
Ingeniería e Investigación vol. 44 No. 1, January - 2024 (e102345)

1 of 7

http://doi.org/10.15446/ing.investig.102345Review Article/Mechanical Engineering, Mechatronics, and Materials Science

Attribution 4.0 International (CC BY 4.0) Share - Adapt

 Surface Roughness Value Recommended for the 
Manufacture of Antibacterial Metal Surfaces: A Review

Rugosidad superficial recomendada en la manufactura de superficies 
metálicas antibacterianas: una revisión
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ABSTRACT
The manufacturing of antibacterial metal surfaces has been widely studied in the elaboration dental and orthopedic implants. Surface 
characteristics such as wettability, chemistry, electrostatics, and roughness have been described as factors for avoiding bacterial 
adhesion. However, surface roughness is still debated among authors regarding its effect on antibacterial surfaces. This paper 
reviews the existing literature to identify the recommended surface roughness values for metal implants to avoid bacterial adhesion, 
and it evaluates the different roughness parameters used in this regard. This compilation found no agreement when it comes to the 
exact roughness that a metal implant’s surface should have to avoid bacterial adhesion and the subsequent formation of biofilms. 
In general, different authors recommend manufacturing smooth surfaces with a nanoscale roughness, smaller than the size of the 
target bacterium.
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RESUMEN
La manufactura de superficies metálicas antibacterianas ha sido ampliamente estudiada en la elaboración de implantes ortopédicos 
y dentales.  Ciertas características de las superficies, tales como mojabilidad, química, electrostática y rugosidad, han sido señaladas 
como factores para prevenir la adhesión bacteriana. Sin embargo, la rugosidad superficial aún se encuentra en debate en cuanto a 
su efecto en las superficies antibacterianas. Este artículo realiza una revisión de la literatura existente para identificar los valores de 
rugosidad superficial recomendados para evitar la adhesión bacteriana en implantes metálicos, y evalúa los distintos parámetros 
de rugosidad utilizados en este contexto. Esta compilación no encontró un consenso en términos de la rugosidad exacta que 
la superficie de un implante metálico debería tener para evitar la adhesión bacteriana y la posterior formación de biofilms. En 
términos generales, diferentes autores recomiendan manufacturar superficies con rugosidades de escala nanométrica, menores que 
el tamaño de la bacteria objetivo.
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Introduction

Bacterial surface adhesion has been widely studied for many 
years, seeking to understand and prevent possible future 
infections [1], [2]. Nosocomial infection, also called hospital-
acquired infection, is “an infection acquired in hospital by 
a patient who was admitted for a reason other than that 
infection. An infection occurring in a patient in a hospital 
or other health care facility in whom the infection was not 
present…” [3, p. 1].

Every year, 1 to 5% of orthopedic implants end up with an 
infection [4]. The number one reason for persisting infections 
has been the formation of bacterial biofilms [5]. According 
to the reports, biofilms have been present in 60 to 80% of 
chronic infections [6], [7].

Treating this type of infection increases the cost of healthcare 
as well as the recovery times [6], [8], [9]. Among other 
factors, roughness, wettability, chemistry, and electrostatic 
charge influence the adhesion of bacteria to a surface. The 

values of these factors differ if metal, polymer, or ceramic 
is used. Knowing the exact values of these factors helps to 
manufacture an antibacterial surface that reduces the patient’s 
probability of having a nosocomial infection [2], [10].

This paper aims to review one of the factors that influence 
bacterial adhesion in metallic surfaces: surface roughness. 
It aims to summarize the recommended values for avoiding 
bacterial adhesion to orthopedic metal implants according 
to different authors.
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This article is divided into four sections. What is biofilm? 
elucidates the process of bacterial adhesion to the implant 
surface, the difficulty of eradicating it, and the role of 
surface roughness in it. Surface roughness parameters used 
to measure bacterial adhesion outlines various roughness 
parameters utilized for measuring surface roughness, and it 
discusses why specific parameters are more suitable than 
Sa to measure bacterial adhesion, as per the ISO 25178 – 2 
standard [33]. How do nano- and micro-roughness surfaces 
affect adhesion? compares the findings of different authors 
regarding the surface roughness ranges that prevent 
bacterial adhesion. In this section, the lack of consensus on 
these values is addressed. The Conclusions section provides 
a comprehensive overview based on this review, offering 
a general recommendation for manufacturing antibacterial 
metal surfaces. By synthesizing the findings from various 
sections, valuable insights for creating effective antibacterial 
metal surfaces are presented.

What is biofilm?
Peri-implant infections are a particular type of infection 
produced by a biomaterial in the body. The microorganisms 
in these infections take advantage of the weak interface 
between the antibodies and the surface of the implant [11]-
[13].

Because planktonic bacteria are associated with orthopedic 
implants, these infections create multicellular communities 
on the implant’s surface, which are challenging to eradicate. 
Bacterial adhesion, in general terms, has five stages [5], 
[14]-[16]:

	• Stage one: Planktonic bacteria adhere reversibly 
to the surface implant. This adhesion depends 
on characteristics such as the surface material, 
hydrodynamics, electrostatic interactions, surface 
roughness, etc. [1].

	• Stage two: The adhered bacteria send information to 
the nearby bacteria and secrete proteins with adhesive 
components, which makes the adhesion irreversible in 
a few hours [1]. 

	• Stage three: The bacterial community colonizes the 
surface and creates a biofilm matrix that will encapsulate 
the bacteria. This results in a complex structure which 
will cover the colony [1].  

	• Stage four: The bacterial colony starts to secrete 
extracellular polymeric substances (EPS) and develops 
a complex microorganism known as a mature biofilm. 
This biofilm consists mainly of bacteria, polysaccharides, 
proteins, and DNA. In this last stage, some ducts are 
created to spare more bacteria, spreading the infection 
to different body parts [1]. 

Preventing bacterial adhesion and anchorage to the 
implant’s surface is crucial for preventing further infections 
[17]. Biofilms protect bacteria from the immune system and 
antibiotics, and, once they have created a biofilm, treating 
the infection with antibiotics becomes harder [1]. It has 

been found that the dose of antibiotics needed to treat some 
bacteria in biofilms is 1 000 times higher than that needed 
in the first adhesion stage [14], [18]. Many authors such as 
[19] and [20] have stated that modifying the implant surface, 
either chemically or physically, may lead to antibacterial 
surfaces.

Regarding the physical modification of the surface, micro- 
and nano-topographies are essential in creating antibacterial 
surfaces. However, the exact values are still unknown [21]-
[23]. 

Surface roughness parameters used to measure 
bacterial adhesion
Surface roughness is the way in which the topography 
of a surface can be described in terms of how high the 
peaks are and how deep the valleys are on a surface after 
manufacturing. Surface roughness is just one of the many 
characteristics that influence bacterial adhesion [24]-[28].

Surface roughness can be measured with different 
parameters: profile roughness parameters (Ra, Rq…) 
calculated in a profile (line), and area roughness parameters 
(Sa, Sq…) calculated in a completed area. Profile parameters, 
especially Ra, are the most commonly reported, but they 
cannot describe the surface thoroughly, providing a reduced 
portion of surface information [26]-[28].

Area roughness parameters better describe the surface as a 
whole. Some parameters can provide specific information 
about the surface, and their use depends on the application 
[29]-[32]. The surface roughness parameters described 
below are reported in the ISO 25178 – 2 standard and 
are used to measure surface roughness for antibacterial 
adhesion [33].  

Sa – Arithmetic mean deviation: This parameter is the 
arithmetic mean of an absolute value corresponding to 
the height of the sampling area. This parameter does not 
adequately describe the surface topography because 
different surfaces with different peaks and valleys can have 
the same Sa.

Sq – Squared mean height: This parameter is similar to Sa 
and is related to the surface energy.

Ssk – Asymmetry: This parameter describes the distribution of 
peaks of the topography. The height difference is distributed 
uniformly if a surface has a Ssk = 0.

Sku – Kurtosis: This parameter describes the spikiness of the 
surfaces if the peaks are uniformly distributed.

Sdr – Surface area ratio: This is one of the most important 
parameters to describe an antibacterial surface. A surface 
with a Sdr = 0 is ideally ‘smooth’. This parameter can also 
identify the differences between two surfaces with the 
same Sa.
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The measurement of these parameters is affected by the 
equipment used. Some studies describe how contact and 
no-contact equipment affect measurements, so this criterion 
should be considered in future research [32], [34].

How do nano- and micro-roughness surfaces affect 
adhesion?
Surface roughness has been widely studied with the aim 
of preventing bacterial adhesion to metal surfaces. Many 
authors have described the roughness values found to be 
the most appropriate in this regard. However, they disagree 
on each type of topography [13], [35].

Some authors have stated that some surface feature 
patterns potentially determine the bacteria’s early location 
and adhesion. In this vein, nanoscale topographies with an 
organized pattern reduce bacterial adhesion by 40-95% [36], 
[37]. 

In a study on bacterial adhesion to titanium nitride, [38] 
found that surfaces with a roughness lower than 0,066 µm 
had better anti-adhesion properties. Other studies such 
as [39] argue that the adhesion of bacteria is minimal if 
the surface has a roughness value or Ra of 160 nm. This 
study evaluated stainless steel surfaces with Ra between 30 
and 890 nm. A different study [41] evaluated five types of 
surfaces with Ra between 172,5 and 45,2 nm, finding that 
bacterial adhesion was restrained on the nanoscale surface. 

While investigating different polishing surfaces, [41] found 
that bacteria had less adhesion in metal surfaces with higher 
porosity. The authors found increased bacterial adhesion in 
surfaces with a Ra smaller than 0,2 µm. In another study, 
no relation between superficial roughness and bacterial 
adhesion could be found [42].

In contrast, the authors of [43] argue that there is a negative 
correlation between bacterial adhesion and metal surfaces 
with a roughness of less than 6 nm. They found that bacteria 
prefer a smoother surface under static culture conditions 
if the roughness is smaller than 0,23-6,13 nm. When the 
roughness is more significant than 6-30 nm, bacteria prefer 
surfaces with higher roughness values. The authors also 
found that a higher roughness does not necessarily benefit 
adhesion; it will increase the production of EPS to create a 
biofilm. It will help protect the bacteria because deep valleys 
trap them and provide cover from shear force [16]. 

On the other hand, some authors such as [44], [45], and 
[46], among others, have stated that nano-topography has 
an antibacterial effect, as peaks with sizes similar to those of 
the bacteria exert strain forces on the bacterial membrane, 
causing it to break. This phenomenon is known as the cicada 
wings effect. 

[43] suggests that increasing the surface roughness more 
significantly than 1,24 μm will increase bacterial adhesion. 
[47] support this idea, stating that surfaces with a roughness 

higher than 0,4 µm increase the risk of peri-implant diseases. 
They support the conclusions of [48], i.e., metal surfaces of 
130-360 nm are desired in avoiding bacterial adhesion. A 
similar idea is shared by [49]: surfaces with flaws such as 
groves, gaps, or cracks provide a favorable environment for 
bacteria [39]. These authors suggest that bacteria adhere to 
surfaces that correspond to their size since this maximizes 
their contact area [50]-[52].

[20] suggest that the adhesion of the bacterium 
Staphylococcus aureus decreases by using surfaces with a 
roughness value under 1,51 nm and a unidirectional surface 
texture. Some related results were obtained [53]. In this 
study, the adhesion of Escherichia coli and Staphylococcus 
aureus was reduced by 55,6 and 40,5%, respectively, by 
using a titanium surface smaller than 6 nm (surface peak 
density). The study by [15] with the same bacteria found 
similar results using pattern surfaces of 1 µm. A similar 
result with the same value of roughness was found by [54].

As is the case of [55], some authors agree that, despite 
the vast amount of works, there is not enough information 
about the adequate topography. However, in general, the 
best approximation would be a nanoscale surface roughness 
with a structure similar structure to that of bone tissue [56]. 

In [57], by analyzing the way in which bacterial adhesion 
is evaluated, the authors found that using parameters 
such as Ra may not be the most accurate approach. Ra is 
an arithmetic mean or the absolute value of the vertical 
deviation from the mean line of the profile [31], [58], [59]. 
In other words, Ra is described as the arithmetic mean 
deviation of an assessed profile, which is the average of the 
peaks and valleys of the surface with regard to a centerline 
[35]. According to this, there could be different surfaces with 
the same Ra and significant differences in peaks and valleys 
[60]. Therefore, other superficial roughness parameters 
should be considered in future research, such as Rq, Rsk, 
or even area roughness parameters such as Sq, Sq, Ssk, and 
Sku [61].

Other works [61], [66] have used Sq, Ssk, and Sku to 
measure surface roughness, finding, for instance, that 
Staphylococcus epidermis creates biofilms on surfaces with 
high Ssk values and that smoother surfaces have the best 
antibacterial properties. Despite not providing an exact value 
for the surface parameters to create antibacterial surfaces, 
the findings are consistent with the idea that a surface with 
low peaks and valleys hinders the adhesion of bacteria.

Moreover, bacteria will avoid surfaces with a roughness 
smaller than their size, as this increases their contact area, 
which can damage the bacterial membrane [46], [66]. 

Conclusions

According to this review, there are two things to consider 
while creating antibacterial surfaces.



Ingeniería e Investigación vol. 44 No. 1, January - 20244 of 7

 Surface Roughness Value Recommended for the Manufacture of Antibacterial Metal Surfaces: A Review

•	 Bacteria have fewer probabilities of initial adhesion and 
biofilm formation in surfaces with nanoscale roughness.

•	 Bacteria have fewer odds of adhesion in surfaces with a 
roughness value less than their size.

In conclusion, antibacterial surfaces should be smooth, 
avoiding high peaks and valleys where the bacteria could 
be protected from shear forces. The surface roughness 
should be smaller than the bacteria’s size. This parameter 
depends on the type of bacteria studied, but Escherichia coli 
and Staphylococcus aureus can serve as a reference since 
they are the most common in nosocomial infections. The 
sizes of these two bacteria are 1-5 and 1 µm in diameter, 
respectively.
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