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ABSTRACT
The aim of this research was to identify eroded areas and areas at risk of erosion (EAER) as indicators of soil degradation by water 
erosion in a semiarid watershed of the Venezuelan Andes in 2017. To this effect, remote sensing techniques and geographic 
information systems (GIS) were used, focusing on spectral reflectance data from a satellite image, given the absence of continuous 
pluviographic information and data on soil properties in developing countries. This methodology involved estimating the potential 
water erosion risk (PWER) and mapping eroded and erosion risk areas (EAER) based on calculating the spectral Euclidean distance to 
bare soils and a remote sensing technique, which was selected via linear regression. Receiver operating characteristics (ROC) curves 
were determined to define classification thresholds, which were validated by means of a supervised classification and associated to 
PWER values. The main results indicate that EAER1 identified more eroded areas with bare soils (229,77 ha) as opposed to EAER2 
(195,57 ha). Similarly, it was evident that the first alternative was more successful that the second (sum of the first three principal 
components). The PWER analysis, in addition to the erosion mapping developed and other data and criteria, such as minimum area 
size of interest, could help to consider necessary soil conservation measures.
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RESUMEN
El objetivo de esta investigación fue identificar áreas erosionadas y en riesgo de erosión (AERE) como indicadores de degradación 
de suelos por erosión hídrica en una cuenca semiárida de los Andes venezolanos en el año 2017. Para ello, se emplearon técnicas 
de percepción remota y sistemas de información geográfica (SIG), enfocándose en los datos espectrales de reflectancia de una 
imagen satelital, dada la ausencia de información pluviográfica continua y datos de propiedades del suelo en países en vías de 
desarrollo. Esta metodología implicó la estimación del riesgo potencial de erosión hídrica (RPEH) y la generación de cartografía de 
áreas erosionadas y en riesgo (AEER) a partir del cálculo de distancia espectral euclidiana a suelos desnudos y de una técnica de 
percepción remota seleccionada mediante regresión lineal. Se determinaron curvas ROC (características operativas del receptor) 
para definir umbrales de clasificación, los cuales fueron validados mediante una clasificación supervisada y asociados a valores de 
RPEH. Los resultados principales indican que EAER1 identificó más áreas erosionadas con suelos desnudos (229,77 ha) a diferencia 
de EAER2 (195,57 ha). De igual modo, se evidenció que la primera alternativa tuvo mayores aciertos en contraste con la segunda 
(sumatoria de los tres primeros componentes principales). El análisis de RPEH, además de las cartografías de erosión desarrolladas 
y otros datos y criterios como el tamaño del área mínima de interés, podrían ayudar a considerar medidas necesarias en cuanto a 
conservación de suelos.

Palabras clave: distancia espectral euclidiana, índices de vegetación, análisis de componentes principales, máxima verosimilitud
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Introduction

Water erosion, a soil degradation process also regarded 
as an environmental hazard (Mohammed et al., 2020; 
Duguma, 2022), is caused by precipitations falling on 
vulnerable bare terrain, which, as runoff across the slope, 
drag the soil along to finally deposit it in low areas or 
mire and obstruct bodies of water (Ávila and Ávila, 2015; 
Omuto and Vargas, 2019). This makes it the main soil 
degradation process, as it quantitatively and qualitatively 
affects the rootable volume of soils intended for agricultural 
production (Morales-Pavón et al., 2016) and contributes 
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to the decline of many other essential ecosystem services 
(Chaudhary and Kumar, 2018; FAO, 2019).

A way to observe water erosion is through multispectral 
images captured via remote sensing. From this perspective, 
eroded soils are characterized by a spectral response 
similar to that of bare soils, i.e., much more uniform than 
that of vegetation, which exhibits a flatter reflectivity curve 
(Chuvieco, 2016), thus indicating the existence of bare soils 
or parent material outcrops as an effective indicator of areas 
subjected to erosion (Beguería, 2006).  In light of the above, 
remote sensing techniques and geographical information 
system (GIS) procedures become necessary. These allow 
obtaining the spatial and temporal distribution of the diverse 
factors involved, along with their classifications (Rosales-
Rodríguez, 2021). Thereupon, it is also necessary to perform 
visual and statistical analyses in order to understand and 
validate the generated cartography, whose purpose is to 
obtain a more precise and reliable cartographical indicator.

Some remote sensing techniques focus on visual quality by 
trying to improve the location of the data for analysis, in 
such a way that the features of interest are more evident 
(e.g., contrast expansion, color composition, and filtering) 
(Lillesand et al., 2015; Chuvieco, 2016). Other techniques 
aim to generate continuous variables, such as vegetation 
indices, which have proven to be efficient at evaluating soil 
degradation –with erosion among them (Ngandam et al., 
2016)– by transforming them into Net Primary Productivity 
(NPP) values (Sartori et al., 2018), which has led them to 
be more frequently employed as quantitative indicators of 
ecosystem functioning (Orr et al., 2017). In the same way, 
they have been used to monitor vegetation in arid and 
semiarid lands (Najafi et al., 2020), as well as to generate 
the C-factor for models such as USLE (Universal Soil Loss 
Equation) (Meinen and Robinson, 2021).

Other techniques have also been created, such as i) 
soil indices (IS) used to estimate soil degradation types 
(Ngandam et al., 2016; Li and Chen, 2018); ii) principal 
components analysis (PCA) to discriminate types of bare 
soils or landslides (Romero et al., 2017; Basu et al., 2020); 
and iii) spectral mixture analysis (SMA) to map the C-factor 
or determine bare soils in order to construct vulnerability 
indicators (Demaría and Aguado, 2013). 

In this sense, all these techniques may be used as steps 
prior to highlighting erosion and later allowing its semi-
automatized classification in order to obtain a risk map 
(Duguma, 2022). These techniques also aim to overcome 
the tedious task of visually interpreting satellite images, as 
well as the considerable amount of time required to carry it 
out (Leal et al., 2018).

By making a special emphasis on erosion risk mapping, 
which usually indicates the relative probability of it taking 
place within a certain area as compared to others (Ganasri 
and Ramesh, 2016; Opeyemi et al., 2019), a distinction 
can be made between potential, defined as the maximum 

possible soil loss in the absence of vegetation cover and 
conservation practices (i.e., only considering the interaction 
between the physical factors of the soil: soil erodibility, rain 
erosivity, and topography), and actual, which is determined 
based on the sum of the land cover/use factor and the 
previous ones (Plambeck, 2020). The former tends to be 
substantially higher than the latter (Drzewiecki et al., 2014).

Therefore, the importance of remote sensing techniques to 
map erosion and its risk has become evident. In the same 
way, these methods have proven to be valuable for generating 
a cartography of soil degradation in climate change studies. 
This has been demonstrated in global products, such as soil 
degradation assessment (GLADA) (Anderson and Johnson, 
2016); in regional ones, with erosion risk modeling in 
Europe (Panagos et al., 2015); and in national ones, with 
Malawi’s atlas of soil loss (Omuto and Vargas, 2019). In 
the same way, some of these techniques have been used to 
monitor changes in cover or NPP and have been proposed 
within the analysis of land degradation neutrality (LDN) (Orr 
et al., 2017), whose sustainable development goal (SDG) 
for 2030 is to tackle desertification, rehabilitate degraded 
land and soil, and strive towards a world with “neutral soil 
degradation” (UNGA, 2015). 

Identifying areas that have been eroded or are at risk of 
erosion also allows government agencies (via cross-
referencing with population density maps) to initiate 
rehabilitation and protection activities, to perform territory 
planning for environmentally sustainable socioeconomic 
development, and to determine areas that are susceptible 
to hillslope processes (Ngandam et al., 2016; Efiong et 
al., 2021). Additionally, every action taken to address 
soil degradation may simultaneously contribute to the 
objectives of the fight against climate change, to the 
preservation of biological diversity, and to the SDGs (Orr 
et al., 2017). 

In light of the aforementioned ideas, the main objective 
of this study was to map areas that are eroded and at 
risk of erosion using remote sensing techniques and GIS 
procedures, given that many models developed for this 
type of estimation cannot be adequately executed because 
data are missing to complete their parameters, e.g., soil 
erodibility, which requires properties such as structure and 
permeability, among others, which, in practice, are usually 
scarce or nonexistent for many parts of the world (Ávila and 
Ávila, 2015; United Nations, 2021). All results were obtained 
at a watershed located in a semiarid environment, a space 
where soils often stand out for their susceptibility to hydric 
erosion (Tsegaye et al., 2020).

Materials and methods

Study area: the studied watershed is located between 
the 72°26’43’’ - 72°21’23’’O and 7°58’29’’ - 7°54’11’’N. 
Its area is 37,31 km2 (Figure 1), and its altitude oscillates 
between 253 and 1 622 m.
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Figure 1. Location of the study area: a) national, b) regional, c) watershed
Source: Authors

Resources: the resources used for generating EAER and 
PWER are shown in Table 1.

Table 1. Resources

*ASTER Global Digital Elevation Model 2; SR: Spatial Resolution – 
USGS: US Geological Survey; MARNR: Ministry of the Environment and 
Renewable Natural Resources; MinTIC: Ministry of Information and 
Communication Technologies; OSM: Open Street Map.
Source: Authors

General methodology: a systematic scientific literature 
review was carried out to identify a deterministic PWER 
(potential water erosion risk) model, remote sensing 
techniques, and GIS procedures, with the purpose of 
identifying eroded areas and areas at risk of erosion (EAER). 
Four main phases were implemented: 1) developing the 
PWER model, 2) obtaining the EAER, 3) evaluating the degree 
of accuracy regarding the EAER with a supervised maximum 
likelihood classification (MLC) and a comparison of PWER 
and EAER, and 4) analyzing the results (Figure 2).

Landsat 8 OLI/TIRS image processing: a satellite image 
from October 1, 2017, was downloaded (LC08_L1TP_00705
5_20171001_20171013_01_T1_sr) with surface reflectance 
values and L1T corrections (IGAC, 2013), as well as 
topographic correction performed by Camargo et al. (2021).

Figure 2. Phases of the methodology
Source: Authors

Digital Globe image: a natural color image from May 7, 
2018, was employed. It had a spatial resolution of 0,5 m 
(SIGIS, 2019) and was supported by Google Earth, which 
allows its use in non-profit research (Thenkabail, 2016). 
Said image aided in the selection of ‘ground-truth’ samples 
in order to increase risk prediction reliability, based on a 
qualitative approach of erosion severity classes (Auerswald 
et al., 2018; Fischer et al., 2018; Batista et al., 2019).

PWER methodology

This methodology is based on two principles. The first one of 
a fundamental nature, expresses that it is the land that suffers 
the attack of the forces of climate (climatic aggressiveness) 
and that it, in turn, offers variable degrees of resistance, 
which poses a relation that determines the degrees of 
degradation in a given area. The second one indicates that 
potential risk assessment is most useful when relatively 
unstable or non-permanent factors (vegetation and land use) 
are not included in the calculation (FAO et al., 1980). Recent 
studies that use these principles include, among others, 
Guerra et al. (2020), Allafta and Oop (2021), and Al-Mamari 
et al. (2023). The PWER manifests via Equation (1):

( , , )PWER f C S T=

PWER is expressed in Mg ha-1year-1; C is the rain erosivity 
factor; S is the soil factor, estimated by means of texture 
(st) and erodibility (se) subfactors; and T is the topography 
factor (FAO et al., 1980; Rosales and García, 2015).

The climate factor (C) was evaluated based on the 
modification of the Fournier index (1960) (Arnoldus, 1977), 
which is best correlated with the EI30 value (maximum rain 
intensity in mm∙hr-1 with 30 min duration), which has been 
verified in several parts of the world and is regarded as valid 
for Venezuela (Pacheco, 2012). The original Fournier index 
was not employed, as it does not consider that there are 
areas whose rainfall regime may have more than a monthly 
precipitation peak (Muñoz et al., 2014). Then, interpolated 
monthly precipitation surfaces were generated using IDW 
(inverse distance weighting) instead of kriging, as not all 
assumptions for its use are fulfilled (Hämmerly et al., 2019).

Data input Denomination Level of 
detail Source

Satellite image Landsat 8 SR = 30 m USGS

Satellite image Digital Globe  SR = 0,5 m Digital Globe

Digital elevation 
model

ASTER GDEM 
v2* SR = 30 m USGS

Rain records
Monthly/
annual 

averages

MARNR - 
MinTIC

Soil physical 
properties

Texture and 
organic mater Percentage

UNET Bio-
environmental 

Lab

Soils distribution 
types map 

Venezuelan 
environmental 

systems
1:250 000 MARNR

Roads Roads SR = 0,5 m OSM

(1)
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The S-factor was estimated based on st and se features 
associated with a soil type distribution map (MARNR, 1983) 
given the scarce availability of detailed soil data, which 
generally leads to considering reconnaissance studies 
(Quiñonez and Dal Pozzo, 2008). The texture classes of the 
first ones were conformed (USDA, 2020) and reclassified 
into three general categories recognized by FAO-UNESCO 
(1976), which in turn allowed assigning the valuations 
necessary for the model as per FAO et al. (1980). As for 
the second ones, the nomogram of the USLE K factor was 
employed (Foster et al., 1981), which is between 0 and 
0,09 Mg ha h / ha MJ mm, using organic matter and texture 
percentages, later associated with erodibility values and 
classes and valuations as per FAO et al. (1980). 

Finally, the T-factor was obtained from the ASTER GDEM, 
in which three slope classes were distinguished: a) flat to 
mildly undulating (0-8%); b) strongly undulating to hilly 
(8-30%); and c) strongly eroded to mountainous (>30%) 
(FAO-UNESCO, 1976), which were rated at (a) 0,35; (b) 3,5, 
and (c) 11,0 (FAO et al., 1980).

EAER methodology

Two mapping alternatives were developed: the first one 
was based on the spectral Euclidean distance between 
the reflectivity of each pixel in the satellite image and the 
bare soils category, and the second one on diverse remote 
sensing techniques, with which linear regressions were 
established. ROC (receiver operating characteristics) curves 
were applied to both products, which allowed defining 
classification thresholds and associated uncertainties aimed 
at detecting similar contiguous spectral zones of eroded and 
erosion risk areas (Beguería, 2006; Alatorre and Beguería, 
2009). For thresholds, 100 independent samples (pixels) 
were selected, which evidenced <10% of vegetation cover, 
randomly distributed and defined with the help of the Digital 
Globe image, as the risk of erosion is considered to be high 
when this value is low (Wang et al., 2021). 

An ROC curve is a graph that incorporates all sensitivity/
specificity pairs resulting from the continuous variation of 
cutoff points throughout the range of observed results. This 
offers a global view of diagnostic accuracy by providing 
significant data on the probability of correctly classifying an 
individual by means of a determined variable (Ampudia et 
al., 2017). Their equations are:

asensitivity
a c

=
+

dspecificity
b d

=
+

where a are true positives, b true negatives, c false positives, 
and d false negatives. Sensitivity expresses the proportion of 
correctly predicted positive pixels, and specificity represents 
the proportion of correctly predicted negative pixels. 

Sensitivity and specificity values of 1 represent the likelihood 
of omission (type II, or false negative) and commission (type 
I, or false positive) errors (Alatorre and Beguería, 2009). 
In order to determine eroded areas, a sensitivity value of 
0,9 was fixed, which corresponds to a 10% probability of 
omission errors. For areas at risk, a value of 0,8 was set (20% 
probability of omission error).

A supervised maximum likelihood classification (MLC) of 
the covers was carried out, as it is more precise than an 
unsupervised one because its classes are previously known 
(Liang and Wang, 2020). This, to later evaluate accuracy at 
determining bare soil cover with EAER by means of cross-
tabulation. These results were updated with highways 
(OSM) and validated via global precision (Chuvieco, 2016) 
and kappa statistics (Cohen, 1960).

The remote sensing techniques implemented were vegetation 
indices based on slope and distance, soil indices (equations 
in Table 2), and others such as principal components 
analysis (PCA) (Pearson, 1901), spectral mixture analysis 
(SMA) (Boardman, 1992) and tasseled cap brightness (B) 
(Kauth and Thomas, 1976), with the coefficients derived by 
Baig (2014) for Landsat 8 Oli, as shown in Equation (4):

2 0,3029 3 0,2786 4 0,4733 5 0,5599
6 0,508 7 0,1872

B b b b b
b b

× × × ×
× ×

= + + +
+ +

Then, a linear regression analysis was carried out in order to 
determine the degree of dependence present between two 
variables (Shobha and Rangaswamy, 2018). To this effect, 
the bare soil spectral Euclidean distance was considered 
as an independent variable (x) and each technique as a 
dependent variable (y). Correlation tests were conducted 
in order to show the degree of the linear relation. Finally, 
all p-values generated were lower than 0,001, taking into 
account that values lower than 0,05 had to be considered 
in the analysis. 

The resulting maps show three categories: (i) eroded areas, 
understood as those with no vegetation and denoting 
active erosion; (ii) at risk areas, those with little vegetation 
and prone to erosion; and (iii) no erosion, areas with good 
vegetation cover that ‘apparently’ protect against erosion.

Results

PWER
The behavior of the factors (Figure 3) allows defining a 
C-factor between 78,94 and 106,65. S was defined as fine 
(0,1) and medium (0,3) in terms of subfactor st, and as light 
(0,5) in terms of subfactor se (Table 3). T was between 0,35 
and 11. Once the variables were defined, they were multiplied 
in map algebra in order to obtain PWER and later reclassify 
it to establish the soil erosion risk classes (Figure 4), thus 
obtaining 542,07 ha for ‘none to light’ (14,59%), 1 805,76 ha 
for ‘moderate’ (48,60%), and 1 767,37 ha for ‘high’ (36,80%).

(2)

(3)

(4)
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Author Vegetation index (slope-based)

Jordan, 1969  DVI NIR R= −

Pearson and Miller, 1972  /RVI R NIR=

Rouse et al., 1973
 

NIR RNDVI
NIR R

−
=

+

Baret and Guyot, 1991
 

1 
1

RVINRVI
RVI

−
=

+

Deering et al., 1975
 0,5TVI NDVI= +

Thiam, 1997
 

0,5TTVI ABS NDVI= +| |

Perry and Lautenschlager, 
1984

 
( ) ( )0,5 0,5

0,5
NDVICTVI x ABS NDVI

ABS NDVI
+

= +
+

Huete, 1988
 

( ) 1NIR RSAVI L
NIR R

−
= +

+
Author Vegetation index (distance-based)

Richardson and Wiegand, 
1977. Rewritten by Jackson 

et al.,1983
 

0 2

.
1

NIR a R bPVI
a

 − −
=  

+ 

Perry and Lautenschlager, 
1984

 
1 2

.
1

b NIR R aPVI
b
− +

=
+

Walther and Shabaani, 1991

 

( )( )
2 2 1

NIR a R b
PVI

a

− +
=

+

Qi et al., 1994
 3 . .PVI a NIR b R= −

Baret and Guyot, 1991

 
( )( )2

. . ATSAVI
. . 0,08 1

a NIR a R b
a NIR R a b a

− −
=

+ − + +

Author Soil index

Nganfdam et al., 2016
 

1  0,001
1 

Swir NIRNDBSI
Swir NIR

−
= +

+

Celik, 2018

 

( ) ( )
( ) ( )

1  
1 

R Swir NIR B
BSI

R Swir NIR B
+ − +

=
+ + +

Li and Chen, 2018
 

( )( )2  , BI f Tasseled Cap Brightness NDBaI=

FAO-UNESCO, 1976
 

1 12
1 1

Swir TirsNDBaI
Swir Tirs

−
=

+

Table 2. Indices

Source: Authors
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Table 3. Soil subfactors processing

1 Soil texture classes: coarse: <18% clay & >65% sand; medium: 
<35% clay & < 65% sand 0 < 18% clay & <82% sand; fine: >35% 
clay 
2 st Classification: coarse: 0,2 medium: 0,3 fine: 0,1 stony phase: 0,5
3 K-value: light: <0,03; moderate: 0,03-0,06; high: 0,06 >. 
4 se valuation: light: 0,5; moderate: 1,0; high: 2,0.
Source: Authors

 

Figure 3. PWER factors and subfactors
Source: Authors

Maximum likelihood classification (MLC)
Six categories were established, and their areas were 
extracted: clouds (13,95 ha), highways (163,98 ha), high 
vegetation (1 331,10 ha), low vegetation (1 874,07 ha), 
bare soils (including rocky outcroppings) (277,74 ha), and 
infrastructure (69,36 ha) (Figure 5). The map had a global 
accuracy of 81,83% and a kappa index of 0,79.

 

Figure 4. Soil erosion risk map
Source: Authors

 

Figure 5. Maximum likelihood classification
Source: Authors

EAER1
The ROC curve showed a high sensitivity, i.e., good 
capabilities to correctly classify positive pixels (bare 
soils). The 0,9 (U1) and 0,8 (U2) thresholds indicated 
spectral distances of 0,114 and 0,087. Both represent a 
balance between sensitivity and specificity. That is to say, 
an approach to the most ideal conditions (100%), which 
allowed generating the map (Figure 6) with the following 
results: eroded areas: 379,44 ha; erosion risk: 260,91 ha; no 
erosion: 2 911,95 ha (Figure 6). 

 st subfactor se subfactor

     Soil 
Texture

Texture 
classes1 
(FAO-

UNESCO, 
1976)

Valuation 
textural 
classes2 

(FAO et al., 
1980)

K values3 
(Foster et 
al., 1981)

Valuation 
erodibility 

classes4 (FAO 
et al., 1980)

Clay loam Medium 0,3 0,028 0,5 (light)

Clay Fine 0,1 0,013 0,5 (light)

Silty clay Fine 0,1 0,022 0,5 (light)

Sandy 
loam Medium 0,3 0,023 0,5 (light)

Sandy clay 
loam Medium 0,3 0,013 0,5 (light)

Sandy 
loam Medium 0,3 0,019 0,5 (light)
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Cross-referencing with MLC indicated that the eroded 
areas coincided with 229,77 ha of bare soils. In the same 
way, this category intercepted ‘high vegetation’ in 0,99 ha, 
‘low vegetation’ in 126,99 ha, and ‘infrastructure’ in 21,69 
ha. For its part, the erosion risk class mainly intercepted 
‘low vegetation’ (236,52 ha), ‘bare soils’ (20,61 ha), 
‘infrastructure’ (3,33 ha), and ‘high vegetation’ (0,45 ha) 
(Table 4).

Figure 6. EAER1
Source: Authors

Table 4. Cross tabulation: EAER1-MLC (ha)

 
Source: Authors

EAER2
Once the products of the remote sensing techniques were 
derived, linear regressions were carried out. The analysis 
showed that the slope value was different from 0 in all cases, 
i.e., there is a dependence between the variables. Under 
this criterion, SAVI is the most dependent (2,75), as it has 
the most inclined line, with a direct (positive) dependence, 
followed by NDVI (1,83) (Table 5). 

By only analyzing the correlation coefficients (R), the 
highest results were obtained by SAVI (0,592), NDVI 
(0,591), TTVI (0,579), CTVI (0,566), and PCA1 (0,542). 
Nevertheless, all of them were surpassed by the PCA sum, 
which achieved a value of 0,648. As for the R2, it was found 
that only the PVI0 showed a value equal to 0, which means 
that it does not explain any variation in this index as a 
function of the independent variable. It is closely followed 
by PVI2 and DVI, which may be explained by their low 
correlations.

Among all the implemented techniques, NDBIa2 is the one 
that is most determined by the spectral Euclidean distance 
of the soil, with an R2 of 0,551. However, it also showed 

the highest negative correlation (-0,742). Similar situations 
were reported by BSI, BI, and ATSAVI. On the contrary, the 
technique with the best R2 was the PCA sum (0,420), as it 
showed a positive correlation of 0,648 (the highest one), 
which makes it the second EAER alternative. 

Then, an ROC curve was elaborated based on 100 
samples of PCA sum values. The 0,9 (U1) and 0,8 (U2) 
thresholds indicated values of -0,117 and -0,107 for the 
PCA sum, respectively, which represent a good balance 
between sensitivity and specificity, thus allowing to 
generate the map (Figure 7) with the following results: 
eroded areas: (261,18 ha); erosion risk: 25,83 ha; no 
erosion: 3 265,29 ha.

Cross-referencing with MLC indicated that the surface 
occupied by eroded areas coincided with 195,57 ha of 
bare soils and intercepted ‘high vegetation’ in 0,27 ha, ‘low 
vegetation’ in 31,95 ha, and ‘infrastructure’ in 33,39 ha. For 
its part, ‘erosion risk’ intercepted ‘low vegetation’ in 15,84 
ha, ‘bare soils’ in 9,9 ha, and ‘infrastructure’ in 0,09 ha 

(Table 6).

Table 5. Linear regressions

 

y= dependent variable; x= independent variable
Source: Authors

EAER1
Eroded 
areas

Erosion 
risk

No 
erosion

M
LC

High vegetation 0,99 0,45 1 329,66
Low vegetation 126,99 236,52 1 510,56
Bare soils 229,77 20,61 27,36
Infrastructure 21,69 3,33 44,37

Technique R R2 Equation

PCA sum 0,648 0,42   0,44  1,64y X= +

SAVI 0,592 0,351   0,6  2,75y X= +

NDVI 0,591 0,35   0,40  1,83y X= +

TTVI 0,579 0,335   0,95  0,87y X= +

CTVI 0,566 0,321   0,95  0,86y X= +

PCA1 0,542 0,294   0,33 0,83y X= +

TVI 0,511 0,261   1,15  1,13y X= +

PCA2 0,494 0,244   0,09 0,71y X= +

PVI1 0,46 0,211   0,19  0,33y X= +

PCA3 0,294 0,087   0,02 0,11y X= +

PVI3 0,277 0,077   0,03  0,09y X= +

DVI 0,221 0,049   0,17  0,27y X= +

PVI0 -0,017 0   0,04  0,02y X= − −

PVI2 -0,082 0,007   0,02  0,33y X= −

RVI -0,547 0,299   0, 41  1, 43y X= −

Tasseled cap -0,552 0,306   0,45  0,85y X= − −

NRVI -0,595 0,354   0,40  1,84y X= − −

NDBSI -0,598 0,358   0,1  1,64y X= −

ALME -0,642 0,413   0,83  3,55y X= − −

ATSAVI -0,675 0,456   1,04  6,03y X= − −

BI -0,68 0,462   8,05 4  8,4 4y E E X= −

BSI -0,703 0,494   0,12  5,72y X= −

NDBIa2 -0,742 0,551   4,83 4  4,67 4y E E X= −

https://orcid.org/0000-0003-1867-4591
https://orcid.org/0000-0001-8724-9287
https://orcid.org/0000-0002-4890-6798
https://orcid.org/0000-0001-9666-0377
https://orcid.org/0000-0002-5336-9587


IngenIería e InvestIgacIón vol. 43 no. 3, December - 20238 of 14

IdentIfIcatIon of eroded and erosIon rIsk areas UsIng remote sensIng and gIs In the QUebrada seca watershed

 
 
Figure 7. EAER2
Source: Authors
 
Table 6. Cross-tabulation: EAER2 and MLC in ha

 
Source: Authors

With the purpose of understanding the PWER as an indicator 
of erosion sensitivity, 14 bare soil pixels (samples) were first 
analyzed (Figure 8) based on the relationship between the 
thematic categories defined for the EAER, the classification by 
FAO et al. (1980), and the PWER values (Table 7). It must be 
highlighted that, given that the samples of bare and erosion-
exposed soils were identified based on a higher-resolution 
image, they should only be classified as eroded or erosion 
risk areas in the EAER (‘no erosion’ would be an imprecision 
generated by the change in spatial resolution or threshold 
definition). Secondly, the possible soil loss quantities were 
totalized for eroded and erosion risk areas, with the purpose 
of evidencing the approach with the most losses.

Table 7. Comparison of bare soil samples with PWER-EAER maps

Source: Authors

 

Figure 8. Eroded soil samples
Source: Authors

The results allowed defining a higher success rate in EAER1. 
However, an imprecision was found in sample 5, which 
was considered to belong to ‘no erosion’ (Figure 8e), as it 
is completely uncovered. This was the only incongruence 
generated in EAER1, since the correct category should have 
been ‘eroded areas’, i.e., spectral distance values lower than 
0,087. For its part, EAER2 showed three contradictions when 
it categorized samples 1, 2, and 3 as ‘no erosion’, even when 
they were uncovered (Figures 8a, 8b, and 8c). These pixels 
should have been lower than the PCA sum value of -0,107 
(incongruences refer to values lower than those established 
by the thresholds in the ROC curves).

Considering the high success rate of the samples in both 
EAER, the PWER condition of the 14 points could be observed. 
In the case of sample 5 in EAER1, potential degradation is 
considered to be high, with 132,61 Mg ha-1year-1. On the 
other hand, sample 3 in EAER2 showed a loss of 44,34 Mg 
ha-1year-1, which represents a moderate degradation (the 
remaining samples can be interpreted in the same way). 
Finally, the soil losses from eroded and erosion risk areas in 
the first map were much greater than those of the second 
(by 162,88%) (Table 8).

EAER2
Eroded 
areas

Erosion 
risk

No 
erosion

M
LC

High vegetation 0,27 0 1 330,83
Low vegetation 31,95 15,84 1 826,28
Bare soils 195,57 9,9 72,27
Infrastructure 33,39 0,09 35,91

Sample Long.
/ Lat. EAER1 EAER2 PWER

Mg ha-1year-1
FAO et al. 

(1980)

1 -72,442; 7,959 Ea Ne 1,71 Light
2 -72,436; 7,948 Er Ne 1,53 Light
3 -72,384; 7,930 Ea Ne 44,34 Moderate
4 -72,382; 7,924 Ea Ea 43,94 Moderate
5 -72,421; 7,918 Ne Ea 132,61 High
6 -72,393; 7,906 Ea Ea 134,66 High
7 -72,394; 7,907 Ea Ea 134,64 High
8 -72,359; 7,902 Ea Ea 42,82 Moderate
9 -72,360; 7,900 Ea Ea 42,77 Moderate
10 -72,371; 7,898 Ea Ea 134,46 High
11 -72,368; 7,917 Ea Ea 43,48 Moderate
12 -72,404; 7,921 Ea Ea 43,33 Moderate
13 -72,426; 7,939 Ea Ea 44,20 Moderate
14 -72,434; 7,966 Ea Ea 52,98 High
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Table 8. Comparison EAER1 and EAER2

 

Source: Authors

Discussion

Even though the PWER methodology dates back to 1980, it 
is still valid because its application is ideal when there is no 
adequate information on precipitation, evapotranspiration, 
lithology, and soils, which is required by methodologies such 
as USLE or the one proposed by Pacheco (2012) or more 
recently by Nasir et al. (2023). On the contrary, the need 
for minimal information such as monthly precipitations, 
free MDE, and reconnaissance-level soil mapping provides 
this methodology with execution plausibility, simplicity, 
and scientific robustness. It is also important to note that 
many of the models currently used require the inclusion 
of impractical variables (Demirel and Tüzün, 2011), which 
highlights the need for new approaches in the modeling of 
erosion processes (Nasir et al., 2023).

A case that illustrates the above is the comparison between 
the potential erosion results obtained in this study and those 
of Condori-Tintaya et al. (2022) and Nasir et al. (2023). 
While the former used soil structure information and 
calculated a more complex length and slope factor based 
on equations, the latter employed a multi-criteria decision 
making (MCDM) approach involving the development of 15 
variables and an analytical hierarchy process (AHP).

Access to GIS and satellite images has had great impact on 
erosion modeling. Models can now be applied with relative 
ease at a large scale and in a distributed fashion, and they can 
present results in pixels that allow identifying where they occur 
and their magnitude, as well as at different temporal and spatial 
scales (Batista et al., 2019). However, it is also recognized 
that the predictive capability of large-scale erosion models 
is not the best. Therefore, Alewell et al. (2019) have argued 
that the same should not strive for them to make accurate 
predictions of soil losses, but instead to explore scenarios and 
focus on understanding relative differences in erosion rates, 
which would help to identify areas prone to these degradation 
processes, which is the objective of this study.

In the same way, very high-resolution images may be used to 
test erosion models, which has not been widely performed 
by researchers, with Fischer et al. (2018) perhaps being the 
first to focus completely on its interpretation. They found 
promising results, such as a high correlation (R2= 0,91) of 
visually defined erosion classes with moderate soil losses, 
thus allowing them to define a semi-quantitative assessment 
approach, which is much simpler than proposing hypothesis 
tests (Batista et al., 2019).

Other reasons to support the use of this methodology is 
that it excludes speculations on the validity of the models’ 
predictions, and it allows identifying scenarios leading 
to great or small soil losses (Auerswald et al., 2018). This 
study did not employ a semi-quantitative approach because 
the real soil loss values of the samples selected were not 
calculated independently, so as to be able to determine the 
R2, which denotes a predominantly qualitative assessment to 
address comparative analyses. 

The key to proceeding with the identification of EAER lies 
in the accurate extraction of vegetation cover and land use 
(Wang et al., 2013). In this case, it involved aiming for the 
highest possible accuracy regarding bare soils, with which 
the spectral Euclidean distance was obtained to later define 
thresholds in ROC curves, since the presence of vegetation 
cover reflects resistance capabilities against erosion or its 
risk (Wang et al., 2021). 

Starting with ‘eroded areas’ and its intersection with bare 
soils (379,44 ha = 100%), cross-tabulation between MLC 
and the EAER allowed corroborating that there was a higher 
intersection in EAER1 (60,55%) in comparison with EAER2, 
which coincided by 51,54%. This result evinces the former’s 
greater reliability, which is very likely due to the not-so-high 
correlation and determination coefficients of the PCA sum 
with respect to the spectral Euclidean distance.

As for the cross-reference between ‘eroded areas’ and ‘low 
and high vegetation’, EAER1 showed a 3,43% coincidence, 
unlike EAER2, which reported 0,87%. The intersection 
between ‘eroded areas’ and ‘infrastructure’ was lower in 
EAER1, with 0,58%, in contrast with the EAER2’s 0,90%. 
These results are also explained by the differentiation 
inability shown by the latter, which is due to the not-so-high 
correlation and determination of the PCA sum. 

These results position EAER1 as a baseline alternative in 
contrast with the PCA sum. This conclusion is reasonable, 
as this input was used as an independent variable in linear 
regressions.

As for the selection of thresholds in ROC curves, given the 
varying sensitivity/specificity, other thresholds with more or 
less discrimination power could be selected. Selecting two 
with a high sensitivity would reciprocally allow achieving a 
high probability of correctly classifying a pixel whose real 
situation is defined as positive. The advantage of the ROC 
curve lies in the fact that it uses all possible cutoff points 
in the database, through which better thresholds are 
determined, thus indicating that this test has a very useful 
and correct classification power (Bernui et al., 2022). 

Therefore, the proposed method for identifying EAER differs 
from associating higher loss values (Mg ha-1 year-1) yielded 
by USLE and/or similar models as an indirect measure of 
diverse erosion risk degrees (e.g., Chaudhary and Kumar, 
2018; Mohammed et al., 2020), which is supported by the 
assumption that low values are less vulnerable and high 

Class Mg ha-

1year-1 Class Mg ha-

1year-1

Ea 1 219 045,65 Ea 2 136 147,80
Er 1 181 670,42 Er 2 16 284,01
Total 400 716,07 Total 152 431,81
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values refer to a greater erosion sensitivity (Meshesha et al., 
2012). This also contrasts with the idea of obtaining them 
by ranking and later zoning, which results from intersecting 
diverse slope gradients from an MDE or land uses with soil 
losses (Meshesha et al., 2012; Khosrokhani and Pradhan, 
2013; Wang et al., 2013).

The equivalence between remote sensing techniques 
obtained by linear regression was manifested by Ngandam 
et al. (2016), who proposed a vegetation index as the 
independent variable, which placed an exaggerated 
reliability in said product as a predictor. This, unlike the 
design implemented in this study, which was defined based 
on the spectral distance of bare soils.

The comparison between the qualitative and the quantitative 
results allows establishing a bidirectional complementary 
analysis relationship. In the first place, EAER helped to identify 
areas with erosion or highlight those at risk, in which soil 
losses can be interpreted. Secondly, it allows establishing the 
inverse relationship, i.e., the observation of possible high and 
moderate losses identified by the PWER provides information 
on what happens in said areas from a qualitative perspective.

For a wider understanding and for determining the possible 
existence of erosion or of areas that might be subjected to it, 
it is suggested that eroded and erosion risk areas be identified 
with both mappings. This consideration is supported by the 
identification of possible substantial differences at potential 
points of interest.

Finally, based on the study by Batista et al. (2019) regarding 
the fact that the current, different erosion models do not 
systematically surpass each other, this research agrees 
that calibration is the only mechanism to improve their 
performance (i.e., a better conceptual understanding of their 
operation). Therefore, this study rejects the notion that these 
can be validated (rather than evaluated), stressing the need to 
define adjustment tests (or evaluating degrees of reliability) 
based on multiple data sources, which allow for a wide 
study of the usefulness and consistency of the developed 
methodologies. This, considering that the more thorough 
the tests, the more likely it is that deficient performances 
are found (critical awareness of the methods). 

Conclusions

Using remote sensing images allows conducting research on 
erosion both qualitatively and quantitatively. However, these 
must be used with care, as their unthinking use may lead to 
over- or underestimation. The use of very high-resolution 
images must also be considered as a mechanism to evaluate 
model performance. 

Resorting to higher resolution imagery or covering larger 
extensions implies a higher computational cost because it 
involves larger amounts of data. This could be overcome 
by using cloud computing platforms such as Google Earth 

Engine (GEE), which can compute and process large volumes 
of geospatial data in very short time intervals and have been 
recently applied to the preparation of the variables required 
by methods such as USLE and RUSLE (Papaiordanidis et 
al., 2019; Kumar et al., 2022), so their application with the 
models developed in this study is also plausible.

Although technological advances are evident, it should not 
be forgotten that erosion models are not necessarily true 
or free of apparent flaws; recognizing them improves the 
attitude towards evaluating them and changes the way 
their performances are characterized and communicated, 
ultimately leading to a better understanding of soil erosion 
(Batista et al., 2019).

This study constitutes a contribution to the lack of 
precipitation and soil data, which is necessary in parametric 
methodologies. Therefore, it adopted the premise that this 
lack should be only resolved with free and available digital 
inputs that help identify potential erosion hot spot areas and 
simulate erosion responses to land use and climate change, 
which makes it a solution that could be associated with 
variables derived from MDE (e.g., humidity indices) or other 
kinds of categorical or continuous mapping. Nevertheless, 
regardless of the methods to be employed, an on-field 
survey of geo-referenced measurements (when possible) 
regarding erosion characteristics must not be discarded, 
with the purpose of broadening the model’s evaluation.

Even though it is true that the methods developed for 
identifying EAER are metric-static and implemented with 
satellite images from diverse dates, these could help 
to obtain time series allowing to better understand the 
dynamics of erosion processes and therefore acquire 
greater knowledge for soil conservation and ecosystem 
management. They could also be replicated in other spaces 
in a semi-automatized fashion, and they could serve as first 
inputs to define areas where observations should be focused 
or to map types and degrees of erosion. 
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