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Neural Networks and Fuzzy Logic-Based Approaches for
Precipitation Estimation: A Systematic Review

Enfoques basados en redes neuronales y léogica difusa para la estimacion
de la precipitacion: una revision sistematica
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ABSTRACT

Precipitation estimation at the river basin level is essential for watershed management, the analysis of extreme events and weather
and climate dynamics, and hydrologic modeling. In recent years, new approaches and tools such as artificial intelligence techniques
have been used for precipitation estimation, offering advantages over traditional methods. Two major paradigms are artificial neural
networks and fuzzy logic systems, which can be used in a wide variety of configurations, including hybrid and modular models.
This work presents a literature review on hybrid metaheuristic and artificial intelligence models based on signal processes, focusing
on the applications of these techniques in precipitation analysis and estimation. The selection and comparison criteria used were
the model type, the input and output variables, the performance metrics, and the fields of application. An increase in the number
of this type of studies was identified, mainly in applications involving neural network models, which tend to get more sophisticated
according to the availability and quality of training data. On the other hand, fuzzy logic models tend to hybridize with neural models.
There are still challenges related to prediction performance and spatial and temporal resolution at the basin and micro-basin levels,
but, overall, these paradigms are very promising for precipitation analysis.
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RESUMEN

La estimacion de la precipitacion a nivel de cuenca hidrografica es esencial para la gestion de cuencas, el andlisis de eventos
extremos y dindmicas meteoroldgicas y climaticas, y el modelado hidroldgico. En los Ultimos afios se han empleado nuevos
enfoques y herramientas como las técnicas de inteligencia artificial para estimar la precipitacion, ofreciendo ventajas sobre los
métodos tradicionales. Dos paradigmas principales son las redes neuronales artificiales y los sistemas de l6gica difusa, que pueden
utilizarse en una amplia variedad de configuraciones, incluyendo modelos hibridos y modulares. Este trabajo presenta una revision
de la literatura sobre modelos hibridos metaheuristicos y de inteligencia artificial basados en procesos de sefales, centrandose en
las aplicaciones de estas técnicas en el andlisis y la estimacion de la precipitacion. Los criterios de seleccion y comparacion utilizados
fueron el tipo de modelo, las variables de entrada y salida, las métricas de desempeo y los campos de aplicacion. Se identifico
un aumento en el nimero de este tipo de estudios, principalmente en aplicaciones que involucran modelos de redes neuronales,
los cuales tienden a volverse mds sofisticados segun la disponibilidad y calidad de los datos de entrenamiento. Por otro lado, los
modelos de logica difusa tienden a hibridarse con modelos neuronales. Aln existen desafios relacionados con el desempefio de
las predicciones y la resolucion espacial y temporal a nivel de cuenca y microcuenca, pero, en general, estos paradigmas son muy
prometedores para el andlisis de la precipitacion.
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directly contributing to the analysis of the water budget and
related socio-economic and ecosystem interactions [3].
Therefore, accurately estimating precipitation is crucial for
understanding meteorological and hydroclimatic processes
and their impact on extreme events such as floods and

Introduction

Precipitation is a critical component of the global water
cycle, significantly influencing both climatic and hydrological
dynamics[1]. Variationsin precipitation intensity have diverse
impacts on natural and societal systems [2]. For instance,
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light rainfall, which soils readily absorb, aids in drought
mitigation and boosts agricultural productivity. In contrast,
intense downpours frequently result in catastrophic floods
and landslides. Consequently, a thorough understanding of
the precipitation intensity spectrum is vital for developing
specific adaptation strategies. Estimating precipitation at the
watershed level is highly valuable for environmental studies,
given its role as the primary input in a hydrological system,
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droughts [4]. Various statistical, analytical, and numerical
methods are employed for precipitation estimation [5].
The main approaches involve developing models with
explanatory and response variables. Diverse meteorological
and physiographical parameters have been included as
explanatory variables, and, in recent years, data from
remote sensing systems such as satellite images and radars
have been progressively incorporated. Significant models
like the Global Circulation Model (GCM) and numerical
weather prediction (NWP) models are particularly relevant
and extensively used on the macroscale [6]. However, more
robust and locally adapted models are required for regional
and local scales.

Monitoring precipitation enables the acquisition of data
for historical analysis, facilitating the development of
estimation and prediction models. Measurements are
obtained through rain gauges, weather radars, or satellite
products with varying spatial and temporal resolutions [7].
The challenges in accurately estimating precipitation on
the river basin scale include improving the spatial density
of gauges and addressing the coarse resolution of remote
sensing products [8]. Furthermore, the evident impacts
of climate change in recent years, such as the progressive
alteration of precipitation regimes and variations in the
frequency and intensity of extreme events (including heavy
rain and droughts) underscore the need for more robust
and precise estimation at the regional level. Another
limiting factor is coupling precipitation with the chaotic
behavior of atmospheric dynamics. For example, a known
issue in numerical systems corresponds to the errors and
significant deviations in predictions caused by even slight
changes in initial conditions [9]. Statistically, it has been
also recognized that precipitation does not necessarily
follow a normal distribution and can be modeled using
asymmetrical distributions [10]. Consequently, more
effective and powerful approaches, such as the use of
artificial intelligence, are being studied to better approximate
the correct behavior.

As a result of technological advances in the field of artificial
intelligence and related areas such as data science, new
approaches for processing and analyzing datafor precipitation
estimation are being employed. These include machine
learning techniques like neural networks and the application
of expert knowledge through fuzzy logic [11]. Such
techniques provide flexibility and facilitate the development
of more robust models for estimating precipitation, given
their inherent ability to model complex nonlinear behaviors
[12]. Few studies have been found which review artificial
intelligence techniques for precipitation assessment,
especially in relation to neural networks and fuzzy logic. [13]
presented a review on resilient rainfall forecasting models
using artificial intelligence techniques, with an empbhasis
on artificial neural networks (ANNs) as well as on hybrid
models including neuro-fuzzy systems.

This document presents a bibliographic review of artificial
intelligence techniques used for estimating precipitation.
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The main objective is to compare ANNs against fuzzy logic
models, focusing on the differences between machine
learning and expert systems approaches. The methodology
for the literature search and the criteria for selection are
detailed in the next section. Afterwards, the theorical basis
for each method is explained, followed by a discussion of
their main applications, and the article concludes with a
succinct comparison of the two types of models.

Methodology

We conducted a systematic review to identify relevant
studies on rainfall forecasting using artificial intelligence
(Al), specifically fuzzy logic, neural networks, and neuro-
fuzzy models. A literature search was conducted in the
Scopus database, utilizing strategically selected keywords
to capture a comprehensive overview of the most relevant
studies. With the search criteria presented below, 134
articles were selected for analysis. Each study was
systematically reviewed in a specific reading sequence:
abstract, conclusion, results and discussion, methodology,
and, finally, the introduction. This method facilitated the
identification of potential themes and categories in the
information presented by each paper.

Selection criteria

The main objective of this systematic review was to analyze
the use of Al for precipitation estimation at the river
basin level. The main selection criterion was a focus on
precipitation analysis, with a preference for river basins and
limited to neural networks and fuzzy logic approaches. A
secondary objective involved determining and understanding
the input and output variables, the model architecture, the
performance metrics, and the scope of each case.

Search equations

The set of keywords encompassed terms like river basin,
precipitation, and artificial intelligence, with additional
specific terms for each technique: neural networks and fuzzy
logic. It should be acknowledged that these terms were
consulted in several permutations, including synonyms,
nomenclatures, and broader keywords, in order to enhance
the search breadth. The following variations were included
in the search equations:

® River basin, catchment, watershed

® Precipitation, rainfall, rain estimation, rain
precipitation estimation

e Artificial intelligence, machine learning, soft computing

e Artificial neural networks, neural networks, deep
learning, machine learning, artificial intelligence

® Fuzzy logic, fuzzy inference systems, expert systems,
soft computing, artificial intelligence

rate,

Eq. (1) was used for the initial search in Scopus:
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(precipitation OR rainfall OR rain OR "precipitation

estimation") AND ('river basin" OR watershed OR

basin OR catchment) AND (‘artificial intelligence" (1)

OR "machine learning" OR "neural network" OR

"fuzzy logic" OR "soft computing")
Subsequently, a more specialized search was conducted,
using several widespread databases (Elsevier, Springer, IEEE)
as well as conventional search engines like Google or those
oriented towards academic results (Google Scholar), in order
to include non-indexed results (e.g., Arxiv). To correctly filter
by Al paradigm, Search Egs. (2) and (3) were employed.

(“fuzzy logic”) AND (watershed OR “river
basin” OR “catchment”) AND (precipitation OR
“precipitation estimation” OR “rainfall”)
(“neural network”) AND (watershed OR “river
basin” OR “catchment”) AND (precipitation OR
“precipitation estimation” OR “rainfall”)

2)

3)

Software tools

VOSViewer [14], [15] was used for the bibliometric analysis,
enabling the generation of bibliometric network plots and
clustering algorithms. This software facilitates the visual
inspection of relevant information from bibliographic
metadata such as the authors, keywords, and important
terms. Additionally, a thesaurus file was manually elaborated
to organize similar concepts within the results of VOSViewer.

Results

The general search using Scopus allowed for the analysis of
global concepts. A bibliographic network is shown in Fig. 1,
which includes the occurrence of keywords by total count,
with the maximum limit of connections set to 200 in order
to facilitate visualization. The most important concept found
was ANN. Other Al techniques like genetic algorithms,
random forests, and support vector machines were also
visible in the network, highlighting their importance in more
recent studies. Fuzzy logic did not seem to be included
at first glance, but, after zooming in on the network, this
concept indicated a higher similarity to precipitation.
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Figure 1. Bibliometric map of the preliminary search
Source: Authors

In the preliminary search, some concepts like climate
change, downscaling, forecast, drought and flood forecasting,
and hydrological modeling were also highlighted. Several
papers reference rainfall-runoff modeling, but precipitation
dynamics is the only concept that pertains to this review.

The specific search for each approach returned different
results, and some representative papers were identified
for both neural networks and fuzzy logic according to the
selection criteria. It is noteworthy that several of these papers
compared their approach against different Al techniques. We
prioritized papers using rain gauges and weather stations
as the primary data source, as they favor watershed-level
analysis. Still, some papers that only used radar or satellite
images were also included.

Each of these Al paradigms has behaved differently in recent
years. Although the use of Al has generally increased and
expanded in the last decades, the number of neural network-
related studies has increased significantly, while research
involving fuzzy logic seems to be stagnant and has even
decreased, with most studies appearing between 2013 and
2016 (Fig. 2). A summary of the main references is presented
in Table I.
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Figure 2. Number of papers by year and subject
Source: Authors

Neural networks for precipitation estimation

Artificial neural networks

ANNSs, or simply neural networks (NNs), are connectionist
models used to approximate a general function through
a series of non-linear transformations performed by
interconnected nodes or neurons [16]. ANNs are widely used
in the field of machine learning, specifically in supervised
learning with known input and output data (observations).
During the initial training, iterative optimization algorithms
are applied to slightly update the network in each iteration.
This process runs until the known input data generate a very
similar value to the known output data, which implies an
optimal network configuration [17]. A well-trained NN can
internally generalize the relationship between input and
output, correctly approaching the objective function (e.g.,
modeling the behavior of precipitation from historical data).

The simplest NN model is the multilayer perceptron (MLP),
which has at least three layers: an input layer, a hidden layer,
andanoutputlayer (Fig. 3). Each node or perceptronis partially
modeled as a biological neuron, wherein backpropagation
is the usual training method. Thus, MLPs are also called
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backpropagation neural networks (BPNNs). In several studies,
ANN, NN, and BPNN are used interchangeably, but it must
be clarified that are differences in the in the configuration
of the network and in internal parameters like the weights,
the bias matrix, the transfer function, and the optimization
algorithm [18]. [19] conducted a study aimed at identifying
relationships between atmospheric temperature and rainfall
with ANN models.

Different types of Al and machine learning models can be
used for precipitation prediction and forecasting applications,
such as expert systems, NNs, and deep learning. In the
realm of deep learning, it is possible to find models
like convolutional NNs, recurrent NNs, and generative
adversarial networks. ANNs have been used to complete
missing data in precipitation time series [20], as well as in
autoregressive models, where precipitation is modeled from
historical data, as was done by [21] for 15 min precipitation,
by [22] for daily precipitation, by [23] for daily precipitation
with wavelets analysis, and by [24] for monthly precipitation
from rain gauge data between 1961 and 2018 in the Wujiang
River Basin while using an artificial bee algorithm. Moreover,
[25] performed a similar study in Greece. Simpler single-
layer models like the ADALINE network have been used for
monthly precipitation forecasting [26].

hidden
input layer
layer output
layer

Figure 3. Neural network topology
Source: Adapted from [27]

Different input variables can be used besides precipitation.
[28] included precipitable water vapor, pressure,
temperature, relative humidity, cloud top temperature,
cloud top pressure, and cloud top altitude to predict hourly
precipitation. Other studies have used climate indices such
as the southern oscillation index (SOI), the interdecadal
pacific oscillation index (IPO), La Nina 3.4 [29], [30], and
the standard precipitation index (SPI) [31] as input variables.

[32] used different types of NNs to estimate monthly
mean precipitation and temperature based on data from
90 weather stations, with the purpose of elaborating a
climatic cartography of Chile. Likewise, [33] delved into
spatiotemporal predictions in Brazil. [34] used precipitation
time series derived from stations monitoring data and radar
and satellite images from different weather products, and
[35] applied NNs to estimate precipitation using the WSR-
88D radar in Oklahoma.
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[36] were the first to describe the application of ANNs to
satellite images in order to improve spatial precipitation
estimation. Multiple products were derived from their
studies, e.g., the PERSIANN system. Furthermore, with the
advent of new weather products, precipitation databases,
and new research, new studies have mostly taken interest
in integrating data from various sources [12]. [37] used data
from satellite products (ERA-5, CHIRPS, IMD, PERSIANN-
CDR) to create a machine learning algorithm that combined
different sources to achieve what they called secondary
precipitation estimate merging using machine learning
(SPEM2L).

Since the target variable is precipitation, most papers seek to
implement regressions. However, classification processes
can also be applied, as was the case with [38], who used
data from the global navigation satellite system (GNSS) to
identify heavy precipitation.

Recurrent neural networks

Recurrent NN are a special type of network whose neurons
include an additional connection to themselves that works
as a buffer or memory element (Fig. 4). This configuration
is particularly useful to approximate relations depending on
previous data such as time series [39]. There are different
types: the basic recurrent neural network (RNN), the gated
recurrent unit (GRU), and long short-term memory (LSTM).

input layers with output
layer recurrent neurons layer

e
S

Figure 4. Recurrent neural network topology
Source: [40]

Deep and convolutional neural networks

Deep neural networks (DNNs) are a relatively new concept
that involves ANNs containing many neurons, hidden layers,
and training data. This kind of architecture has shown very
good results in practice, especially with large amounts of
quality data and high computational power available for
training and validation [41]. The field of deep learning has
gained ground for its great performance, to the point that
the term neural networks is now directly associated with
deep learning. [42] integrated data from different sources
to predict precipitation using a deep network. Meanwhile,
[43] implemented a classification model to identify heavy
rain events, and [44] used bio-spectral images to predict
precipitation.
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The progress of DNNs also allowed developing new
configurations like convolutional neural networks (CNNs).
These networks use specialized nodes (Fig. 5) that work
as sliding filters (i.e., they convolute) on the input data to
identify the particular characteristics that activate them
[45]. This behavior is suitable for image analysis aimed at
object detection, instance segmentation, and image and
pixel classification [46]. In precipitation analysis, this can
be applied in the detection of clouds, weather fronts, and
atmospheric dynamics in radar products, etc.

input convolutional dense

output
layer layers layers A

layer

\
\
\

Figure 5. Convolutional neural network topology
Source: Adapted from [40]

[47] merged data from rain gauges, radar satellite images, and
digital elevation models for precipitation estimation. They
used CNNs and an additional post-processing step related
to precipitation probability and intensity. The integration of
radar data was improved, and the station bias was reduced
in subsequent research [48]. Precipitation dynamics were
analyzed in another study using both DNNs and CNNs
applied to images obtained from terrestrial radars [49]. A
CNN-based deep learning method was used to improve
rainfall-runoff modeling in the Mekon River Basin [50]. One
study explored the application of a CNN-based architecture
for detecting and estimating near real-time precipitation in
the USA [51].

In recent years, methods based on deep CNNs have achieved
significant success, and their performance continues to
improve [52]. [53] set about correcting the bias of daily
satellite precipitation in tropical regions using a DNN. Most
deep and convolutional models use non structured data
as input (e.g., images). A specific study on precipitation
presented a nowcasting method based on sparse
correspondence and a DNN [49]. The necessary data can be
obtained directly from remote sensing products, generated
from curated data provided by multiple sources, or generated
from statistical or numerical models. For example, [54] used
data from the ERA5 numerical and reanalysis model and the
E-OBS database to apply a U-net (deep and convolutional
network). The input data included weather and physical
variable maps considering temperature, wind speed, water
vapor, and geopotential altitude to generate the output, in
the form of an hourly precipitation map.

Another project, focused on short-term weather forecasting
(i.e., nowcasting), mainly used CNNs or variants with
recurrent components. Here, [55] used precipitation data
from radar and satellite images provided by the Geostationary

Satellite Server (GOES), together with physical weather
models commonly used in meteorology. They obtained
good results for 12 h forecasts. [56] applied a hybrid MLP
and CNN model to predict extreme regional precipitation
in central-eastern China. Similarly, [57] conducted a
quantitative precipitation forecasting study for China with a
multi-stream CNN. On the other hand, [58] applied CNNs in
the United Kingdom. They added a generative component,
wherein two modules (the generator and the discriminator)
compete to generate an optimal output.

Optical flow can also be used on radar images [59] and in
direct processing and detection from satellite images [60],
[61]. Due to the sequential nature of precipitation data, it is
possible to merge image and temporal analysis [62] using
models that integrate convolutions and LSTM [63]. [64]
proposed a transformer-enhanced spatiotemporal neural
network called TransLSTMUNet for the post-processing of
precipitation forecasts, and, using a DNN, [65] developed a
forecasting model based on the global normalized difference
vegetation index (NDVI), air temperature, soil moisture, and
precipitation.

Thanks to the availability of precipitation data from satellite
images, videos, and climate reanalysis products, a whole
new wave of studies using computer vision has emerged.
For instance, [66] compared several convolutional models
(LSTM and U-Nets) for precipitation nowcasting within a 15
min temporal scale. Notably, a large volume of precipitation
images was required.

Downscaling methods

The downscaling and regionalization of data allows
improving the spatial scale of weather data or radar and
optical images obtained via remote sensing in order to
produce information that better captures the study area [11].
[67] applied downscaling with different machine learning
models for precipitation estimation, using data from the
Coupled Model Intercomparison Project Phase 5 (CMIP5).
[68] and [69] used CNNs for the micro-regional monitoring
of precipitation, while [70] analyzed the probability of
extreme events through downscaling. [71] applied radial-
basis NNs based on downscaling, integrating data from
precipitation time series, global circulation models, and
different climate change scenarios as inputs. Downscaling
can be applied by means of different models (e.g., statistical
methods) or through classical NNs [72], CNNs, and U-nets
[73]. Depending on the data available, this can be done on
different temporal scales (annual, monthly, or daily) [74].

Fuzzy logic for precipitation estimation

Fuzzy inference systems

Fuzzy logic is based on the concept of fuzzy sets. A fuzzy
set is a set with no crisp or clear boundary. Unlike two-
valued Boolean logic, fuzzy logic is multi-valued, and it deals
with degrees of membership and truth. Fuzzy logic uses
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any logical value from the set of real numbers between 0
(completely false) and 1 (completely true). This is known as
the membership value, and the function that represents such
value is called a membership function [75]. Fuzzy logic takes
advantage of expert knowledge and the flexibility of fuzzy
sets to model complex systems [18]. It allows representing
numerical variables as identifiable linguistic values through
membership functions (facilitating the representation of
uncertainty and vagueness) (Fig. 6). Moreover, interpretable
logic rules can be applied to these linguistic variables in
the inference process. The fuzzy inference system (FIS) is
the common configuration, comprising three main steps:
fuzzification, inference, and defuzzification (Fig. 7).

Very low Low Normal High Very High
1
0.8
0.6
0.4
0.2
20 10 60 80 100 *
Precipitation (mm)
Figure 6. Example of a membership function
Source: Adapted from [76]
Inference system
| |
Inputs Outputs
4*‘ Fuzzification }—>‘ Inference logic l——{ Defuzzification }—>

Figure 7. Fuzzy inference system
Source: Adapted from [77]

A special instance of this approach is the Mamdani fuzzy
inference system (MFIS), which is widely accepted among
the scientific community due to its interpretability. Here, the
consequent of the implication rules is a single value. On the
other hand, the Sugeno fuzzy inference system (SFIS) has a
consequent with an arbitrary fuzzy function that considers
all the variables in the antecedent [16]. The behavior of a FIS
can be visualized, for two inputs and a single output, as a
three-dimensional surface indicating the non-linear relation
between the variables (Fig. 8) — when more variables are
added, it generates an n-dimensional hyperplane [78].

outt

Figure 8. FIS output surface example for precipitation estimation from
time series data
Source: [78]
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[79] applied triangular membership functions to a FIS for
precipitation data imputation. Precipitation prediction from
other weather variables is also possible: [80] implemented
a FIS using maximum, minimum, and mean values for wind
speed, precipitation, and temperature as input in a model
with 23 inference rules. [76] only used wind speed and air
temperature. [81] applied fuzzy logic to a set of geographical
variables including altitude, distance to the coastline,
and slope — in addition to rain gauge data — to improve
precipitation maps from meteorological radars.

[82] incorporated atmospheric pressure, humidity, dew
point, temperature, and wind speed as input variables. The
membership functions for each variable were triangular,
with simple linguistic categories ranging from very low to
very high in a MFIS. Furthermore, [83] added a temporal
variable to differentiate the current day from the day before
in their accumulated daily precipitation analysis. It is also
possible to use preprocessed data such as those from the
meteorological aerodrome report (METAR), a very common
source in aerospace applications and weather analysis for
air bases [84]; or those from the National Oceanic and
Atmospheric Administration (NOAA) which offers data on
different weather variables [85]. The main objective of the
study by [84] was to predict rainfall events using a rule-based
FIS that incorporated five parameters: relative humidity,
total cloud cover, wind direction, temperature, and surface
pressure. Similarly, [86] analyzed the uncertainties associated
with extreme rainfall in terms of return levels. They also
quantified the potential risk of these events in the coastal
wetlands of India using fuzzy logic. [87] worked with fuzzy
rainfall-runoff models to generate predictions for claypan
catchments with conservation buffers in northeastern
Missouri. Finally, [88] studied the climate sensitivity of
mountainous regions to natural hazards through a fuzzy
logic approach, identifying alterations in the level, intensity,
or type of precipitation as the main drivers, together with
glacier melting and permafrost thawing.

Fuzzy clustering and interpolation

Fuzzy systems can be implemented to improve the spatial
interpolation of precipitation. [89] applied fuzzy logic to
inverse distance weighting (IDW) for the spatial interpolation
of precipitation, aiming to reduce the estimation error at river
basin level. There are similar methods exclusively based on
spatial interpolation [90] or classification, as is the case of
[91], who used fuzzy logic to zone monthly precipitation
and improve decision-making for cacao cultivation.

On the other hand, fuzzy clustering, or fuzzy C-means
(FCM), is the use of membership functions to cluster,
group, or categorize elements according to a similarity
criterion. For example, [92] implemented this method to
estimate precipitation and generate flood maps, and [90]
applied it to validate spatial precipitation estimation. Fuzzy
clustering can also be applied for downscaling precipitation
data [93].
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Fuzzy time series

Although FIS are mainly used for a system of inputs and
outputs where the temporal component is not clearly
incorporated, fuzzy logic can also be used for time series
analysis. In this case, the time series should be interpreted
as a fuzzy set. For example, [94] used fuzzy time series and
NNs to predict rainfall, and, in complementary work, [78]
focused exclusively on precipitation time series.

Within a purely autoregressive approach, membership
functions are created by temporally dividing the precipitation
time series [96]. In said cases, the membership functions
split the data according to their temporal scale, i.e., the
linguistic variable can be the month of the year, and, after
the fuzzification of the inputs, the inference rules can
directly reference the known experimental behavior of the
precipitation in certain months (Fig. 9).

jan  feb mar apr may jun jul aug sep oct nov dec
AA AA A A A AA A A
08 /\ ANVANFA /\ /N /\\ /\ I\ /N /\ /\\
06|/ \>/ \ VY \x/ VOV NV VY \)< \\
04| / \ / AN \ N\ \
: AN AW AWAWANWANANY /\/\/\ \
U,z// /N \ \ / \\/ \ / \/ \ / \\/ \ / \ \\
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Al A2 A3 A4 AS Ab AT A8 A9

\/
\/ \
o6 |\ VY \
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\
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Figure 9. Membership functions for fuzzy time series
Source: Adapted from [97]

Hybrid models: neuro-fuzzy systems

Hybrid models refers to instances that integrate machine
learning components to complement FIS, e.g.,, NNs and
genetic algorithms. Given the high effectiveness recently
shown by machine learning applied to big data applications, it
is increasingly common to include it as an additional step for
expert systems. For example, NNs can be used to automatically
generate membership functions for FIS, or even to generate
inference rules [98]. [99] used NNs to generate inference rules
within a so-called neuro-fuzzy system (NFS), using coordinates
and their corresponding precipitation values, in a study similar
to that by [100]. [101] merged data from stations, radar, and
satellite images using a neuro-fuzzy network.

Another very common architecture in the literature
corresponds to the adaptive neuro-fuzzy inference system
(ANFIS) (Fig. 10). Neuro-fuzzy hybridization results in a
hybrid intelligent system that synergizes ANNs and fuzzy
logic by combining the human-inspired reasoning of fuzzy
systems with the learning and connectionist structure of
NNs [75]. [102] applied ANFIS to estimate precipitation from
several rain gauge stations in Serbia, reporting improved

reliability against uncertainty. Using ANFIS, [103] managed
to identify the most relevant meteorological variables and
their influence on precipitation estimation. They included
data on vapor pressure, air temperature, the monthly
frequency of wet days and the percent monthly cloud
cover. Meanwhile, [104] used this approach to improve
precipitation estimation from radar data. Some comparative
studies have implemented the ANFIS method [23], as well as
others focused on predicting precipitation-related climatic
indices [105] or on using historical precipitation series.

Several models can also be merged into this approach,
wherein the fuzzy logic component serves as a module
integrator [106]. [107] presented a self-identification
neuro-fuzzy inference model (SINFIM) for modeling the
relationship between rainfall and runoff on a Chilean
watershed. Another work studied the trends and patterns of
rainfall to conduct an analysis of the city of Mumbai via the
rainfall regionalization approach coupled with fuzzy logic
and clustering [108]. [109] applied an ANFIS to evaluate
rainfall-runoff modeling in a sub-catchment of the Kraniji
Basin in Singapore, and another study used NNs and fuzzy
logic in statistical downscaling to support daily precipitation
forecasting [110].

Layer 1 | Layer 2
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< .
- )
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¥
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Figure 10. Topology of an ANFIS model
Source: Adapted from [103]

Hybrid metaheuristic algorithms

Hybrid metaheuristic algorithms are advanced tools in
the field of Al [111]. These techniques can solve problems
via prediction errors, hyperparameter determination, and
feature selection using machine learning algorithms [112],
which is why they are gaining popularity and are being
used for the development of hybrid models for hydrological
research [113], including those dealing with the prediction
of reference evapotranspiration (ETo), a very important
parameter for determining the availability of water resources
and in hydrological studies. However, they are mainly used to
predict ETo, as stated by [114]. To this effect, they studied and
compared the prediction capabilities of two support vector
regression (SVR) models along with three metaheuristic
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algorithms, i.e., particle swarm optimization (PSO), gray wolf
optimization (GWO), and the gravitational search algorithm
(GSA), using meteorological variables in monthly ETo
prediction used meteorological variables as input.

Hybrid metaheuristic algorithms have also been used to
elaborate flood susceptibility maps, and the optimization
capabilities offered by different machine learning algorithms
has been leveraged by means of metaheuristic algorithms
[111]. In the Haraz Basin, Iran, [115] employed an ANFIS
coupled with the cropping (CA), bee (BA), and invasive weed
optimization (IWO) algorithms. [116] used a combination of
ANFIS, the genetic algorithm (GA), ant colony optimization
(ACO), and PSO to generate a flood susceptibility map for
the municipality of Jahrom, Iran. [24] performed ANFIS
optimization with biogeography-based optimization (BBO)
and the imperialist competitive algorithm (ICA). [117] used
differential evolution (DE), the GA, and PSO along with an
ANFIS to elaborate a flood susceptibility map for the Ganges
Plain in India. [118] also used a combination of SVR, the
GWO, and the bat optimizer (Bat) to generate this type of
map. [119] used GWO and the whale optimization algorithm
(WOA) to optimize SVR and create a flood susceptibility
map for the Ardabil province in Iran. [120] combined SVR,
PSO, and the grasshopper optimization algorithm (GOA) to
develop a flood susceptibility map. [121] used the group
method of data management (GMDH), DE, and the GA
to generate a flood susceptibility map for the Haraz-Neka
Basin, Iran. Moreover, [122] conducted GMDH optimization
with the help of GWO in flood modeling.

[123] explored the accurate prediction of daily rainfall via
Al methods. These methods were grounded in an ANFIS.
Some metaheuristic optimization algorithms were also
employed: the artificial bee colony algorithm (ABC), the GA,
and simulated annealing (SA). [124] presented a method for
providing explainability in the integration of inductive rules,
combined with fuzzy logic and data mining techniques,
when dealing with meteorological predictions.

Machine learning

Machine learning (ML) is a field of Al that deals with the
development and study of statistical algorithms capable of
learning from data and generalizing to unseen data, allowing
them to perform tasks without explicit instructions.

In this vein, there are some studies related to precipitation
forecasting and ML. [125] developed a conceptual
metaheuristics-based framework for improving runoff time
series simulation in glacierized catchments, combining
hydrological model with a series predictor model and the
optimization-driven parameter tuning of the firefly algorithm.
Furthermore, [126] used a MLP network — optimized via the
GA, PSO, the firefly algorithm, and teleconnection pattern
indices — for rainfall modeling in the Mediterranean Basin.
In addition, nested hybrid rainfall-runoff modelling has been
performed via embedding ML techniques [127]. [128] used a
combination of approaches, i.e., statistical, ML, deep learning
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(DL), and hybrid algorithms, in order to build a precipitation
forecasting system. In addition, [129] proposed a new rainfall
prediction model that employs different techniques as well
as indicator features like average directional movement
(ADX), moving average convergence divergence (MACD),
and Welles Wilder’'s smoothing average (WWS). [130]
developed a metaheuristic evolutionary DL model based
on a temporal convolutional network for rainfall-runoff
simulation and multi-step runoff prediction. [131] assessed
some rainfall prediction models to explore the advantages
of ML and remote sensing approaches. Furthermore, an
assessment of hybrid ML algorithms using TRMM rainfall
data for daily inflow forecasting was carried out in eastern
Brazil [132]. In China, a study on automated ML for rainfall-
induced landslide hazard mapping was conducted [133].
[134] performed a comparative assessment of rainfall-based
water level prediction methods using ML. [135] evaluated
traditional and ML approaches to rainfall prediction, and
[136] examined a combination of the ERA5 dataset and
ML. Long-term rainfall prediction was performed by [137],
using atmospheric synoptic patterns in semiarid climates
with statistical and ML methods. [138] studied ML-based
rainfall models for accurate flood mapping in Pakistan. [139]
conducted specific studies on short-term rainfall forecasting
using cumulative precipitation fields from station data with
a probabilistic ML approach.

Comparative analysis

Input variables

Both NNs and fuzzy logic models depend on the available
input variables. An initial knowledge of the objective function
and the possible relationships between the explanatory and
response variables is assumed in order to build the model. Fig.
11 shows the common input variables for the studied field. In
general, these parameters can be classified as meteorological,
physiographic, or hydrological variables; climatic indices;
data derived from physical or numerical models; satellite or
radar products; or other derived databases.

Precipitation
Temperature ‘
Pressure |
Satellite imagery
Radar
Altitude
Wind speed
Humidity

Longitude
Latitude
Cloudiness
ENSO
ERAS
Wind direction
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GOES

0o 5 10

Input variables

15 20 25 30
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Figure 11. Input variables used in the references
Source: Authors
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Output variables

As the purpose of these models is estimating it, precipitation
should be the output or target variable in most cases.
However, this variable can be expressed in diverse temporal
scales, units, or configurations, as shown in Fig. 12. In some
studies, both precipitation and temperature are included
as output variables [32]. The most widely used output
is monthly precipitation, mainly in the fields of weather
forecasting and climate analysis. These variables also allow
evaluating extreme events and return periods.

Monthly precipitation |

Spatial precipitation estimation
Precipitation maps
Hourly precipitation

Anual precipitation

Output variables

Precipitation

Daily precipitation

Figure 12. Output variables used in the references
Source: Authors

Model architectures

Fig. 13 shows the common NN architectures for
precipitation estimation. ANNs and BPNN are differentiated
as in the referenced literature. Although DNNs, CNNs,
and convolutional-recurrent networks (CRNs) are shown
separately, they could be grouped into a single category
(i.e., deep networks) that is representative of the selected
references.
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RNN
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Bi-LSTM-T
Transformer
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Figure 13. Neural network models found in the references
Source: Authors

Fig. 14 shows fuzzy logic models for precipitation estimation.
ANFIS, FIS, and MFIS are the most commonly used. It could
be said that MFIS are just a special case of FIS. On the other
hand, both ANFIS and NFS integrate neural elements, so
they represent the hybrid models in the references.

FIS
ANFIS
FCM
MFIS
g Metaheuristic ANFIS
b i
Modular FIS
FTS
NFS
FSD
0 5 10

Count

Figure 14. Fuzzy logic models found in the references
Source: Authors

Performance metrics

To validate the techniques discussed herein, it is necessary
to use certain performance metrics or criteria in order to
compare actual values to those generated by the models.
Some of the most common metrics include the root mean
square error (RMSE), the correlation coefficient (R), the
determination coefficient (R?), and the mean absolute error
(MAE), which are mainly applied to regression models. In
the case of classification models, performance evaluation
should be mixed; for example, a confusion matrix can be
used, as well as the F1 score or accuracy values. Among
the performance metrics used in the referenced literature
(Fig. 15), there are specific indicators for the field of
hydrology, such as the average flood exposure risk (AFER),
a specialized metric for flood analysis; Nash-Sutcliffe
efficiency (NSE), widely employed in model assessment; the
fractions skill score (FSS) for forecasting; and the skill score
(SS) denominations, which are employed in quantitative
precipitation forecasting (QPF). Apart from these, the RMSE,
MAE, and R stand out as the most common parameters in
fuzzy logic models implementing regression approaches.
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Figure 15. Neural network performance metrics
Source: Authors

Software tools and implementation
Al models can be implemented using different software

tools and programming languages. A few references clearly
describe the software used for implementation, but most of
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them do not provide clear information in this regard. The
MATLAB software is notably used to implement of both NNs
and fuzzy logic models [80]. In addition, the R language is
applied for statistical analysis and downscaling [71], and
some Python libraries are used for DL models [62]. It is
important to highlight that the use of statistical software and
geographical information systems is essential in this field.

Applications

For the general applications mentioned in the literature on
precipitation estimation, some categories are identified.
Firstly, as expected, precipitation forecasting on different
temporal scales tends to be the main objective of several
papers. For long-term temporal scales (30 years or more),
the objective is climate analysis. Some papers emphasize the
usefulness of Al techniques for issuing extreme event early
warnings and in watershed management [21], [24], [78], [92].

Advantages and challenges of Al methodologies

Al methods exhibit both limitations and advantages. The
fundamental aspects of the main methods are outlined
below.

ML offers significant advantages regarding automation,
accuracy, and scalability, but it poses challenges related
to data dependence, model complexity, resource
requirements, and ethical considerations. Fuzzy logic is
quite advantageous in handling uncertainty, providing
intuitive solutions and adaptability across various domains.
However, its limitations are related to precision, rule
design complexity, computational effort, and the lack of
self-learning capabilities. Moreover, NNs are powerful and
versatile tools capable of learning complex patterns from
large datasets with good learning performance, adaptability,
versatility, and the possibility of continuous improvement.
However, they come with significant challenges related to
data dependence, computational load, interpretability, and
overfitting, all of which need to be carefully managed to
ensure an effective and ethical use. NFS offer a powerful
combination of the learning capabilities of NNs and the
interpretability and uncertainty management of fuzzy
logic. These hybrid models are particularly valuable in
applications that require both adaptive learning and human-
like reasoning. However, they pose challenges pertaining
to complexity, computational effort, overfitting, and data
quality dependence. Careful design and implementation are
required to fully realize these techniques’ potential while
managing their limitations.

Conclusions

This work presents the results of a thorough review of the
literature on prediction precipitation using Al techniques.
Our findings provide academia and society in general with
perspectives for future research in the field. There are various
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approaches for precipitation estimation using Al, even when
limiting the search to two specific paradigms such as NNs
and fuzzy logic. Model selection widely depends on the
type, quantity, and quality of the available data, and there is
no single configuration that guarantees the best results. The
integration of multiple data sources holds great potential for
performing regression in future studies.

Although the number of studies involving fuzzy logic has
decreased, these models remain a relevant option due to
their interpretability. Access to large amounts of data could
benefit fuzzy logic, as achieved through the inclusion of ML
components to create hybrid models, allowing for scaling
while maintaining interpretability.

NN research applied to precipitation estimation has grown
in recent years, with more sophisticated models like deep,
recurrent, and convolutional networks being incorporated
and showing significantly better results. However, among
their limitations is the availability of and access to large
amounts of data or high computational power, as well as the
lack of interpretability and implementation issues.

There are still many challenges for precipitation estimation
at the river basin level. Advances in the field of Al and access
to new data sources, models, and software tools have
yielded very promising results for the study of precipitation
at different levels, from mere forecasting to extreme events
forecasting and hydrological and environmental modeling.
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Table 1. Main references by year and category regarding artificial neural networks and fuzzy logic-based approaches
Source: Authors

Title Authors Year Country Category Al Model
L A . . Artificial
Precipitation estimation 'fr'om remotely sensed information Hsu et al. 1997 USA Neural ANN
using artificial neural networks
Networks
- P . Artificial
An application Of"”“f[’gzlc ;’;ﬁ’f’ networks for rainfall Luk et al. 2001 Australia Neural BPNN, RNN, TDNN
s Networks
. . . . Artificial
Data mining techniques for lmproved WSR-88D rainfall Trafalisetal. 2002 USA Neural ANN
estimation
Networks
Precipitation estimation from remotely sensed imagery Artificial
using an Artificial Neural Network Cloud Classification Hong et al. 2004 USA Neural ANN
System Networks
. . L Avrtificial
Spatiotemporal monthly rainfall reconstruction via artificial Lucio et al. 2007 Brazil Neural ANN
neural network -case study: south of Brazil
Networks
Rainfall forecasting by technological machine learning . Artificial
models W. Hong 2008 Taiwan Neural RNN
Networks
Elaboracidn de la cartografia climdtica de temperaturas y Romdn & Artificial
precipitacién mediante redes neuronales artificiales: caso Andrés 2010 Chile Neural BPNN
de estudio en la Region del Libertador Bernardo O'Higgins Networks
Precipitation forecast using artificial neural networks in Artificial
P 5L using Moustris et al. 2011 Greece Neural ANN
specific regions of Greece
Networks
Estimation of missing precipitation records using modular Artificial
= Kajornritetal. 2012 Thailand Neural BPNN, MNN
artificial neural networks
Networks
The application of artificial intelligence for monthly rainfall Abbot and Artificial
forecasting in the Brisbane Catchment, Queensland, Marohas 2013 Australia Neural ANN
Australia Y Networks
s . . Artificial
Artificial neural networks modeling for forecasting the Nastos et al. 2014 Greece Neural TDNN
maximum daily total precipitation at Athens, Greece
Networks
Forecasting daily precipitation using hybrid model of Artificial
wavelet-artificial neural network and comparison with .
. ; Solgi 2014 Iran Neural ANN-wavelets
adaptive neurofuzzy inference system (case study: Verayneh Networks
Station, Nahavand)
Input selection and optimisation for monthly rainfall Abbot and Artificial
forecasting in Queensland, Australia, using artificial neural Marohas 2014 Australia Neural ANN
networks Y Networks
Estimating spatial precipitation using regression kriging and Artificial
artificial neural network residual kriging (RKNNRK) hybrid Seo et al. 2015 South Korea Neural ANN
approach Networks
. . L . Artificial
Artificial neural networks in precipitation nowcasting: An Schroeter 2016 Australia Neural Shallow NN
Australian case study
Networks
Precipitation identification with bispectral satellite Artificial
information using deep learning approaches Tao et al. 2017 USA Neural DNN
Networks
Comparison of adaline and multiple linear regression Sutawinaya Artificial
P ‘ pre in Y 2018 Indonesia Neural ADELINE
methods for rainfall forecasting etal.
Networks
. - . . . . Artificial
A learning framework for an accurate prediction of rainfall  Damavandi and China, India,
2019 ! Neural BPNN
rates Shah Pakistan Networks
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Deep learning for precipitation estimation from satellite Germany, Artificial
andl rain sauees measurements Morauxetal. 2019 Belgium, Neural DNN, CNN
U8 Netherlands Networks
Neural network approach to forecast hourly intense rainfall Artificial
using GNSS precipitable water vapor and meteorological ~ Benevides etal. 2019 Portugal Neural NARX
sensors Networks
Prediccidn de precipitacién mensual mediante redes Montenegro Artificial
ol , . . . 2019 Colombia Neural ANN
neuronales artificiales para la cuenca del rio Cali, Colombia ~ Murillo et al. Networks
Improving precipitation estimation using convolutional Artificial
proving precip J Panetal. 2019 USA Neural CNN
neural network Networks
Rainfall and atmospheric temperature against the other Artificial
e : Anushka-Perera 2019 Sri Lanka Neural ANN
climatic factors: A case study from Colombo, Sri Lanka Networks
Modeling short term rainfall forecast using neural networks, Azimi and Artificial
and Gaussian process classification based on the SPI Azhdary- 2020 Iran Neural BPNN
drought index Moghaddam Networks
Precipitation forecast of the Wujiang River Basin based on Artificial
artificial bee colony algorithm and backpropagation neural ~ Wang et al. 2020 China Neural ABC-BPNN
network Networks
Secondary precipitation estimate merging using machine Artificial
learning: Development and evaluation over Krishna River Kolluruetal. 2020 India Neural ANN
Basin, India Networks
A comparative study on machine learning techniques for Sangiorgio Artificial
! . . . 2020 Italy Neural DNN
intense convective rainfall events forecasting etal. Networks
Deep multilayer perceptron for knowledge extraction: Saint Fleur 2020 France A&gﬁ::l ANN
Understanding the Gardon de Mialet flash floods modeling etal. Networks
Downscaling satellite and reanalysis precipitation products Artificial
. ; ) Sunand Tang 2020 USA Neural CNN
using attention-based deep convolutional neural nets Networks
MetNet: A neural weather model for precipitation Artificial
) p . Senderby etal. 2020 USA Neural ConvLSTM
orecasting
Networks
Improving near real-time precipitation estimation using Artificial
a U-Net convolutional neural network and geographical Sadeguietal. 2020 USA Neural CNN
information Networks
e . . Artificial
.Artlflela/. mtelllg'ence—bas'ed technque§ fqr rainfall Khaq and 2021 Ethiopia Neural ANN
estimation integrating multisource precipitation datasets Bhuiyan Networks
Long short-term memory algorithm for rainfall prediction Artificial
el Haq et al. 2021 Indonesia Neural LSTM
based on El-Nifio and IOD data
Networks
SCENT: A new precipitation nowcasting method based on Artificial
’ Fang et al. 2021 China Neural DNN,CNN
sparse correspondence and deep neural network Networks
Skilful precipitation nowcasting using deep generative Artificial
Ravuri et al. 2021 United Kingdom Neural Generativo
models of radar Networks
Skillful twelve hour precipitation forecasts using large Artificial
Espeholtetal. 2021 USA Neural CRN
context neural networks Networks
TRU-NET: A deep learning approach to high resolution . . . Artificial
) L . Adewoyinetal. 2021  United Kingdom Neural CRN
prediction of rainfall Networks
Modeling high-resolution precipitation by coupling a Artificial
regional climate model with a machine learning model: an Trinh et al. 2021 Vietnam Neural ANN
application to Sai Gon-Dong Nai Rivers Basin in Vietnam Networks
. . S Germany, Artificial
A deep learning mult:qual r_nethod for precipitation Moraux etal. 2021 Belgium, Neural DNN, CNN
estimation
Netherlands Networks
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A neural network-based approach for the detection of Artificial
heavy precipitation using GNSS observations and surface Li et al. 2021 China Neural BPNN
meteorological data Networks
. T . Artificial
SCENT: A new precipitation nowcasting method based on Fang et al. 2021 China Neural SCENT
sparse correspondence and deep neural network Networks
Artificial
Precipitaion nowcasting using deep neural network Bakkay et al. 2022 France Neural CNN, LSTM
Networks
Extreme precipitation prediction based on neural network de Sousa Artificial
. f 2022 Brazil Neural LSTM
model — A case studly for southeastern Brazil Araujo et al.
Networks
Convolutional neural network-based statistical post- Artificial
. ARV Li et al. 2022 China Neural CNN
processing of ensemble precipitation forecasts Networks
Deep neural network high spatiotemporal resolution Artificial
precipitation estimation (Deep-STEP) using passive Goroohetal. 2022 USA Neural CNN
microwave and infrared data Networks
. ; ; : R . Artificial
Correcting thg bias 0f daily §atelllte precipitation estimates Yang et al. 2022 China Neural Bi-LSTM-T
in tropical regions using deep neural network N
etworks
Hybrid multilayer perceptron and convolutional neural Artificial MLP. CNN, MLP-
network model to predict extreme regional precipitation Jiang et al. 2024 China Neural ! CN N,
dominated by the large-scale atmospheric circulation Networks
Post-processing of short-term quantitative precipitation Artificial
forecast with the multi-stream convolutional neural Tian et al. 2024 China Neural CNN, MSCNN
network Networks
Transformer-enhanced spatiotemporal neural network for Artificial Transformer,
@ sp npore Jiang et al. 2024 China Neural TransLSTMUNet,
post-processing of precipitation forecasts Networks ConvLSTM
Improving rainfall-runoff modeling in the Mekon river China, Burma, Artificial
basin using bi ; - Laos, Thailand,
asin using bias-correct satellite precipitation products by Le et al. 2024 . Neural CNN
. Cambodia,
convolutional neural networks - Networks
Vietnam
Deep neural network based on dynamic attention and layer Artificial
P . e . 4 Wang et al. 2024 China Neural DNN
attention for meteorological data downscaling
Networks
Rainfall prediction model using soft computing technique Wong et al. 2003 Italy Fuzzy Logic NFS
An adap tlve.neuro—fuzzy inference system fpr the post: Hessamietal. 2003 Canada Fuzzy Logic ANFIS
calibration of weather radar rainfall estimation
Applying fuzzy theory and genetic algorithm to interpolate Chang et al 2005 Taiwan Fuzzy Logic Fl
precipitation
Fuzzy model comparison to extrapolate rainfall data TZ'?:’SIOUIO 2008 Greece Fuzzy Logic ANFIS
Model for predicting rainfall by fuzzy set theory using USDA Hasan et al. 2008 USA Fuzzy Logic FIS
scan data
Annual rainfall forecastmg by using mamdani fuzzy Abbas et al. 2009 Iran Fuzzy Logic MEIS
inference system
Evaluation of rainfall and discharge inputs used by adaptive
network-based fuzzy inference systems (ANFIS) in rainfall- Talei et al. 2010 Singapore Fuzzy Logic ANFIS
runoff modeling
Rainfall events prediction using rule-based fuzzy inference Asklany etal. 2011 Egypt Fuzzy Logic FIS
system
Rainfall prediction in the northeast region of Thailand using Kajornritetal. 2012 Thailand Fuzzy Logic FIS
modular fuzzy inference system
A modular technique for rpqnthly rainfall time series Kaiornritetal. 2013 Thailand Fuzzy Logic MEIS
prediction
Cluster validation methods for localization of spatial rainfall  Kajornrit and . .
data in the northeast region of Thailand Wong 2013 Thailand Fuzzy Logic FCM
Development of a fuzzy r:)og(llz Ibased rainfall prediction Helen et al. 2013 Nigeria Fuzzy Logic MEIS
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Forecasting rainfall of a region by using fuzzy time series (SIIDS?rIni 2013 Fuzzy Logic FIS
An integrated intelligent technique for monthly rainfall time Kajornritetal. 2014 Thailand Fuzzy Logic ANFIS
series prediction
Interprgtable fuzzy systems for mgnthly rgm_fall spatial Kajornrit 2014 Thailand Fuzzy Logic FIS, ANFIS, Modular
interpolation and time series prediction FIS
Watershed ramfajl forgcastmg Using neuro- fuzzy ngtworks F.Changetal. 2014 Taiwan Fuzzy Logic ANFIS
with the assimilation of multi-sensor information
Neural network and fuzzy logic statistical downscaling of
atmospheric circulation-type specific weather pattern for ~ Valverde etal. 2014 Brazil Fuzzy Logic FSD
rainfall forecasting
Adaptive neuro—fugzx computing technique for Petkovi¢etal. 2016 Serbia Fuzzy Logic ANFIS
precipitation estimation
Hydrologic simulation approach for El Nifio Southern
Oscillation (ENSO)-affected watershed with limited Sharma et al. 2016 USA Fuzzy Logic ANFIS
raingauge stations
Sele;tror_w of m.eteorologrcal parameters affecting rainfall Hashim etal. 2016 India Fuzzy Logic ANFIS
estimation using neuro-fuzzy computing methodology
Rainfall and financial forecasting using fuzzy time series and Singh 2018 India Fuzzy Logic FTS
neural networks based model
Downscaled rainfall projections in south Florida using self- Sinha et al. 2018 USA Fuzzy Logic ECM
organizing maps
Fuzzy rules to help predict rains and temperatures in a de Campos . .
brazilian capital state based on data collected from satellites ~ Souza et al. 2019 Brazil Fuzzy Logic ANFIS
Improving weather radar precipitation maps: A fuzzy logic Silver et al. 2019 lsrael Fuzzy Logic FIS
approach
Rainfall zoning for cocoa growing in Bahia state (Brazil) Franco et al. 2019 Brazil Fuzzy Logic FIS
using fuzzy logic
Improvement of rainfall prlzg;:::tlon model by using fuzzy Rahman 2020 Bangladesh Fuzzy Logic FIS
Generating flood hfizard maps based on an innovative Zare et al. 2021 Luxembourg, Fuzzy Logic ECM
spatial interpolation methodology for precipitation Germany, France
Prediction of rainfall using fuzzy logic J ane;r:f;?nan 2021 India Fuzzy Logic FIS
Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-
based machine learning models for flood susceptibility Arora et al. 2021 India Fuzzy Logic ~ Metaheuristic ANFIS
prediction mapping in the middle Ganga Plain, Indlia
Rainfall prediction system us:ng.machlne learning fusion for Rahman etal. 2022 Pakistan Fuzzy Logic FIS
smart cities
Identification of homogenous rainfall regions with trend
analysis using fuzzy logic and clustering approach coupled ~ Shahfahad etal. 2022 India Fuzzy Logic FCM
with advanced trend analysis techniques in Mumbai city
A general explicable forecasting framework for weather Peliez-
events based on ordinal classification and inductive rules ; 2024 Spain Fuzzy Logic FIS
. . . Rodriguez et al.
combined with fuzzy logic
Hybrid artificial intelligence models based on adaptive
neuro fuzzy inference system and metaheuristic Pham et al. 2024 Vietnam Fuzzy Logic ~ Metaheuristic ANFIS
optimization algorithms for prediction of daily rainfall
Evaluating the future risk of coastal Ramsar wetlands in Rakkasagi et al. 2024 India Fuzzy Logic FIS

India to extreme rainfalls using fuzzy logic
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