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The Formalism of Chemical Thermodynamics Applied to an 
Oscillatory Multistep Chemical System

El formalismo de la termodinámica química aplicado a un sistema 
químico oscilatorio con múltiples etapas

Jean P. Montoya 1, Alexander Contreras-Payares 2, and Daniel Barragán 3

ABSTRACT
The thermodynamic optimization of a process focuses on consumption, production, and efficient use of energy. The unsteady-
state nature of batch reactor processing requires describing the set of processes’ dynamic behavior for energy optimization. This 
work aims to apply the formalism of chemical thermodynamics to a multistep chemical system in a batch reactor, aiming for a 
dynamic description of its evolution to the equilibrium state. As the system of study, we selected a mathematical model called 
the Oregonator, derived from the mechanism of the oscillating Belousov-Zhabotinsky reaction. In the methodology, we used the 
reaction quotient to evaluate the Gibbs function, the thermodynamic affinity, and the entropy generation as a function of the reaction 
extent. The results show that the overall reaction fulfills the thermodynamic fundamentals of chemical equilibrium, despite having 
a non-stoichiometric coefficient. However, the multistep coupled reaction system does not allow verifying compliance with the 
thermodynamic foundations of chemical equilibrium. We conclude that it is necessary to improve thermodynamic formalism to 
describe multistep chemical processes as a function of a global reaction extent variable. In this scenario, the entropy production rate 
emerges as a promising quantity.
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RESUMEN
La optimización termodinámica de un proceso se enfoca en el consumo, la producción y el uso eficiente de la energía. La naturaleza 
de estado no estacionario del procesamiento en reactores tipo batch requiere describir el comportamiento dinámico del conjunto de 
procesos en términos de optimización de energía. Este trabajo tiene como objetivo aplicar el formalismo de la termodinámica química 
a un sistema químico de múltiples etapas en un reactor tipo batch, buscando obtener una descripción dinámica de su evolución 
hacia el estado de equilibrio. Como sistema de estudio, seleccionamos el modelo matemático conocido como el Oregonator, que se 
deriva del mecanismo de la reacción oscilante de Belousov-Zhabotinsky. En la metodología, utilizamos el cociente de reacción para 
evaluar la función de Gibbs, la afinidad termodinámica y la generación de entropía en función del grado de avance de la reacción. 
Los resultados muestran que la reacción global cumple con los fundamentos termodinámicos del equilibrio químico, a pesar de 
tener un coeficiente no estequiométrico. Sin embargo, el sistema de reacción con múltiples pasos acoplados no permite verificar 
el cumplimiento de los fundamentos termodinámicos del equilibrio químico. Concluimos que es necesario mejorar el formalismo 
termodinámico para describir los procesos químicos de múltiples pasos en función de una variable global de avance de la reacción. 
En este escenario, la velocidad de generación de entropía surge como una cantidad prometedora.
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Introduction

The study and characterization of chemical equilibrium are 
of great importance for describing processes that depend on 
the phase stability of fluids, such as separation in reactors 
and reactive and azeotropic distillation in columns (Prausnitz 
et al., 1998; Saunders and Miodownik, 1998; Tosun, 2021). 
On the other hand, in reacting systems, the chemical 
equilibrium defines the upper bound of transformation of 
a chemical reaction under the initial conditions and the 
imposed constraints. A closed system that evolves at constant 
T  and p  must satisfy the constraints of directionality 
and equilibrium associated with thermodynamic potentials 
(Rosenberg and Klotz, 2008; Honig, 2020).

Let us consider a reaction system composed of n  
simultaneous chemical reactions coupled to each other 
through intermediary chemical substances. The set 
of chemical equations that satisfies the law of mass 
conservation and describes the reactant system composed 
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of m  substances can be written compactly, as shown in 
Equation (1):

( ) ( )1
0, :1, 2, , # 1n

ir ii
R r mϑ

=
= …∑

where irϑ  is the stoichiometric coefficient of the substance 
iR  in the r-th chemical reaction. The iR  substances 

distribute between reactants with a negative irϑ  coefficient 
and products with a positive irϑ  coefficient.

The change in the amount of moles iN  of the substance iR  
in the r-th chemical reaction is determined by the reaction 
extent rϑ , as follows:

ir ir rdN dϑ ξ=

The total change in the amount of the substance iR  in the 
reaction system is calculated via Equation (3):

1
 m

i ir rr
dN dϑ ξ

=
=∑

The reaction extent rξ , as a state variable of the reaction 
system, allows evaluating the change in the Gibbs function 
of a chemical system described by Equation (1) by following 
Equation (4):

1 1, ,

n m

i ir r
i rp T

G GdG dT dp d
T pξ ξ

µϑ ξ
= =

   ∂ ∂ = − +    ∂ ∂    
∑ ∑

At constant T  and p , and due to the initial conditions of the 
set of chemical reactions, the change in the reaction extent 
has an arbitrary sign. Therefore, the equilibrium condition 

, 0T pdG =  must be satisfied by the closed system of 
chemical reactions; based on Equation (4), this is described 
for each r reaction in Equation (5):

( )1
0 # 5n

i iri
µϑ

=
=∑

The equilibrium condition in Equation (5) can also express 
a generalized force, i.e., the thermodynamic affinity A , 
according to Equation (6):

{ }

{ }

1

0

n
r ir i a ai

a reactants

b b
b products

A ϑ µ ϑ µ

ϑ µ

=
= − = −

=

∑ ∑

∑

A contracted form of Equation (6) can be written in terms 
of a reaction quotient and an equilibrium constant (Dutt, 
1985). From Equation (4) and Equation (6), and due to 
the irreversible nature of chemical reactions, for a reacting 

mixture in a closed system at constant T  and p  the Gibbs 
function reaches a minimum at the chemical equilibrium 
defined by a thermodynamic constant. The evolution 
towards and at the equilibrium state of the system described 
by Equation (1) satisfies the conditions given in Equation (7).

,

0  

0

r

r T p

r

A

A

ξ
 ∂

< ∂ 
 =

Thus, as the reaction progresses toward the chemical 
equilibrium, the thermodynamic affinity decreases until it 
becomes equal to zero (Solaz-Portolés, 2011; Kondepudi 
and Prigogine, 2014).

The above-presented formalism allows for a direct account 
of the irreversible isothermal transformation of matter 
during a chemical reaction through the generation of entropy 
(thermodynamic dissipation) described in Equation (8) 
(Prigogine, 1961; Kondepudi and Prigogine, 2014; Barragán 
et al., 2021).

1
0mi r r

r

d S A d
dt T dt

ξσ
=

= = ≥∑

As per Equation (8), the thermodynamic dissipation is zero 
at the chemical equilibrium, since the affinity and the net 
reaction rate are zero.

Although the above is widely accepted and duly documented 
in many texts (Eu and Al-Ghoul, 2018), great doubts arise when 
applying it to concrete systems (Beretta and Gyftopoulos, 
2015), such as those raised by the discovery of oscillating 
chemical reactions in the 1950s. By then, agreeing on 
chemical oscillations and the second law of thermodynamics 
was unclear (Kiprijanov, 2016). Two decades later, once 
experimentation validated the first observations of chemical 
oscillations and provided an understanding on how the 
second law of thermodynamics rationalizes these systems, a 
fruitful field of research began, known as nonlinear chemical 
dynamics (Epstein and Pojman, 1998). There is extensive 
development in the formalism and the applications of the 
chemical equilibrium of phases. However, there are still 
doubts about the chemical equilibrium in reacting systems, 
particularly its teaching and the conceptual errors that can 
affect it (Quílez-Pardo and Solaz-Portolés, 1995; Banerjee, 
1995; Rogers et al., 2000; Patiño-Sierra and Barragán, 2022; 
Martínez-Grau et al., 2014).

In this work, we test the application of thermodynamics 
formalism to multistep reacting systems using the 
mathematical model known as the Oregonator, derived from 
the chemical mechanism of the Belousov-Zhabotinsky (BZ) 
reaction.

(1)

(7)

(8)

(2)

(3)

(4)

(5)

(6)
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Methodology

This section describes the Oregonator model and the kinetic 
parameters used in this study. It presents the equations that 
govern the dynamics of the model’s overall reaction and the 
system of equations for each of the reaction steps. We apply 
the formalism of thermodynamics to derive the expressions 
for the reaction coefficient and the Gibbs function. All 
equations are solved numerically by using an integration 
subroutine for systems of stiff differential equations, which 
is available in the MATLAB software.

Multistep chemical system: the Oregonator
The Oregonator model describes the main characteristics 
of the oscillatory dynamics of the BZ reaction, both in an 
open and closed system (Field et al., 1972; Field and Noyes, 
1974). The Oregonator comprises five reaction steps, four 
for a set of inorganic reactions of the reaction BZ and one 
for organic reactions: Equations O1 to O5 in Table 1. The 
reaction Og is the overall reaction of the model, obtained as 
follows: Og=2O1+O2+O3+O4+O5. The overall reaction 
Og satisfies the following: A  and B  reactants have integer 
stoichiometric coefficients, intermediates X  and Z  are 
absent, and the stoichiometric coefficient f   is uniquely 
related to Y . The variables in the Oregonator model 
correspond to the following chemical species in the BZ 
reaction: A  to sodium bromate, B  to malonic acid, Z  to 
cerium (IV) ion catalysts, X  to bromous acid, Y  to bromide 
ion, and P  to hypobromous acid. Equation O3 is the 
chemical instability of the model, which is the autocatalytic 
production of bromous acid. Equation O5 represents a set of 
organic reactions, with malonic acid, the organic substrate, 
kinetically controlling the concentration of molecular 
bromine and bromide ions, which are the species driving the 
positive feedback loop in the reaction. The stoichiometric 
coefficient f  in equation O5 accounts for the complexity 
of the chemical reaction and acts as a bifurcation parameter 
in the Oregonator model (Field and Noyes, 1974). Although 
there are many versions of the Oregonator model, whose 
majority does not include the B  variable, in this work, we 
employ the original version derived from the BZ reaction 
mechanism to use the organic substrate concentration as a 
dynamical control parameter (Table) 1 (Tyson, 1981, 1982).

Mathematical model: the overall reaction Og
When applying Equation (2) to the overall reaction Og, the 
change in each variable as a function of the reaction extent is 
as follows: 0 2A A ξ= − , 0B B ξ= − , ( )0 3Y Y ξ= − − f , 

0 5P P ξ= + .

The reaction rate, expressed as a function of the reaction 
extent by and applying the mass action law to Og, is shown 
in Equation (9). 

Mathematical model: reaction steps O1 to O5
When applying Equation (3) to the system of equations 
O1-O5, the change in each of the variables, expressed 
as a function of the progress of each reaction r
, is as follows: 0 1 3 4A A ξ ξ ξ= − − + , 0 5B B ξ= − ,

0 1 2 3 42X X ξ ξ ξ ξ= + − + − , 0 1 2 5Y Y ξ ξ ξ= − − + f , 
0 3 5Z Z ξ ξ= + − , 0 1 2 42P P ξ ξ ξ= + + + . Thus, by applying 

the law of mass action, Equations (10)-(14) show the 
reaction rate of the steps in the Oregonator model:

( )( )
( )( )

1
1 0 1 3 4 0 1 2 5

1 0 1 2 3 4 0 1 2 4

 

2 2

d k A Ydt
k X P

ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ−

= − − + − − + −

+ − + − + + +

f

( )( )

( )

2
2 0 1 2 3 4 0 1 2 5

2
2 0 1 2 4

2

2  

d k X Ydt
k P

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ−

= + − + − − − + −

+ + +

f

( )( )

( )( )

3
3 0 1 3 4 0 1 2 3 4

2
3 0 3 5 0 1 2 3 4

2

2

d k A Xdt
k Z X

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ−

= − − + + − + − −

+ − + − + −

( )
( )( )

24
4 0 1 2 3 4

4 0 1 3 4 0 1 2 4

2

2

d k Xdt
k A P

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ−

= + − + − −

− − + + + +

Equation Reaction step
Forward 
kinetic

 constant

Backward kinetic
constant

O1 A Y X P+ +
1   2,0k =

 
1 1mol Ls− −

1  3,3k − =  
1 1mol Ls− −

O2 2X Y P+ 

9
2   2 10k = ×

 
1 1mol Ls− −

10
2  5 10k −
− = ×

 
1 1mol Ls− −

O3 	 2A X X Z+ +

4
3  1 10k = ×

 
1 1mol Ls− −

3   33k− =
 

2 2 1mol L s− −

O4 	2X A P+
7

4   4 10k = ×
 

1 1mol Ls− −

10
4  1 10k −
− = ×

 
1 1mol Ls− −

O5 	B Z Y+ f 1 1
5  5,0 k mol Ls− −=

11
5 1 10k −
− = ×

 
1 1 1mol L s− − −f f

Og 	 ( )2 3 5A B Y P+ + − f 
2

1 2 3 4 5gk k k k k k= 2
1 2 3 4 5gk k k k k k− − − − − −=

Table 1. Set of equations and kinetic constants of the Oregonator model 
(Tyson, 1981, 1982)21-22

Source: Authors

( ) ( ) ( )

( )

32
0 0 0

5
0

2 3

5  

g

g

d k A B Y
dt

k P

ξ ξ ξ ξ

ξ

−

−

 = − − − − − 

+

f
f

(9)

(10)

(11)

(12)

(13)
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( )( )

( )

5
5 0 5 0 3 5

5 0 1 2 5

d k B Zdt
k Y

ξ ξ ξ ξ

ξ ξ ξ−

= − + − −

− − + ff

Thermodynamics: the overall reaction Og
We assign arbitrary values to the standard chemical 
potential for the chemical species variables of the overall 
reaction Og, taking the following values as reference: 

0 45 10  /A J molµ = − × ,
0 510  /B J molµ = − ,  

0 510  /P J molµ = − . From Equation (4), at constant T  
and p , the change in the Gibbs function during reaction r  
is shown in Equation (15).

1,

n

r i i
iT p

dG G
d

ϑ µ
ξ =

 
= ∆ = 

 
∑

Equation (15) is written as Equation (16) after using the 
equation for the chemical potential 0

i i iRTlnCµ µ= + ,  
where iC  indicates the molar concentration of substance i .

0
r rG G RTlnQ∆ = ∆ +

Here, Q  is the reaction quotient of the reaction, and, at the 
chemical equilibrium, the reaction quotient is equal to the 
equilibrium constant Q K=  , thus obtaining Equation (17).

0  rG RTlnK∆ = −
Equation (17) is fundamental in providing consistency to 
the thermodynamic calculations of chemical equations. For 
the overall reaction Og in Equation (15), Equation (18) is 
obtained.

( )0 0 0 0 05 2 3  r P A B YG µ µ µ µ∆ = − − − − f
where the standard chemical potential of variable Y  is 
defined from Equation (17) as follows:

( )
0 0 0

0 5 2  
3

P A B
Y

RTlnKµ µ µµ − − +
=

− f
Finally, for the overall reaction Og, we have the following 
expressions for the reaction quotient and the Gibbs function, 
as a function of the reaction extent, i.e., Equations (20) and 
(21):

( )
( ) ( ) ( )( )( )

5
0

32
0 0 0

5

2 3

P
Q

A B Y

ξ

ξ ξ ξ
−

+
=

− − − −
f

f

( ) ( )
( ) ( )( )

( )

0 0

0

0

2 2
3 3  

5 5

A B

Y

P

G A B
Y

P

µ ξ µ ξ
µ ξ

µ ξ

= − + − +
− − − +

+

f f

Thermodynamics: reaction steps O1 to O5
For the Oregonator reaction steps, we assign arbitrary values 
to the standard chemical potentials of the variables A  and 
P :

0 4 0 55 10 ,  10  /A P
J J mol

mol
µ µ= − × = −

The values of the standard chemical potentials for the 
variables B , X , Y , and Z  are assigned according to 
Equations O1-O5 and (17) to guarantee thermodynamic 
consistency in simulations and calculations:

( )
0 0 4

40  # 22
2

A P

X

kRTln kµ µ
µ −

 + +  
 =

( )0 0 0 0 1

1
# 23  Y X P A

kRTln kµ µ µ µ
−

 = + − +  
 

( )0 0 0 3

3
 # 24Z A X

kRTln kµ µ µ
−

 = − −  
 

( )0 0 0 5

5
# 25  B Y Z

kf RTln kµ µ µ
−

 = − +  
 

The overall reaction’s thermodynamic equations apply 
similarly to Equations O1-O5.

Results and discussion

Thermodynamics: reaction steps O1 to O5
Figure 1 shows the dynamics of the variables A , B , Y , 
and P  of the overall reaction Og over time. Curves emerge 
from the integration of Equation (9) to the initial conditions 
indicated in the legend, subsequently replacing the result in 

0 2A ξ= − , 0B B ξ= − , ( )0 3Y Y f ξ= − − , 0 5P P ξ= +
. To better appreciate the result of the integration, we use 
an equilibrium constant smaller than the Oregonator, with 
a value of 710 . This does not affect the evolution of the 
Og reaction towards equilibrium. As expected, the species 
that act as reactants, A , B , Y , decrease until they reach 
equilibrium, while the product P  increases.

From the results of Equation (9), and by using Equation (19), 
we compute the thermodynamic quantities describing the 
evolution of the overall reaction Og towards the equilibrium 
state.

Figure 2 shows, also based on Equation (6), the 
thermodynamic affinity as a function of the reaction extent 
for different initial conditions of variable B  (i.e., the 
organic substrate). Note that the thermodynamic affinity 
decreases continuously and smoothly until it reaches zero 
at equilibrium, which satisfies the conditions in Equation 
(7). It is also important to note that the initial values for B  
were selected to be the limiting quantity according to the 

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Figure 3. Gibbs function as a function of the reaction quotient of the 
overall reaction Og. Curves in the figure correspond to a different initial 
value for the variable B , as follows: (a) 33 10−× , (b) 34 10−× , (c) 35 10−× , 
(d) 36 10−× . Other initial conditions are 1

0 10−=A , 2
0 10−=Y , and 4

0 10−=P
. The values for parameters f  and 

−

g

g

k
k  are 0.48 and 710 , respectively.

Source: Authors

Finally, from the reaction extent and the reaction quotient, 
we calculate the change in the chemical reaction Gibbs 
function, rG∆ , defined in Equation (16). Figure 4 shows that 

rG∆  increases continuously and smoothly until it becomes 
equal to zero when the reaction quotient is equal to the 
equilibrium constant. Thus, from Figures 2, 3, and 4, we 
verify that the global reaction Og satisfies the requirements 
of classical thermodynamics in chemical equilibrium, i.e., 
the thermodynamic affinity as a function of advance is 
zero, the Gibbs function of the system has a minimum as 
a function of the reaction quotient, the Gibbs function of 
the reaction is zero as a function of the reaction quotient, 
and the equilibrium constant uniquely defines the chemical 
equilibrium.

The formalism and methodology presented in this section 
are commonly applied in studying chemical processes. In 
modeling the homogeneous gas-phase oxidation of sulfur 
dioxide and titanium (IV) chloride, thermodynamic affinity 
and the Gibbs function describe the evolution towards 
chemical equilibrium, approaching zero as a function of the 
overall reaction extent (Koukkari et al., 2018; Koukkari and 
Pajarre, 2021), as shown in Figures 2 and 4. A similar 
approach applies to characterizing the equilibrium of 
thermal biomass conversion and methanation processes 
(Kangas, 2015; Kangas et al., 2017). 

There are also many applications of thermodynamic 
formalism devoted to studying the optimization of overall 
chemical processes in batch reactors, like optimizing the 
reaction extent and entropy production in sulfuric acid 
decomposition (Wang  et al., 2016). There is also some 
criticism of the formalism of thermodynamics also. A modified 
Gibbs function seems necessary to correct inaccuracies 
in the prediction of equilibrium models, positing that heat 
exchange between the system and the surroundings is not 
reversible. As a result, the modified Gibbs function corrects 

stoichiometry of the overall reaction Og. This is why the 
reaction proceeds until the reaction extent is very close to 
the value of the limit quantity B .

Figure 1. Dynamics of the overall reaction Og of the Oregonator 
over time. Curves in the figure are identified with the corresponding 
variable. The initial values for the variables are 3

0  3 10 ,−= ×B , 1
0 10−=A , 

2
0 10−=Y  and 4

0 10−=P . The values for parameters f  and 
−

g

g

k
k  are 0.48  

and 710 , respectively.
Source: Authors

Figure 2. Thermodynamic affinity as a function of the reaction extent of 
the overall reaction Og. Curves in the figure correspond to a different 
initial value for the variable B , as follows: (a) 33 10−× , (b) 34 10−× , 
(c) 35 10−× , (d) 36 10−× . Other initial values are 1

0 10−=A , 2
0 10−=Y

, and 4
0 10−=P . The values for parameters f  and 

−

g

g

k
k  are 0.48  and 710

, respectively.
Source: Authors

From the reaction extent obtained using Equation (9), we 
calculate the reaction quotient of the overall reaction Og, 
defined in Equation (20), and the Gibbs function of the 
system, described in Equation (21). Figure 3 shows the 
Gibbs function for different initial conditions of variable B
. Note that the Gibbs function decreases as a function of 
the reaction quotient, which changes until it becomes equal 
to the value of the equilibrium constant. Thus, the Gibbs 
function decreases continuously and smoothly until the 
reaction reaches chemical equilibrium, which is univocally 
defined when the reaction quotient equals the equilibrium 
constant.

https://orcid.org/0000-0002-7390-1104


Ingeniería e Investigación vol. 44 No. 2, August - 20246 of 9

The Formalism of Chemical Thermodynamics Applied to an Oscillatory Multistep Chemical System

the prediction of the chemical equilibrium and entropy 
generation of methane steam reforming overall reaction as 
a function of the reaction extent (Haseli, 2019). A similar 
approach applies to optimizing ammonia decomposition 
in hydrogen production (Ojelade and Zaman, 2021).  It 
is important to note that little attention has been paid to 
including the reaction quotient in the thermodynamic study 
of chemical processes.

Figure 4. Change in the Gibbs function of the reaction rG∆  
as a function of the reaction quotient. In the calculations, 
the following initial conditions are used: 3

0 3 10 ,−= ×B  1
0 10−=A , 

2
0 10−=Y , 4

0 10−=P . The values for parameters f  and −

g

g

k
k  are 0.48 

and 710 , respectively.
Source: Authors

The Oregonator: reactions O1 to O5
By integrating the set of Equations (10)-(14), the reaction 
extent of each step O1-O5 is obtained, and, from these, the 
change over time of each of the model variables is calculated: 

40 1 3A A ξ ξ ξ= − − + , 
0 5B B ξ= − , 

0 1 2 3 42X X ξ ξ ξ ξ= + − + − , 

0 1 2 5Y Y fξ ξ ξ= − − + ,
 

0 3 5Z Z ξ ξ= + − ,
 

0 1 2 42P P ξ ξ ξ= + + + .
This study does not analyze the stability of fixed points in 
the Oregonator model. Instead, Figure 5 demonstrates 
that the model displays an oscillatory behavior for the 
initial variable values provided. Variable B  serves as a 
control parameter for the model’s dynamics, decreasing 
continuously and stepwise until it reaches a constant value, 
which is consistent with the oscillatory dynamics of the 
model. The net consumption rate of B  depends on which 
set of reaction steps has a kinetic control on the dynamics: 
steps O1 to O4 or step O5. The curves in Figure 5 show that, 
within the constraints established in this study, the model 
exhibits transient oscillations that eventually disappear, after 
which the reaction proceeds monotonically. The continuous 
depletion of B  during the reaction process satisfies the 
second law of thermodynamics, as the primary reactants 
remain constant, providing the free energy that drives the 
reaction towards equilibrium.

The variables X , Y , and Z  in the Oregonator model 
exhibit oscillatory dynamics corresponding to intermediate 
species in the reaction mechanism. X  drives the chemical 
instability in the reaction mechanism, and Figure 6 shows 
its oscillatory dynamics. The curves (a) and (b) demonstrate 
that the oscillations in X  dampen and eventually vanish, 
exhibiting monotonic dynamics. These results agree with 
the well-known experimental evidence of the BZ reaction, 
which is explained with the FKN mechanism and modeled 
semi-quantitatively with the Oregonator (Field et al., 1972; 
Field and Noyes, 1974). Curve (b) highlights the effect of 
the initial value of B  as a control parameter of the reaction 
system’s evolution. The Oregonator transitions from a 
cycle of damped oscillations with higher amplitude to one 
with lower amplitude and frequency. This finding is crucial 
because it indicates that, if the model is not studied for an 
extended period of time, the completion of an oscillatory 
cycle could be mistaken for the approach to equilibrium. 
However, for the constraints imposed in this work, all 
variables undergo sustained changes, implying that the 
path to chemical equilibrium is asymptotic and far from 
coinciding with the end of the oscillatory dynamics.

 

 
 
 
Figure 5. Dynamics of the variable B , the organic substrate in the 
Oregonator. Curves correspond to a different initial value for the variable 
B , as follows: ( ) ( ) ( ) ( )2 2 2 23.8 10 , 4.0 10 , 4.1 10 , 5.1 10− − − −× × × × a   b   c   d  
. Other initial conditions are 2

0 3.0 10−= ×A  , 6
0 10−=Y  , 6

0 10−=P  , 
3

0 10 ,−=Z   and 0.48=f .
Source: Authors

The Oregonator model displays oscillatory dynamics in the 
variables X , Y , and Z , corresponding to intermediate 
species in the reaction mechanism. Since each of the 
Oregonator steps O1-O5 has a reaction extent according 
to the system of Equations (10)-(14), it is not possible to 
define the overall extent of the reaction as a function of the 
model dynamics. To estimate the extent of the Og reaction, 
we calculated the dynamics of variables A , B , Y , and P
, as shown in Figures 5 and 6. The large temporal dynamic of 
the Oregonator indicates that the extent of the Og reaction 
calculated on this time scale is also significant and cannot be 
related to the initial values of the variables.
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Figure 6. Dynamics of the variable X , the autocatalytic chemical 
species of the Oregonator. Curves correspond to a different initial value 
for the variable B , as follows: ( ) ( )2 2 3.8 10 ,  4,0 10− −× ×a b . Other initial 
conditions are 2

0 3,0 10−= ×A   , 6
0 10−=Y  , 6

0 10−=P  , 3
0 10 ,−=Z   and 0.48=f

. The values for curve (b) are on the secondary axis.
Source: Authors

We analyzed the Gibbs function of the Oregonator from the 
sum of the Gibbs functions of each step O1-O5. Figure 7 
shows the variation in the Gibbs function for different initial 
conditions of variable B  as a function of the extent calculated 
for the overall reaction Og. This result is interesting because 
it shows how the Gibbs function decreases continuously 
but not smoothly, describing the oscillatory dynamics of the 
model. Furthermore, the Gibbs function describes different 
trajectories in the evolution to equilibrium, depending 
on the initial conditions. Figure 8 shows how the Gibbs 
function of the Oregonator reaction, rG∆ , varies using 
quantities calculated similarly to that indicated in Figure 7. 
We obtained rG∆  by summing the quantities calculated for 
each step of the model and calculating the reaction quotient 
from the overall extent of the reaction. The behavior of rG∆  
as a function of the reaction quotient in Figure 8 is like that 
observed in Figure 4, despite the oscillatory dynamics of the 
Oregonator. However, even after integrating the model for 
a long time, rG∆  does not approach zero, indicating that 
the system is not at chemical equilibrium. This behavior 
could be explained by the fact that the estimated reaction 
quotient has a magnitude that is far from the value of the 
global equilibrium constant: 494.8 10× .

Finally, we can calculate the entropy production rate of the 
Oregonator from the results obtained in Figures 7 and 8 by 
using Equation (8), as shown in Figure 9, where the curves 
for different initial conditions of variable B demonstrate good 
agreement between the thermodynamic dissipation of the 
Oregonator and the reaction quotient. The thermodynamic 
dissipation decreases continuously and smoothly, 
approaching zero and indicating equilibrium. However, as in 
Figure 8, the reaction quotient is not close to the expected 
value for the equilibrium constant.

Figure 7. Change in the Gibbs function of the Oregonator as a 
function of the reaction extent of the overall reaction Og. Curves 
correspond to a different initial value for the variable B , as follows: 
( ) ( ) ( ) ( )2 2 2 23.8 10 , 4.0 10 , 4.1 10 , 5.1 10− − − −× × × × a   b   c   d  . Other initial 
conditions are 2

0 3.0 10−= ×A  , 6
0 10−=Y  , 6

0 10−=P  , 3
0 10 ,−=Z   and 0,48=f

.
Source: Authors

 
 
Figure 8. Change in the Gibbs function of Oregonator as a function of 
the reaction quotient of the overall reaction Og. The initial conditions 
for the variables and parameters are 24.0 10 ,−= ×B   2

0 3.0 10−= ×A  , 
6

0 10−=Y  , 6
0 10−=P  , 3

0 10 ,−=Z   and 0.48=f .
Source: Authors

These results highlight the challenge of applying classical 
thermodynamics fundamentals to complex reaction 
systems. While all the thermodynamic fundamentals hold, 
they cannot be generalized for each step of a reaction system 
or extended to analyze the overall reaction. As shown in 
Figures 5 and 6, studying complex processes is challenging 
from kinetic or energetic approaches, and different 
methodologies are considered to rationalize the process 
description (de Oliveira et al., 2016). The traditional method 
used in this section describes physical, electrochemical, 
catalytic, and biochemical multistep processes evolving in 
time (Heimburg, 2021). However, little effort has been made 
to deepen the thermodynamic study of these systems, since 
most research focuses on kinetic and dynamic description 
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and analysis (Marin et al., 2019). In the thermodynamics of 
irreversible processes, entropy production rate is a valuable 
quantity to optimize the energetic performance of complex 
processes (Heimburg, 2017; Nieto-Villar, 2020; Arango-
Restrepo et al., 2020). Given the formalism used herein, 
some applications of the entropy production rate show 
the utility of this quantity to describe multistep chemical 
systems (Dutt, 1985; Barragán et al., 2015; Barragán and 
Montoya, 2021).

Figure 9. Changes in the entropy production rate as a function 
of the reaction quotient of the overall reaction Og. Curves 
correspond to a different initial value for the variable B , as follows: 
( ) ( ) ( ) ( )2 2 2 23.8 10 , 4.0 10 , 4.1 10 , 5.1 10− − − −× × × × a   b   c   d  . Other initial 
conditions are 2

0 3.0 10−= ×A  , 6
0 10−=Y  , 6

0 10−=P  , 3
0 10 ,−=Z   and 

0.48=f .
Source: Authors

Conclusions

This study demonstrated that classical thermodynamics 
principles can be applied to single-step reactions with non-
stoichiometric coefficients, as exemplified by the overall 
reaction Og of the Oregonator model. The thermodynamic 
affinity decreases continuously and smoothly for a single-
step chemical reaction until reaching zero at equilibrium. 
In contrast, the Gibbs function decreases until the reaction 
quotient equals the equilibrium constant for a single-step 
reaction.

However, for complex coupled reaction systems like the 
Oregonator, the thermodynamic formalism could not be 
verified. The lack of knowledge of the reaction extent and the 
reaction quotient hinders the evaluation of thermodynamic 
functions and the verification of the state of chemical 
equilibrium. Non-stoichiometric coefficients in these 
models, such as parameter f , complicate the determination 
of the reaction extent because the system’s dynamics can 
remain in non-equilibrium states, distorting thermodynamic 
quantities. In this context, the rate of entropy production is a 
valuable quantity. Further research must define and express 
the reaction extent for coupled chemical reactions.
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