating both longitudinal and baseline infor-
mation. However, one drawback of these models is the complexity of the likelihood
function, which can complicate the estimation process. If additional longitudinal
variables are included as covariates to explain the risk, it will further increase the
computational demand of the optimization process. Moreover, the inclusion of
multiple longitudinal variables requires considering complex interactions between
them, which are not discussed in this paper but can be found in other references
such as Liu & Huang (2009) and Lin et al. (2022).[
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