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RESUMEN
Los fenoles son compuestos orgánicos recalcitrantes y de toxicidad considerable, los cuales 

se encuentran generalmente en aguas residuales de industrias petroquímicas, papeleras, de 
producción de pesticidas y herbicidas, entre otras. Convencionalmente estos compuestos son tratados 
por: adsorción, electroquímica, biodegradación o incineración, sin lograr una remoción óptima, por 
lo que se hace necesario el estudio de técnicas más eficientes. La fotocatálisis heterogénea es una 
de ellas, la cual se basa en una reacción catalítica que involucra la absorción de luz por parte de un 
semiconductor, con el fin de degradar los contaminantes orgánicos a dióxido de carbono, agua y 
ácidos minerales, inocuos para el medio ambiente.

Actualmente los estudios buscan valores óptimos para los diferentes parámetros que afectan 
el proceso fotocatalítico. Estos son: pH, temperatura, intensidad de radiación, diseño del reactor, 
naturaleza y concentración del contaminante, aditivos y la cinética de reacción, la cual juega un 
papel muy importante en la aplicación real del proceso. La tendencia de la fotocatálisis está enfocada 
al desarrollo de prototipos útiles en la industria, principalmente en tratamientos de descontaminación 
de aire, agua o suelos, y en aplicaciones de autolimpieza de superficies.

PALABRAS CLAVE: Fotodegradación, Fenoles, Fotocatálisis Heterogénea, Tratamiento de 
Aguas.

ABSTRACT

Phenols are recalcitrant and quite-toxic organic compounds, which are generally in wastewaters 
from some industries, such as petrochemical, paper mills, chemical industries of production of 
pesticides and herbicides, among others. Conventionally these compounds are treated with some 
treatment, such as electrochemistry, biodégradation or incineration, in which ones it is not achieved 
an optimal removal of phenols. Due to this becomes necessary the study of more efficient techniques. 
Heterogeneous Photocatalysis belongs one to them, which one is based on a catalytic reaction that 
involves the absorption of light on a semiconductor, with the purpose of degrading the organic 
pollutants to dioxide of carbon, water and mineral acids, these ones innocuous for the environment.

At the moment, studies look for to optimize the values for the different parameters that affect 
the photocatalytic process. These are: pH, temperature, radiation intensity, reactor design, nature 
and concentration of the pollutant, preservatives, and kinetics of the reaction. This last one plays a 
very important role in the real application of the process. The tendency of the photocatalysis is 
focused to the development of useful prototypes in the industry, mainly in decontamination treatments 
of air, water, or soils, and in self-cleaning surface application.

KEY WORDS: Photodegradation, Phenols, Heterogeneous Photocatalysis, Water 
Treatment.
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1. INTRODUCCIÓN

El avance en las investigaciones sobre el efecto de los contaminantes en las formas de vida 
y su incidencia en los ecosistemas, sumado a la demanda de la sociedad por aguas de mejor 
calidad, se han materializado en regulaciones cada vez más estrictas frente a la disposición de los 
contaminantes en fuentes de agua. En las últimas tres décadas, la legislación ambiental mundial se 
ha centrado en exigir la protección de los cuerpos de agua dulce, dada la escasez de la misma.

Dentro de los contaminantes hídricos, los fenoles constituyen un contaminante indeseable 
(OMS. 1994), pues éstos le confieren al agua características organolépticas desagradables y nocivas 
para la salud humana, entre otros problemas (Calabrese, 1976; Arena, 1973). Por ello la legislación 
mundial, y particularmente la Legislación Colombiana, es bastante estricta con las concentraciones 
permitidas de dicho contaminante en las aguas vertidas (Gómez, 1998). En cuanto a los vertimientos 
líquidos, el articulo 74 - decreto 1594 del 26 de Junio de 1984 reglamenta que la concentración para 
el control de la carga en el caso de los compuestos fenólicos, fenol, es de 0.2 mg/L, pero se deben 
tener en cuenta los usos asignados al recurso, dado que se aplicará el valor más restrictivo. En el 
caso de las aguas potables, el valor es de 0.002 mg/L.

Con el fin de cumplir con dicha reglamentación y preservar los recursos naturales, las industrias 
colombianas utilizan, generalmente, para la remoción de fenoles dos procesos: la biodegradación y 
la oxidación química tradicional, sin que con éstos se logre un nivel óptimo de remoción (Alzate, 
2000; Forero, 2001; Gil, 1998; Guarin, 1997; Hoyos, B. 2003; Monterroza, 2000). En consecuencia, 
se hace necesaria la búsqueda de métodos de eliminación de compuestos químicos más eficientes. 
Una de las técnicas estudiadas actualmente para la remoción de fenoles es la fotocatálisis 
heterogénea, la cual ha sido estudiada desde 1976, pero sólo hasta mediados de los años 80 se 
plantea la posibilidad de aplicar estos procesos al tratamiento de aguas contaminadas (Cyted, 
2003; Peiró, A. M. 2003).

Se ha encontrado que la fotocatálisis heterogénea puede aplicarse principalmente cuando: /) 
la concentración de los contaminantes es baja o media, hasta unos pocos cientos de ppm, //) los 
contaminantes no son biodegradables, //'/) se requiere degradar mezclas complejas, pues se aprovecha 
su característica de escasa o nula selectividad y, /V) en general si los métodos convencionales son 
insuficientes o costosos.

Este artículo es el resultado de una revisión bibliográfica de la remoción de fenoles mediante 
fotocatálisis heterogénea, hecha con el fin de desarrollar posteriormente investigaciones practicas 
conjuntamente entre el laboratorio de fisicoquímica aplicada de la Universidad de Antioquia y el 
Instituto de Estudios Ambientales de la Universidad Nacional de Colombia sede Medellín.

La Tecnologías Avanzadas de Oxidación (TAO’s) se basan en procesos fisicoquímicos capaces 
de producir cambios fundamentales en la estructura química de los contaminantes. Entre ellas se 
encuentra la fotocatálisis, la cual hace referencia a una reacción catalítica que involucra la absorción 
de luz por parte de un catalizador o substrato. Si éste es un semiconductor de banda ancha sensible 
a la luz, sobre el cual se originan fotoreacciones simultáneas de oxidación y reducción en diferentes 
zonas de la región interfacial (líquido-sólido o gas-sólido), se denomina a la tecnología fotocatálisis 
heterogénea (Rincón, 2001; Di Paola, 2003; Esplugas, 2002).

La fotocatálisis heterogénea permite la degradación, e incluso la mineralización, de gran 
variedad de compuestos orgánicos según la reacción global siguiente (Herrmann, 1999; Alberici, 
1997):

2. FOTOCATÁLISIS HETEROGÉNEA

Contaminantes + 0 2 —> C02 + H 20  + Ácidos
Semiconductor

hv

Orgánicos Minerales
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La etapa inicial del proceso consiste en la generación de pares electrón-hueco (e -  h*) en las 
partículas de semiconductor. Cuando un fotón con una energía hv que iguala o supera la energía 
del salto de banda del semiconductor, Eg, incide sobre éste, se promueve un e* de la banda de 
valencia (BV) hacia la banda de conducción (BC), generándose un h* en la primera. Los electrones 
que llegan a la banda de conducción pueden desplazarse dentro de la red del semiconductor, asimismo 
se desplazan los huecos fotogenerados.

La excitación puede ser directa o indirecta según la absorción se produzca sobre el catalizador 
o sobre las moléculas de algún compuesto depositado en la superficie de éste, siendo el primer 
caso el más general y de mayor aplicabilidad, cuyo mecanismo se describe en la Figura 1.

Los pares e - h+ deben migrar hacia la superficie y reaccionar con las especies adsorbidas 
allí, siguiendo diferentes caminos (a y b), después del cual, los pares que no logren reaccionar, 
seguirán un proceso de recombinación acompañado de disipación de energía en forma de calor, lo 
cual puede ocurrir tanto en la superficie como en el seno de la partícula (c y d). La fuerza impulsora 
del proceso de transferencia electrónica en la interfaz es la diferencia de energía entre los niveles 
del semiconductor y el potencial redox de las especies adsorbidas (Cyted, 2003).

En la aplicación del método al tratamiento de aguas, los huecos fotogenerados pueden 
oxidar al contaminante por contacto directo de éste con la superficie del catalizador, o pueden 
reaccionar primero con especies como el agua y el radical OH* dando lugar a la formación del 
radical OH°, que posteriormente oxidará al contaminante de la siguiente forma:

Al mismo tiempo, los e* generados reaccionan con algún agente oxidante, generalmente Oz, 
aunque se pueden agregar otras especies como el peróxido para favorecer esta reacción y con esto, 
la eficiencia global del proceso (Peiró, 2003).

2.1. Semiconductores

Los semiconductores de interés en fotocatálisis son sólidos (generalmente óxidos), en los 
cuales el solapamiento de los orbitales atómicos se extiende formando una red atómica tridimensional, 
resultando una configuración de estados deslocalizados muy próximos entre si que forman bandas 
de estados electrónicos permitidos. Entre las bandas hay intervalos de energía en los cuales no hay 
estados electrónicos “permitidos". Cada uno de estos intervalos es una “banda de energía prohibida” 
o band gap. Para fines de la fotocatálisis y de la mayoría de las propiedades químicas y físicas de 
los sólidos, las bandas que limitan el gap de interés son la banda de valencia (BV) de menor

Figura 1.
Procesos que ocurren en ia interfaz 
semiconductor - electrolito bajo 
iluminación.

A reducido

h* BV + H20  (adsorbido)------ > OH*+ H*
h* BV + OH* (superficial)------ > OH*
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Figura 2. 
Estructura de bandas y 

distribución de electrones para 
un meta! y para un 

semiconductor.

energía, y la banda de conducción (BC) de mayor energía (Fujishima, 2000).

En el estado fundamental, y a 0 K, los e* ocupan estados electrónicos (dos e' con spin 
opuesto por cada estado) hasta un determinado valor de energía, denominada energía de Fermi EF, 
quedando los estados con energía mayor que EF desocupados, como se esquematiza en la Figura 
2. Ef coincide a 0 K con el potencial químico de los electrones (b). A temperaturas mayores, la 
excitación térmica promueve e* a niveles por encima de EF, y la fracción de estados ocupados se 
extiende hasta EF + kBT (kB es la constante de Boltzmann y T la temperatura), como consecuencia, 
se desocupa una fracción equivalente de estados en el intervalo EF - kBT.

La posición de la EFcon respecto a las bandas de valencia y de conducción distingue a los 
metales de los semiconductores y aislantes. Para los primeros, EF cae dentro de la banda de 
conducción (d) mientras que para semiconductores y aislantes, cae en la banda de energía prohibida 
(a). La diferencia entre un semiconductor y un aislante está dada por el ancho de la banda de 
energía prohibida Eg. Para los semiconductores Eg es suficientemente pequeño como para que sea 
posible excitar (térmicamente, con luz o con descargas eléctricas) electrones de la banda de valencia 
a la de conducción, generando el par electrón hueco (c). (Cyted, 2003).

I
Algunos semiconductores que pueden ser usados como fotocatalizadores son: T¡02, W 0 3, 

CdS, ZnO, ZnS, entre otros. De ellos el más utilizado para aplicaciones ambientales es el Dióxido 
de Titanio T i02, dado que es biológica y químicamente inerte, económico y resistente a la corrosión 
química y a la fotocorrosión. Además, oxida tanto los compuestos tóxicos iniciales como los 
intermediarios generados en las reacciones fotocatalíticas y no agota su fotoactividad tras una 
única utilización (Alberci, 1993; Ding, 2000).
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El Ti0 2 sólo es activo en la región ultravioleta cercana (UVA) debido a que su salto de banda 
se encuentra entre 3,02 y 3,23 eV, según si su estructura cristalina es, respectivamente, rutilo o 
anatasa. Por este motivo únicamente puede aprovechar alrededor de un 5% de la intensidad del 
espectro de luz solar, la cual corresponde a la región ultravioleta con I < 400 nm (Peiró, 2001).

3. MONTAJES EXPERIMENTALES

Para llegar a la mineralización completa de un determinado contaminante, pueden aparecer 
y desaparecer previamente toda una serie de compuestos intermediarios, para los cuales resulta 
también importante demostrar su eliminación, y poder así verificar la eficiencia del proceso 
fotocatalítico. Esto se logra utilizando técnicas avanzadas de medición, (lolli, 2003; Loddo, 1999; 
Leyva, 1998; Salaices, 2004). Entre las más importantes, empleadas en los diferentes trabajos de 
investigación estudiados, se encuentran:

La Demanda Química de Oxígeno (DQO), es la medida del oxígeno necesario para oxidar la 
materia orgánica e inorgánica susceptible de oxidación contenida en una muestra. Los valores de 
este parámetro están asociados al grado de avance de la oxidación de los contaminantes, por lo 
que la determinación seriada de DQO es una herramienta útil de seguimiento del proceso.

La Demanda Bioquímica de Oxígeno (DBO) mide la cantidad de oxígeno utilizado para la 
biodegradación de materia orgánica e inorgánica contenida en una muestra y permite seguir la 
evolución de los compuestos biodegradables. Además, la relación DBO/DQO permite evaluar la 
posibilidad de aplicar un tratamiento biológico al efluente.

El seguimiento del proceso mediante Carbono Orgánico Total (COT) es importante dado que 
los valores de COT cercanos a cero son los únicos que garantizan que no se acumulen contaminantes 
recalcitrantes o intermediarios de mayor persistencia y toxicidad. La determinación del COT es 
fundamental para el seguimiento del proceso fotocatalítico.

La Cromatografía, liquida o de gases, es el método más usado en los estudios de laboratorio 
para la degradación de contaminantes puesto que logra simultáneamente separar, identificar y 
cuantificar las especies presentes en una mezcla a un tiempo determinado.

Otras técnicas utilizadas, dependiendo de los objetivos específicos de cada investigación 
son: la Espectrofotometría de Fluorescencia Ultravioleta (UVF), la Espectroscopia de Masas (MS), 
la Difracción de Rayos X (XRD) y la Microscopía de Rastreo de Electrones (SEM) (Ahmed, 2001; 
Yu-Hsiang, 2001)

En las diferentes investigaciones se utiliza el Ti02 P25 de la compañía Degussa, para tener 
un punto de referencia común con el cual comparar sus resultados, dado que la actividad fotocatalitica 
depende notablemente del semiconductor utilizado e incluso de su método de síntesis. Igualmente, 
éste catalizador es usado como patrón en la búsqueda de semiconductores más eficientes.

Otro factor importante es la homogenización de la mezcla (agua contaminada/catalizador/ 
aditivos). Generalmente la mezcla se agita en ausencia de luz antes de la irradiación. Sí el catalizador 
está suspendido en la solución estudiada, es importante retirarlo mediante filtración (con una 
membrana de miliporo de 0.45 mm) o centrifugación antes de los análisis (Nogueira, 1999; Pandiyan, 
2002; Salaices, M 2004).

4. PARÁMETROS QUE INFLUYEN EN EL PROCESO

Un gran número de parámetros influyen tanto cualitativa como cuantitativamente en el proceso 
de fotocatálisis, por lo tanto resultan determinantes en la eficiencia del mismo. A continuación se 
presentan los resultados obtenidos en algunas de las investigaciones más recientes.

4.1. pH
Los estudios muestran que el pH tiene una notable incidencia en la degradación del compuesto 

orgánico, pudiéndose lograr mediante su manipulación, una mayor velocidad de reacción y un
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mayor porcentaje de degradación, entre otras modificaciones al sistema.

En general el pH inicial de las soluciones en los diferentes estudios es ajustado mediante el 
uso de NaOH, KOH, H2S 04 ó H N 03 entre otros.

Se ha encontrado que se logra mejor degradación de los compuestos fenólicos bajo 
condiciones ácidas, específicamente, en valores de pH que se encuentren cercanos y por debajo 
del punto isoeléctrico del catalizador pHpzc, el cual es una característica del catalizador que es 
importante conocer (Pandiyan, 2002). En particular, se ha demostrado que la degradación de los 
nitrofenoles, se acelera en medio ácido. Para el fenol y algunos derivados como el Catecol, Guayacol 
y 2-Clorofenol, las investigaciones coinciden en que a un pH = 3 se logra un porcentaje de degradación 
elevado sobre T¡02 (Leyva, 1998).

Por otra parte, los resultados obtenidos al elevar el pH por encima de 9, muestran menores 
conversiones del contaminante y la coagulación de la suspensión de Ti02, lo que dificulta su posterior 
separación por filtrado. Lo anterior se atribuye a que a elevados valores de pH, la carga superficial 
del semiconductor es predominantemente negativa, lo que dificulta la adsorción de muchos 
intermediarios aromáticos hidroxilados ya que, probablemente, a ese pH dichos compuestos existen 
como especies aniónicas (Pandiyan, 2002)

Salaices et al. (2004) desarrollaron un modelo de reacción en series-paralelo para describir 
la degradación de fenol. Los cambios en el pH modificaron la importancia relativa de algunas etapas 
específicas de estos modelos, llevando a que en algunos casos, no se detectaran algunos de los 
intermediarios propuestos en el esquema general, como sucedió con el o-Dihidroxibenceno al cambiar 
el pH de 7 a 4. En general, observaron que un incremento en el pH reduce significativamente los 
parámetros cinéticos (Salaices, 2004).

4.2. Catalizador

Sobre la superficie del semiconductor se da inicio al proceso fotocatalítico en si, lo que hace 
necesario estudiaren detalle los diferentes aspectos relacionados con éste (composición, estructura, 
superficie activa, modo de fabricación, entre otros) para poder encontrar sus características óptimas 
en un sistema en particular (Ksibi, 2003; Kang, 1999; Dingwang, 1999).

En fotocatálisis heterogénea el catalizador más utilizado es el Ti02 (Pelizzetti, 1995; Loddo, 
1999). Las investigaciones se han centrado en evaluar los cambios en sus propiedades al realizar 
modificaciones a su estructura. Una de ellas puede ser el dopado con otro metal. Se realizaron 
comparaciones entre el T i02 (anatasa) de Aldrich con el T i02-Ag preparado por un método térmico, 
en la degradación de fenol y algunos derivados clorados, con y en ausencia de luz, obteniendo una 
mayor tasa de remoción con el T i02-Ag en todos lo casos (Alberci, 1993). Resultados similares se 
obtuvieron al depositar CdS sobre Ti02 para degradar 4-Clorofenol, Hidroquinona y Benzoquinona, 
probablemente debido al menor valor para el nivel inferior de la banda de conducción del CdS 
(0.5eV < T¡02), por lo que se fotosensibiliza el TiOz mediante la inyección directa de e* de la banda 
de conducción del dopante, contribuyendo además a reducir la recombinación del par e - h+ luego 
de la fotoexcitación (Kang, 1999).

En otro estudio se investigó la influencia que tiene el tipo de precursor alcóxido utilizado al 
preparar el catalizador por el método de sol-gel. Se muestra que en la pirólisis de los alcoholes 
empleados se producen las especies carbonáceas incrustadas en la matriz de T i02 (coke residual), 
las cuales, según se observó, son responsables de la fotosensibilización del catalizador, permitiéndole 
operar en la región visible (é > 380nm), donde el precursor ejerció una influencia más notoria en su 
rendimiento. Los estudios realizados en la región UV no mostraron variaciones significativas en los 
espectros de reflectancia difusa de los diferentes catalizadores, lo que indica que se mantiene el 
principio básico de formación del par e - h+ sobre el bandgap del T i02 (Lettmann, 2001).

Se ha comparado al T i02 Degussa P25 (Asup=55m2/g), con catalizadores preparados en el 
laboratorio como el Tetratitanato de Bario (BaTi4O0) y del tipo Hollandita de fórmula general
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®̂ 3x̂ *2x+4ŷ 8-2x-ŷ 16 (ASüp=0.5 m2/g). Para el estudio se preparan cuatro catalizadores de este último 
tipo, con x  de 0.34 a 0.36 y, y  de 0.08 a 0.12 Se sigue la degradación catalítica del fenol y 4- 
clorofenol con luz visible y UV sobre estos catalizadores a temperaturas de 30 y 40°C. En todos los 
casos el Ti02 produjo los mayores porcentajes de degradación (del orden de 37%), exhibiendo los 
otros catalizadores, porcentajes de degradación similares (alrededor de 6%). Esta diferencia se 
atribuye a las impurezas que se presentan en cada catalizador reveladas en sus espectros de 
difracción (XRD). Además se observó que dichos catalizadores solo eran activados ligeramente por 
la luz UV, constituyendo su mayor aplicación en la región visible (Leyva, 1998).

Salaices et al. (2004), han comparado el T i02 Degussa P25 con el del tipo Hombikat UV-100 
(Asup=352 m2/g), para la degradación del fenol a un pH inicial de 7. Se observó que ambos catalizadores 
desarrollaban una tasa de fotodegradación inicial similar, como evidencia de sus eficiencias cuánticas. 
Sin embargo, cuando las tasas iniciales son relacionadas con el peso del catalizador (Degussa P25 
0.87 g de catalizador y Hombikat UV-100 1.71 g), Degussa P-25 aparece dos veces más activo. 
Esta diferencia se debe a las diferentes características de aglomeración de los catalizadores, con 
diferentes coeficientes de extinción asociados (Salaices, 2004).

Respecto a la forma de uso del catalizador, se han realizado estudios para la fotocatálisis de 
T¡02 suspendido y soportado. Cabe anotar que no se ha podido llegar a un acuerdo en cuanto a la 
dosis de catalizador óptima a utilizar cuando el catalizador se encuentra suspendido, ya que los 
valores reportados en la literatura varían desde 0.15 a 2.5 para el Degussa P25 (Dingwang, 1999; 
Prakash, 2002).

Dingwang (1999), plantea un modelo matemático para la degradación de fenol, 4-Clorofenol 
y 4-Nitrofenol, sobre TiOz suspendido, en un reactor semi-batch de platos circulares con introducción 
tangencial del líquido. Se pudo apreciar que la dosis de catalizador óptima aumenta con la intensidad 
de luz incidente y que esta a su vez es una variable importante para definir la altura del reactor. Aún 
así, en la práctica se acostumbra a usar el catalizador en dosis más altas que la óptima con el fin de 
contrarrestar otros efectos diferentes a los relacionados con la absorción de radiación.

En los sistemas que trabajan con el T¡02 soportado, el parámetro a determinar es el espesor 
óptimo de la capa de catalizador. El área interfacial es proporcional al espesor del catalizador 
cuando la capa es porosa, lo que lleva a que la oxidación catalítica se favorezca con el aumento de 
este último. Sin embargo, la resistencia interna a la transferencia de masa para las especies orgánicas 
y las fotogeneradas (par e -  h*), también se incrementa con el espesor, lo que aumenta la posibilidad 
de recombinación del par y reduce la eficiencia de degradación (Dingwang, 1999).

4.3. Contaminante

La naturaleza del contaminante a degradar ejerce una fuerte influencia en la cinética de 
degradación y en el mecanismo de reacción que éste sigue. Para los compuestos fenólicos, se han 
propuesto diversos mecanismos y, para el fenol en particular, se han detectado intermediarios 
diferentes en cada caso debido principalmente a variaciones en las condiciones del medio de 
reacción. La determinación de los posibles intermediarios y su cinética de degradación adquiere 
importancia, ya que un proceso fotocatalítico realmente eficiente debe remover tanto el contaminante 
original como los intermediarios formados (Santos, 2002; Rideh, 1997; Tatti, 1991)

Estudios llevados a cabo en mezclas de fenol con algunos clorofenoles en ausencia de luz, 
han permitido demostrar que entre mayor número de sustituyentes tenga la molécula, mayor 
adsorción tendrá sobre la superficie del catalizador. Como consecuencia, en las primeras etapas de 
la fotocatálisis, cuando el catalizador tiene todos sus sitios activos disponibles, se registran mayores 
velocidades de remoción para los fenoles con mayor número de cloros en su estructura, como 
puede verificarse experimentalmente para compuestos como el 2-Clorofenol, 4-Clorofenol, 2,4- 
Diclorofenol, 2,4,6-Triclorofenol y el Pentaclorofenol (Serrano, 1999; Yu, 1997).

No obstante, a medida que transcurre el tiempo de operación los sitios disponibles del 
catalizador van disminuyendo, lo que convierte las buenas características de adsorción de los
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clorofenoles en una desventaja en términos de velocidad y porcentaje de degradación final, por lo 
que los más sustituidos registrarán los menores valores de estas variables (Rideh, 1997)

Similarmente se ha estudiado la degradación de nitrofenoles de hasta tres sustituyentes, y 
de hidroxifenoles como la Hidroquinona y el Resorcinol, intermediarios comunes en la degradación 
del fenol, para los cuales se ha determinado la constante de Hamet (Santos, 2002) (San, 2002). El 
valor de esta constante traduce el efecto electrónico de los diferentes sustituyentes en el anillo 
aromático y ha demostrado ser el descriptor más adecuado de la susceptibilidad de una sustancia 
para ser degradada por fotocatálisis. Un valor positivo indica un grupo electrón-retirado mientras un 
valor negativo indica un grupo electrón-donado. Según se ha observado, el valor de esta constante 
aumenta proporcionalmente con los sustituyentes del nitrofenol. La Hidroquinona presentó un 
comportamiento particular, ya que teniendo dos grupos fuertemente activadores, no es el más reactivo 
entre los compuestos estudiados (Pandiyan, 2002; István, 1999). A. Rincón et al (2001), reportan 
que la baja velocidad de descomposición de la hidroquinona podría relacionarse a un efecto 
tautomérico ceto-enólico oxido-reductivo. Debido a esto, la oxidación de la hydroquinona a la 
benzoquinona, por huecos fotogenerados (h*) que se forman en la banda de valencia del 
semiconductor, puede seguir la captura de un e* en la banda de conducción por la benzoquinona, 
dando lugar a una reacción de recombinación.

Para estudiar la influencia del sustituyente del fenol sobre su cinética de degradación, se 
preparó una mezcla de fenol con Guayacol, 2-Clorofenol y Catecol. La formación de la mayor parte 
de los intermediarios corresponde a la reacción de los radicales OH0 con los anillos aromáticos. 
Igualmente, se detectaron moléculas formadas a partir del acoplamiento directo de dos radicales 
fenoxi. En dicho trabajo se proponen esquemas de reacción para la degradación de los compuestos 
iniciales, que involucran los intermediarios detectados. Mediante el seguimiento con COT se comprobó 
la degradación de todos los compuestos de la mezcla, así como sus intermediarios. Mediante el 
seguimiento de las concentraciones con HPLC se notó que cada uno de los compuestos de la 
mezcla seguía una cinética de degradación del tipo L-H competitiva. Este ajuste cinético fue bueno 
para todos los compuestos, excepto para el fenol, lo que indicaría que la adsorción del fenol sobre 
el catalizador se altera significativamente por la presencia de los demás compuestos en el medio de 
reacción (Peiró, 2001).

En la literatura se ha prestado especial atención a la determinación de la ruta de degradación 
del fenol, encontrándose diferentes caminos propuestos, según el tipo de intermediarios detectados 
(Axelsson, 2001). Salaices, 2004, identificó las especies: para -  dihidroxibenceno, orto - 
dihidroxibenceno, 1,2.4 -  trihidroxibenceno y 1,4 -  benzoquinona, como los principales intermediarios 
del mecanismo y propone como especies posiblemente formadas con el rompimiento del anillo 
aromático: ácido mucónico, ácido maleico, ácido oxálico, ácido fórmico y ácido acético. Resultados 
similares fueron obtenidos para la degradación del fenol sobre un catalizador de Cobre, en donde 
coinciden casi todas las especies mencionadas, pero varía el mecanismo de reacción (Santos,
2002).

4.4. Temperatura

En general, el proceso global de degradación fotocatalítica no es muy sensible a la temperatura. 
Esto se debe a que la energía de activación térmica (kT= 0.026 eV), es muy baja comparada con la 
energía de activación del T i02 (3.2eV) por lo que su contribución al proceso de generación del par e* 
- h+, es muy poca. Como consecuencia de esto, no es necesario suministrar calor al sistema reactivo, 
característica que hace atractivos a los procesos fotocatalíticos para su utilización en el tratamiento 
de aguas contaminadas (Barbara, 1995; Christoskova, 2001)

Sin embargo, los cambios en la temperatura pueden afectar la composición del medio de 
reacción mediante transformaciones térmicas de las especies químicas presentes. Leyva et al. 
1998, desarrollaron experimentos con el fin de comparar la influencia de la temperatura en la 
degradación de fenol y 4-clorofenol, usando los diferentes catalizadores (Ti02, BaTi4Og y Hollandita). 
Al modificar la temperatura de 30°C a 40°C, se observaron incrementos de hasta 15% y 17% en el 
porcentaje de degradación del fenol y clorofenol respectivamente. En otro estudio, donde se siguió
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la degradación del clorofenol en el tiempo, se hizo variar la temperatura de 15 a 65 °C y se observó 
una disminución en la concentración final en un 12%. Se estimó que tomando como base una 
energía de activación de 6.23 kJ/mol, se requeriría un incremento de 103°C para poder duplicar la 
velocidad de reacción, con la indeseable consecuencia de disminuir la constante de equilibrio de 
adsorción (Rideh, 1997).

4.5. Radiación

La radiación es la fuente de energía para iniciar el proceso fotocatalítico. Su estudio permitirá 
establecer el valor adecuado de la longitud de onda a trabajar y la potencia emisiva con que se 
debe irradiar la solución para procurar un aprovechamiento óptimo de la energía suministrada 
(Barbara, 1995).

Alberci-Jardim (1993), estudian la eficiencia de degradación como función del número de 
lámparas usadas en el fotorreactor. Se utilizaron 3 lámparas de mercurio de alta presión, cada una 
de 125 W. Se encuentra que el porcentaje de fenol removido muestra una dependencia directa con 
la intensidad de la luz, dado que el porcentaje de éste es significativamente menor para 125 W y 
similar para 250 W y 375 W. Sin embargo, la relación de potencia por masa removida de contaminante 
es de 1.70, 1.69 y 2.15 kW por gramo de fenol respectivamente, mostrando una mayor eficiencia 
energética para una potencia de 250 W.

Barbara et al. (1995) trabajaron con 2 reactores de membrana Photoperm 30% en peso de 
Ti02 inmovilizado, en experimentos a escala piloto: i) Módulo WP (2,5 L), lámpara de Hg de baja 
presión (Input Power 80 W), de luz monocromática, con una sola membrana en acero inoxidable de 
2540 cm2 de área superficial geométrica iluminada y, ¡i) Módulo WW (20 L), lámpara de Hg de Alta 
presión de luz policromática (Input Power 2kW), de tres capas de membrana fotocatalítica con 
11000 cm2 de área superficial geométrica iluminada.

Se estudia la influencia de la intensidad de la radiación trabajando solo con el módulo WW, 
y se observa que a bajos flux radiactivos I (flujo por unidad de área) la velocidad de reacción varía 
directamente proporcional, mientras que a altos flux radiactivos, la variación se da proporcional a l1/ 
2. Se observó un valor umbral para I, a 300 W, por debajo del cual la influencia sobre la velocidad de 
reacción disminuye, lo que se atribuye a disipación de la energía UV en la estructura polimèrica de 
las membranas. Por otra parte, a altas I, se da una saturación óptica del semiconductor, por lo que 
después de cierto valor, la velocidad de reacción permanecerá invariable aunque se incremente el 
flux radiactivo (Barbara, 1995).

Leyva et al (1998) encuentra que el fenol se degrada fácilmente en la presencia de Ti02 (0.2 
g) iluminado por luz UV, puesto que luego de 24 horas de reacción con luz visible el porcentaje de 
remoción es de 38.5%, mientras que para solo 6 horas de exposición de luz UV la remoción es de 
32.2%. Otros catalizadores (Tetratitanato de Bario, Hollandita I, II, III y IV) eran activados ligeramente 
por la luz UV. El 4-Clorofenol, presenta un comportamiento más significativo que el del fenol, dado 
que la remoción aumenta de 35.7% luego de 24 horas de exposición a la luz visible, a 40.7% luego 
de 6 horas de exposición a la luz UV.

4.6. Fotoreactor

Los reactores fotocatalíticos pueden ser operados principalmente de las siguientes formas: 
i) el fotocatalizador puede estar inmovilizado, sobre un soporte fijo tal como fibra de vidrio, o en la 
pared del reactor y, ¡i) estar disperso en la fase acuosa. Los fotoreactores son generalmente cilindros 
con la lámpara coaxialmente ubicada en el centro o, de placas planas con la lámpara ubicada a una 
distancia fija sobre la superficie (Horikoshi, 2002; Alemany, 1997; Gun, 2003; Molinari, 2000; Puma,
2003).

Los reactores fotocatalíticos pueden manejar altas tasas de flujo, lo cual permite un mejor 
contacto contaminante - partículas de fotocatalizador (Yue, 1997).
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Algunos requisitos para los fotoreactores con el catalizador disperso en el agua residual son:

• Una apropiada fuente de fotones.
• Una óptima geometría y configuración del reactor para la eficiente interacción de los fotones 

con las partículas de fotocatalizador.
• La hidrodinámica del reactor debe ser compatible con la potencia y re-utilización del 

fotocatalizador.
• Si se introduce oxígeno o aire dentro del reactor, la fase gas debe estar bien dispersa para 

permitir una transferencia de masa eficiente.

En principio, la constante cinética de la reacción k, debería ser la misma independiente de 
donde se lleve a cabo la reacción fotocatalítica. No sucede lo mismo con la concentración de cargas 
en el semiconductor, que dependerá del flujo de fotones absorbidos por el catalizador. Este flujo 
fotónico dependerá de múltiples factores, pero principalmente de la naturaleza de la fuente de 
radiación, la geometría del sistema, fuente de radiación-reactor y, las características ópticas del 
medio de reacción.

Barbara et a! (1995) estudian la velocidad de reacción en función de la concentración de 
fenol inicial para dos reactores de membrana, obteniéndose un buen ajuste a la cinética de Langmuir, 
por lo que fue posible obtener valores de los coeficientes cinéticos k y K, los cuales al compararse 
para ambos tipos de reactor, permitieron observar una eficiencia 22 veces mayor para el reactor de 
baja presión (WP) respecto al de alta presión (WW) a altas concentraciones, ventaja que aunque se 
redujo a 8 veces en la zona de bajas concentraciones, sigue siendo considerable y energéticamente 
favorable.

Los experimentos realizados aumentando la relación área/longitud de la membrana, 
permitieron confirmar la importancia de este parámetro en el diseño del fotorreactor, ya que la 
velocidad de reacción esta fuertemente influenciada por el valor que éste tome. Además se hizo 
variar el flujo para tres concentraciones de fenol fijas, lo que permitió observar 2 zonas donde la 
velocidad de reacción permaneció constante, siendo menor el valor de ésta en la zona de flujos 
bajos. La zona de transición de la velocidad de reacción baja a la alta, se atribuye al cambio en el 
régimen de flujo de laminar a turbulento.

Se observó que el factor de ganancia de las membranas aumentó con la concentración de 
fenol, lo que se atribuye a las buenas características de las membranas microporosas utilizadas. 
Dichas membranas permiten una alta permeación del flux y una renovación eficiente de la superficie, 
siempre y cuando el flujo sea suficientemente alto, de tal forma que tanto las especies fotoproducidas 
como las presentes en las inmediaciones de la membrana, puedan recibir un suministro apropiado 
de sustrato para reaccionar y mejorar el proceso difusivo limitante de la velocidad de reacción.

4.7. Aditivos

Determinadas sustancias pueden incidir de forma importante en la eficacia del proceso, ya 
sea inhibiéndola, como en el caso de los cloruros, sulfatos y fosfatos (también nitratos y percloratos 
en menor medida) los cuales compiten con el contaminante por los espacios disponibles en el 
catalizador o, favoreciendo la velocidad de degradación como sucede con agentes oxidantes tales 
como el oxígeno, el peróxido y el ión persulfato (S2O02*), siendo el 0 2 el más empleado por ser más 
económico y de fácil consecución, aún cuando los otros tienen una mayor influencia en la velocidad 
de la reacción fotocatalítica (Chun, 2000).

La presencia de un agente oxidante es necesaria para remover los e* fotogenerados para la 
continuación de la oxidación fotocatalítica de los compuestos orgánicos. De lo contrario, los fotones 
acumulados en la partícula de catalizador se recombinarían con los huecos, que son los iniciadores 
de la reacción fotocatalítica. Alberci et al (1993), encontraron que la descomposición del fenol 
sobre T¡02 en soluciones no aireadas, fue mucho mas lenta comparada con las aireadas.
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Dingwang et al. (1999) observaron que la actividad catalítica estuvo casi totalmente suprimida 
en la ausencia de 0 2 y que la concentración de estado estable de éste tiene un efecto profundo en 
la velocidad de fotodescomposición del contaminante. Además, condujeron una serie de experimentos 
variando la razón de concentraciones O ./^ , y confirmaron que fue casi nula la degradación del 
contaminante al suministrar solamente N2 y fue aumentando conforme se incrementaba esta razón. 
Propusieron la siguiente ecuación para evaluar la influencia del oxígeno disuelto en el coeficiente 
cinético de degradación:

Siendo K02 considerada como la constante de adsorción del oxígeno disuelto sobre T¡02, y k 
un parámetro dependiente de las condiciones experimentales

Se ha estudiado el efecto de las especies transportadoras de carga (0 2, H20 2, Ag+) en la 
cinética de descomposición del fenol. Los resultados de los experimentos se ajustaron al modelo L-
H, tanto para la adsorción del fenol como del 0 2, aunque la variación en la concentración de este 
último, ejerció una mayor influencia sobre la velocidad de reacción, lo que permite afirmar que el 0 2 
se adsorbe con más fuerza a la superficie del catalizador (Malato, 2000).

Se hacen experimentos adicionando Ag+ (eficiente receptor de e ), para aclarar el papel del
0 2, en dos efectos que se le atribuyen: receptor de e* y posible reacción con los radicales formados. 
Se encuentra que el 0 2 sólo funciona como un agente receptor de electrones, pues fue posible 
fotodegradar el fenol en ausencia de éste, cuando se le reemplazó por el ión Ag+ e incluso superado 
en cuanto a la velocidad de reacción. De lo anterior se concluye que el fenol se degrada principalmente 
por vía transferencia electrónica directa con los huecos h* fotogenerados, teniendo mayor afinidad 
por éstos que el H20  o el ión OH* (Dingwang, 1999)

Estudiando el efecto del H20 2 en la velocidad de reacción, se observa que con éste se 
obtienen mayores velocidades de degradación que con el 0 2, ya que cumple eficientemente con dos 
funciones: aceptor de electrones y capturador de huecos, siguiendo una cinética de orden 0 en su 
velocidad de fototransformación. La presencia de fenol disminuye la pendiente de esta velocidad 
debido a que compite con el H20 2 por los radicales OH0 y por los huecos fotogenerados (István, 1999).

Por otra parte, para investigar el papel que cumple el 0 2 en la fotocatálisis de 3,4-diclorofenol 
sobre T i02 usando luz UV, se parte de la suposición que el contaminante se degrada sólo mediante 
dos mecanismos: i) reacción directa con el radical hidroxilo o, ii) por reducción con un e* generado 
en un sitio defectuoso en la superficie del catalizador (reacción de declorinación). Se comprobó que 
más que disminuir la recombinación del par e - h+ , el 0 2 tiene dos importantes funciones: aceptor 
de un átomo de hidrógeno (deshidroxilación) en el mecanismo de reacción directa con el radical 
hidroxilo, e inhibidor de la reacción de declorinación, al adsorberse sobre los sitios defectuosos, 
Ti3*, de la superficie del Ti02. Además se encuentra que manipulando la concentración de 0 2, se 
puede definirla predominancia de uno u otro mecanismo, siendo preferible promover el de la reacción 
con el OH0, lo que se logra elevando la concentración de 0 2. La declorinación tiene la desventaja de 
ser menos eficiente y de llevar a la formación de HCI (Rota, 1996).

La Fotocatálisis presenta algunas ventajas comparativas, frente a las técnicas convencionales 
usadas para la descontaminación de aguas, entre ellas se encuentran:

Facilidad para el tratamiento de mezclas de compuestos (no selectividad).
Tiempos cortos para la remoción.
Obtención de efluentes de óptima calidad (mineralización completa).
Bajos costos de operación.

5. VENTAJAS
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Menor consumo de energía.
Mejor adaptación a diferentes condiciones de operación.
Transforma químicamente el contaminante, no sólo lo cambia de fase.
El proceso global de degradación fotocatalítica no es muy sensible a la temperatura.

6. APLICACIONES Y TENDENCIAS

La fotocatálisis heterogénea se encuentra en un nivel preindustrial, pues sólo se han construido 
algunas plantas pilotos en el mundo. Un buen ejemplo es la Planta Solar Almería (PSA), para el 
tratamiento de pesticidas, en la provincia española de Almería (Feitz, 2000; Herrmann, 1999; Blanco, 
1996; Minero, 1995; Giménez, 1999).

Algunos estudios demuestran la eficiencia de la fotocatálisis heterogénea, en la remoción de 
la fracción soluble en agua (WSF) de petróleo crudo en agua salada, lo cual disminuiría los impactos 
ambientales causados por derrames de petróleo en el mar. También se ha demostrado que la 
fotocatálisis transforma algunas sustancias orgánicas no-biodegradables a formas biodegradables, 
sirviendo así como tratamiento previo al tratamiento biológico en efluentes altamente contaminados. 
Igualmente, la fotocatálisis ha sido estudiada como una técnica alternativa en la limpieza in situ de 
suelos superficiales contaminados con pesticidas y herbicidas (Higarashi, 2000).

Otras aplicaciones recientes, desarrolladas por compañías japonesas, son: i) la 
descontaminación de ambientes a través de la utilización de filtros impregnados con T i02, que son 
iluminados y capaces de degradar sustancias causantes de mal olor (Nogueira, 1999), ¡i) pinturas 
de esterilización fotocatalítica para revestimientos antibactericidas y auto-limpiantes de paredes, en 
centros quirúrgicos (Nogueira, 1999), iii) vidrios y espejos antiempañantes (Nogueira, 1999), iv) 
lámparas auto-limpiables para iluminación de túneles (Fujishima, 2000) y, v) tratamiento de tumores 
cancerosos, hasta ahora solo estudiado en animales (Sakai, 2000).

Las investigaciones actuales apuntan a la aplicación de la fotocatálisis a escala industrial, 
por lo cual los estudios particulares buscan:

• Modelos matemáticos que tengan en cuenta inconvenientes como el efecto de dispersión de la 
luz (efecto pantalla) y que puedan aplicarse fácilmente al diseño del fotorreactor y al escalado 
(Kari, 2002).

• Un método técnica y económicamente viable para la recuperación y reutilización del catalizador 
a escala industrial. A nivel de laboratorio la filtración es 100% eficiente usando membranas de
0.45im (Salaices, 2004; Nogueira, 1999).

• Aumentar la eficiencia del fotocatalizador, ya que incluso el más utilizado hasta el momento, 
T i02, presenta un bajo rendimiento cuántico (< 5%) que conlleva a una rápida recombinación 
entre los e- y h+ fotogenerados. La disminución de la recombinación se ha conseguido de 
diversas maneras: i) mediante iluminación periódica controlada, ii) a través de la degradación 
de compuestos orgánicos asistida electroquímicamente, iii) dopando el T¡02 con metales como 
Ag, Au, Cu, Fe, Pt y, iv) mediante el uso de materiales mixtos (composites), como T i02/S n 02 o 
T i02/Zn0 (Peiró, 2001).
Modificar los catalizadores ampliando su espectro de absorción con el fin de aprovechar la 
radiación visible. Una posibilidad es la fotosensibilización con especies inorgánicas, como el 
cloruro de platino IV o, el Nitrógeno.

Existe un área de investigación que estudia la combinación de la fotocatálisis con otras 
técnicas, ya que aunque la fotocatálisis heterogénea ha demostrado ser adecuada para la destrucción 
de un amplio número de compuestos, en algunos casos la completa mineralización se alcanza muy 
lentamente y la eficiencia de los procesos, en términos de consumo de energía, sólo presenta 
ventajas para efluentes muy diluidos (Peiró, 2003).

Múltiples estudios muestran un efecto sinèrgico en la combinación de la fotocatálisis 
heterogénea con otros procesos avanzados de oxidación, todos ellos en la generación de especies
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radicales capaces de oxidar la materia orgánica (Ollis, 2000). Las microondas y los ultrasonidos 
(Peiró, 2003), también se utilizan de manera conjunta con la fotocatálisis.

La fotocatálisis heterogénea ha demostrado ser una tecnología viable para la remoción de fenoles.

Se ha encontrado que los parámetros de mayor importancia dada su influencia en el proceso 
fotocatalítico, son los siguientes:
1. Las condiciones de pH del medio acuoso, tienen una marcada influencia en la velocidad y el 

porcentaje de degradación final de los fenoles, los mayores resultados se obtuvieron con un 
pH ácido.

2. Las propiedades del semiconductor son relevantes, dado que es allí donde se da inicio al 
proceso fotocatalítico. El catalizador más empleado, el T¡02, ha mostrado un buen desempeño 
a nivel de laboratorio pero se hace necesario mejorar sus propiedades de absorción de luz 
visible y su actividad fotocatalítica para posteriores desarrollos a escala industrial.

3. Los compuestos fenólicos obedecen a una cinética del tipo L-H en la reacción de degradación. 
Los mecanismos de reacción se encuentran bien estudiados en la literatura al igual que el 
efecto de los sustituyentes en la velocidad del mismo.

4. La temperatura no es determinante en la reacción de fotocatálisis puesto que los fenómenos 
térmicos tienen un efecto mínimo en la generación del par e-h+, por lo tanto, no se requiere 
suministrar calor al sistema reactivo.

5. En general, la irradiación con luz ultravioleta permite obtener mayores porcentajes de 
degradación en un tiempo menor que con luz visible. Sin embargo, dada la abundancia de la 
luz solar en el medio ambiente, se deben buscar sistemas fotocatalíticos que logren su mayor 
aprovechamiento. Es importante conocer el intervalo de intensidad de radiación en el cual se 
va trabajar, dado que la velocidad de reacción aumenta a medida que aumenta el flux radiactivo, 
hasta alcanzar un punto máximo, a partir del cual permanecerá invariable, por lo que suministros 
posteriores de radiación, serán desaprovechados.

6. Los parámetros derivados del diseño y del tipo de reactor, tales como la geometría, la óptica, 
distribución de la luz, tipo de flujo, entre otros, influyen sobre el resultado final de la reacción. 
El diseño de fotoreactores es apreciablemente más complejo que el de reactores térmicos, 
especialmente cuando el absorbedor de luz constituye una de las fases de un sistema 
heterogéneo, como ocurre en una suspensión acuosa de dióxido de titanio.

7. Es necesario el uso de un agente oxidante en la reacción fotocatalítica. Por diversas razones, 
el 02 ha sido el más utilizado, y se ha encontrado que en algunos casos, también reacciona con los 
intermediarios formados en el proceso. Otros agentes oxidantes como el H20 2 y el S20 8', aunque 
de más difícil adquisición, proveen una notable mejoría en la degradación de los fenoles.

Teniendo en cuenta los avances de las investigaciones en el laboratorio y los logros alcanzados 
a escala piloto, los esfuerzos deben dirigirse ahora a la aplicación industrial de esta tecnología, 
mediante el diseño de sistemas que permitan alcanzar porcentajes de remoción de fenoles adecuados 
buscando la continua optimización del proceso.

Ahmed, S.; Kemp, T. J. y Unwin, P. R., 2001. Photomineralisation Kinetics of Aqueous 
Chlorophenols at a Supported T i02 Surface Studied by the Channel-flow Method with 
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