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Resumen

Las imágenes hiperespectrales entre los sensores remotos, se han utilizado durante más de una década para 
ayudar en la detección e identificación de diversos objetivos de superficie como características topográficas 
y geológicas, pero los conjuntos de datos no son inmunes a los efectos de la atmósfera intermedia. Varios 
constituyentes atmosféricos atenúan la reflectancia incidente y ascendente, y finalmente degradan la señal 
correspondiente a la característica detectada. Por lo tanto, si esta atenuación atmosférica pudiera identificarse 
y corregirse utilizando modelos de transferencia radiativa existentes, sería posible una mejor comprensión de 
las características de la Tierra.

El presente estudio se concentra en la recuperación de la imagen de reflectancia a partir del nivel uno corregido 
radiométricamente, de los datos del área de estudio del distrito de Keonjhar (Orissa). En este estudio, se ha 
utilizado un modelo de corrección atmosférica, conocido como FLAASH, que se ha utilizado para recuperar 
la imagen de reflectancia a partir de los datos de radiancia. El pre-procesamiento del conjunto de datos debe 
realizarse antes de aplicar la corrección atmosférica en el conjunto de datos. Los subconjuntos espectrales de 
las bandas propensas al ruido se han realizado con éxito, lo que deja 196 bandas exclusivas de 242 bandas 
del conjunto de datos de Hyperion. Se recolectaron tres miembros finales del área de estudio de Orissa: 
La hematita; los relaves mineros; y el aluvión, que se seleccionaron como los miembros finales después de 
comprender la geología y el análisis de la imagen de reflectancia.

En este sentido se aplicaron: La desmezcla espectral lineal y el Mapeador de ángulo espectral. En el área de 
estudio, Lineal Spectral Unmixing (LSU), dio buenos resultados en el mapeo de los miembros finales. El 
procesamiento de imágenes se llevó a cabo con datos digitales Landsat - 5TM (7 bandas) adquiridos el 5 de 
noviembre de 2005 (ruta 140, fila 45). El objetivo de este estudio fue mapear las zonas más favorables de la 
Formación del depósito de hierro dentro de la conocida franja mineralizada, además de identificar y mapear 
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INTRODUCTION

One of the most common techniques that are very 
much useful in mineral exploration prospecting is 
the Remote Sensing. The term remote sensing can be 
defined as the science of acquiring, processing, and 
interpreting images that record the interaction between 
the electromagnetic energy and matter (Sabins, 1996).

One of the most promising and advanced remote sensing 
technique which is meant solely for mineral exploration 
is Hyperspectral Remote Sensing or otherwise known 
as Imaging Spectrometry. Imaging spectroscopy is 
a relatively new technology that is currently being 
investigated by researchers and scientists with regard to 
the detection and identification of minerals, terrestrial 
vegetation, and man-made materials and backgrounds. 
The concept of hyperspectral remote sensing began in 
the mid-80 and to this point has been used most widely 
by geologists for the mapping of minerals. Actual 
detection of materials is dependent on the spectral 
coverage, spectral resolution, and signal-to-noise of 
the spectrometer, the abundance of the material and the 
strength of absorption features for that material in the 
wavelength region measured (source: http://www.csr.
utexas.edu/ projects/rs/hrs/hyper.html).

Imaging spectrometers typically acquire images in a 
large number of spectral bands (more than 100). These 
bands are narrow (less than 10 nm to 20 nm in width), and 
contiguous (i.e. adjacent), which enables the extraction 
of reflectance spectra at pixel scale. Such narrow 
spectra enable the detection of the diagnostic absorption 
features which are not represented or manifested by the 
multispectral sensors when light interacts with a mineral 
or rock. The objectives of these hyperspectral imaging 
spectrometers are to use the molecular absorptions 
and constituent scattering characteristics expressed in 
the spectrum to (1) detect and identify the surface and 
atmospheric constituents present; (2) assess and measure 
the expressed constituent concentrations; (3) assign 
proportions to constituents in mixed spatial elements; 
(4) delineate spatial distribution of the constituents; 
(5) monitor changes in constituents through periodic 
data acquisitions; and (6) to validate, constrain and 
improve models (Pantazis et al., 1998). With the aid 
of hyperspectral remote sensing, an extensive range of 
minerals can be remotely mapped, including iron oxides, 
clays, micas, chlorites, amphiboles, talc, serpentines, 
carbonates, quartz, garnets, pyroxenes, feldspars and 
sulphates, as well as their physico-chemistries such as 
the cation composition and long and short range order 
(Cudahy, 2002).

las extensiones de mineralización conocida y/o localizar las nuevas zonas potencialmente mineralizadas que 
son ricas en mineral de Hierro.

Palabras clave: Hiperespectral, Hyperión, Landsat, Multiespectral, Keonjhar, Mineral de hierro.

Abstract

Hyperspectral imaging sensors have been used for more than a decade to aid in the detection and identification 
of diverse surface targets, topographical and geological features, but the datasets are not immune to the 
effects of the intervening atmosphere. Various atmospheric constituents attenuate the incident and up-
welling reflectance and finally degrade the signal corresponding to the feature being sensed. Thus, if this 
atmospheric attenuation could be identified and corrected for by using existing radiative transfer models, 
better understanding of the earth features would be possible. 

The present study concentrate on the retrieval of reflectance image from the level one radiometrically 
corrected data of study area of Keonjhar district (Orissa). In this study, one atmospheric correction model 
has been used. FLAASH atmospheric correction model have been used to retrieve reflectance image from 
the radiance data. Preprocessing of the dataset, need to be done before applying atmospheric correction 
on the dataset. Spectral sub-settings of noise prone bands have been successfully done which leaves 196 
unique bands from 242 bands of the Hyperion dataset. Three endmembers were collected from the Orissa 
study area; Hematite, mine tailings and alluvium were selected as the endmembers after understanding 
the geology and analysis of the reflectance image. Linear Spectral Unmixing and Spectral Angle Mapper 
were applied in this regard. In the study area, Linear Spectral Unmixing gave good results in mapping the 
endmembers. In the present study, image processing was carried out to a Landsat - 5 TM digital data (7 
bands) acquired on 05-November-2005 (path-140, row-45). The aim of this study was mapping the more 
favorable zones of Iron Bearing Formation within the known mineralized belt, besides to identify and map 
the extensions of the known mineralized and/or to locate the new potentially mineralized zones which are 
rich in Iron ore.

Keywords: Hyperspectral, Hyperion, Landsat, Multispectral, Keonjhar, Iron ore.
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Another remote sensing technique widely used in the 
past decades to discriminate different materials based 
on the dissimilarity that exist among their spectral 
properties is the multispectral remote sensing (Hunt 
et al., 1971). Geological applications could greatly 
take advantage of this technology because it allows 
observing and mapping the surface of the Earth over 
large areas, but the generally low spectral resolution of 
multispectral sensors obstruct geological research.

In the present study, image processing was carried out 
to a Landsat TM - 5 digital data (7 bands) acquired on 
05-November-2005 (path-140, row-45). Different image 
processing techniques were applied to this image using 
the ERDAS software like Ratio transformations and PC 
transformations.

STUDY AREA

The Hyperion and Landsat TM scenes include the 
Keonjhar District (Orissa), which has been the study 
area selected for the present study. The study area has 

been chosen for the present study keeping in mind the 
topography. Keonjhar District (Orissa) is a densely 
vegetated terrain with large number of hillocks and 
dissected hills spread out throughout the valley. 
Geologically the region comes under the Pre-Cambrian 
era of the geological time scale. 

Orissa state is well covered by the Hyperion and 
Landsat TM scenes. The selected project area includes 
the south-eastern margin of the famous Iron Ore Super 
Group Syncline, mainly consisting of iron ore group, is 
bounded by latitude 21º 45’ to 22º 00’ N and longitude 
85º 15’ to 85º 30’ E occupying an area of approximately 
770 sq. Km (Figure 2.1). To the north of this area are 
the main townships of Joda, Barbil, Noamundi, Bolani, 
Kiriburu, Meghahatuburu and so many other mining 
centers of Fe and Mn, ores. Most of the above mentioned 
towns are connected by railway and roadways routes 
to Jamshedpur, Rourkela, Keonjhar, Chaibasa and 
Bhubaneshwar. The area under the present study is 
unfortunately not provided with easily motorable road 
except north eastern and north-western parts, (Figure 1).

Figure 1. - Study area Keonjhar District (Orissa), Landsat TM - 5 (Bands 4 3 2).

METHODOLOGY 

The methodology for the present study has been 
formulated by keeping in mind the primary objectives 
of the work. During the literature review for the present 

study it came to the limelight that very few works have 
been conducted in the field of hyperspectral remote 
sensing in India which could assist our efforts for the 
present study. The methodology adopted for the present 
study is given below as a flow chart, (Figure 2).
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RESULT AND DISCUSSIONS

RATIO 3/1

In the ratio of Landsat TM–5 of band 3 and band 1 
(3/1), the most of the area in bright pixels, corresponds 
to zones of strong hematitic alteration (Figure 4.3). 
The Spectral response of the weathered iron minerals 
has weak reflectance in the blue region (band 1) and 
strong reflectance in the red region (band 3), so the ratio 
3/1, which has high values can be used for iron oxide 
mapping in Orissa area (Figure 3). 

RATIO 5/7

The 5/7 ratio has been useful for identifying clay-rich 
rocks (dark gray-tones) because clay minerals exhibit 
strong absorption in the 2.2 μm region (band 7) and 
high reflectance in the 1.6 μm region besides this ratio 
is useful for Iron minerals because this have reflectance 
and absorptions features in these bands (Hunt et al. 
1971) (Figure 4).

Figure 2. - Methodology flow chart for the present study.
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Figure 3. - TM band ratio 3/1.
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Figure 4. - TM band ratio 5/7.



Geología Colombiana, 2015 - Vol. 40

67

RATIO 5/4

The ratio of Landsat TM – 5 of band 5 and band 4 (5/4), 
has been computed to enhance possible ferrous oxides 
because this ratio shows higher values for oxidized 
iron-rich rocks than other types (Figure 5).

Based on the above considerations, the spectral 
features of ferric and hydroxyl – bearing mineral are 
used to produce a false colour composite image using 
combinations of ratio 5/7, 5/4 and 3/1 in R, G and B 
respectively. The obtained image has mapped the 
bearing mineral zone (Ferric Zones) in bluish. These 
zones can easily be observed in the lower right corner, 
central and right central part of the image (Figure 6).  
Another composite image was produced using ratio 
3/1, PC2 and Band 7 in R, G and B respectively. 
Although this combination of ratio image appears to be 
fairly different from the previous one, the final result 
remains the same thus lending support to the previous 
conclusion. The dark red represents the zones of strong 
hematitic alteration (Figure 7).

PRINCIPAL COMPONENT ANALYSIS

Principal Components Analysis (PCA) can be used 
for image analysis as a data reduction technique that 
the information content from a number of bands is 
compressed into a few principal components. In other 
words, PCA can be used to reduce the dimensionality 
of the data while minimizing loss of information. In 
addition, PCA images may be more easily interpreted 
than the conventional color infrared composite. The 
principal components transform is a standard method 
for deriving a new set of images with reduced spectral 
redundancy. PCA is probably the oldest and best known 
of the techniques used for multivariate analysis. The 
overall goal of PCA is to reduce the dimensionality of 
data set, while simultaneously retaining the information 
present in the data. Here in the present study 6 haze 
corrected Landsat TM bands (3 in visible and 3 in 
reflected IR) were considered for calculation of principal 
components. The principal transformation (eigen 
vectors) using an input of six TM bands are shown in 
table 1.

It was observed in the table 1 that the first component 
(PC1) is all positive. This PC1 gives information mainly 
on albedo and topography (Figure 8.a). PC2 clearly 
discriminates the water bodies and mining areas as 
dark pixels (Figure 8.b). Analysis of PC3 shows that the 
most important contributions come from Band 5 (0.167) 
and Band 7 (0.221). Hydroxyl-bearing (clay) minerals 
image is obtained by using eigenvector loadings of 
PC3 (Figure 8.c). The similar analysis of PC4 shows 
that the most important contributions come from Band 
4 (0,299), Band 5 (-0.732) and Band 7 (0.607). Based 
on spectral characteristics of iron oxide, it follows that 
iron oxide will be mapped by bright pixels and ferrous 
minerals in dark grey. Iron oxide image is obtained by 
using eigenvector loadings of PC4 (Figure 8.d). PC5 
contains positive information from band 7 (0.109) and 
negative information from band 3 (-0.687) which should 
show the position of hydroxyl ions as dark-gray pixels 
(Figure 8.e). PC6 mostly shows noise in the dataset, 

limiting the use particular of this particular band in our 
analysis (Figure 8.f).

Based in the results obtained in the PC analysis, a false 
colour composite image was created using combinations 
of the PC4, PC3 and PC2 in R, G and B respectively. 
The obtained image has mapped the bearing mineral 
zone (Iron-bearing zones) in yellow and dark-green 
(Figure 9).

MINERAL ABUNDANCE MAP

Maximum Likehood Classifier was applied to the MNF 
transformed components, using the ROI’s of selected 
endmembers. In order to compare the results with 
those from the Maximum Likelihood, the classification 
thresholds are adjusted to 3. The (Figure, 10), show the 
mineral abundance map created.

Table 1. - Principal component analysis of six haze corrected TM bands of Orissa study area.
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Figure 5. - TM band ratio 5/4.
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Figure 6. - Color composite of TM image. Ratio 5/7 (red), Ratio 5/4 (green), Ratio 3/1 (blue).
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Figure 7. - Color composite of TM image. Ratio 3/1 (red), PC2 (green), Band 7 (blue).
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Figure 8. - Principal Components images showing spectral variability of the study area.
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Figure 9. - Color composite of TM image. PC4 (red), PC3 (green), PC2 (blue).
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Figure 10. – Mineral Abundance Map.
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Figure 11. - More favorable zones of Iron Bearing Formation and potentially mineralized zones which are rich in Iron ore (TM image.  
Ratio 5/4).
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SPATIAL DISTRIBUTION OF THE IRON 
MINES IN THE STUDY AREA

The (Figure, 11) shows the more favorable zones of Iron 
Bearing Formation, besides the potentially mineralized 
zones which are rich in Iron ore.

In the (Figure, 12), is shown a DEM, where is seem 
the spatial distribution of Iron Bearing Formation. In 
this we observe that the mines are in the highest places 
because is in these areas where the concentration of 
Iron is higher.

Figure 12. - DEM with the more favorable zones of Iron Bearing Formation and potentially mineralized zones which are rich in Iron ore.
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CONCLUSIONS

Image processing and image analysis was done in the 
spectral and spatial domain with keeping an eye on 
the objective of our study. Ratio transformations and 
PC transformations were generated for the analysis of 
Landsat TM digital data. Ratio 3/1 gave good information 
about the zones with strong hematitic alteration. The 5/7 
ratio was used for identifying clay-rich rocks, besides 
this ratio was useful for targeting Iron minerals because 
this have reflectance and absorptions features in these 
bands. The 5/4 ratio enhanced possible ferrous oxides.

A false colour composite image was generated by 
combining ratio 5/7, 5/4 and 3/1 in R, G and B respectively. 
The obtained image mapped the bearing mineral zone 
(Ferric Zones) in bluish. Another composite image was 
produced using ratio 3/1, PC2 and Band7 in R, G and B 
respectively. Although this combination of ratio image 
appears to be fairly different from the previous one, the 
final result remains the same thus lending support to 
the previous conclusion. In the Orissa dataset, all the 
features other than water and vegetation got highlighted 
in band rationing as the area has high concentration of 
iron content due to mining activities.

The first component (PC1) is all positive. This PC1 gave 
information mainly on albedo and topography. PC2 
clearly discriminated the water bodies and mining areas 
as dark pixels. Analysis of PC3 showed that the most 
important contributions come from Band 5 (0.167) and 
Band 7 (0.221). Hydroxyl-bearing (clay) minerals image 
was obtained by using eigenvector loadings of PC3. The 
similar analysis of PC4 showed that the most important 
contributions come from Band 4 (0,299), Band 5 (-0.732) 
and Band 7 (0.607). Based on spectral characteristics 
of iron oxide, it follows that iron oxide will be mapped 
by bright pixels and ferrous minerals in dark grey. Iron 
oxide image was obtained by using eigenvector loadings 
of PC4. PC5 contains positive information from band 7 
(0.109) and negative information from band 3 (-0.687) 
which showed the position of hydroxyl ions as dark-gray 
pixels. PC6 mostly showed noise in the dataset, limiting 
the use particular of this particular band in our analysis.

For the hyperspectral analysis, endmembers were 
selected after understanding the geology of the study 
area. Three endmembers were selected for Orissa. The 
number of endmembers selected also depends upon the 
mapping technique used. Linear spectral Unmixing 
technique requires all the land use classes to be included 
to give a better result. After collection of endmembers 
they are used in various mapping techniques.

Mapping technique such as Linear Spectral Unmixing 
and Mixture Tune Matched Filtering were used to 
map the different endmembers for Orissa study area. 

The three endmembers used for the Orissa study area 
are Hematite, Minetailings and Alluvium. The Linear 
Spectral Unmixing method successfully mapped the 
hematite and alluvium. The MTMF method was adopted 
for the Orissa study area primarily to differentiate 
between the hematite mineral and minetailings. The 
MTMF successfully conducted the abundance mapping 
for hematite and minetailing. The final interpretations 
of the MTMF results need to be done after integrating 
the score image results to that of the infeasibility image 
for all the endmembers.

Various mapping techniques have been employed in 
this study. Linear Spectral Unmixing and Mixture Tune 
Matched Filtering are few of the techniques that have 
been used. A single mapping technique has not given 
all the endmember classified result. In the case of Orissa 
study area, Linear Spectral Unmixing as well as Mixture 
Tune Matched Filtering has given good results. Hence it 
can be concluded that an integrated approach of several 
mapping techniques will lead to the successful mapping 
of the endmembers. The great concentrations of Iron 
are in the mines that are placed in the highest zones.
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