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Neural Networks and Fuzzy Logic-Based Approaches for 
Precipitation Estimation: A Systematic Review

Enfoques basados en redes neuronales y lógica difusa para la estimación 
de la precipitación: una revisión sistemática

Andrés F. Ruiz-Hurtado 1, Viviana Vargas-Franco 2, and Luis O. González-Salcedo 3

ABSTRACT
Precipitation estimation at the river basin level is essential for watershed management, the analysis of extreme events and weather 
and climate dynamics, and hydrologic modeling. In recent years, new approaches and tools such as artificial intelligence techniques 
have been used for precipitation estimation, offering advantages over traditional methods. Two major paradigms are artificial neural 
networks and fuzzy logic systems, which can be used in a wide variety of configurations, including hybrid and modular models. 
This work presents a literature review on hybrid metaheuristic and artificial intelligence models based on signal processes, focusing 
on the applications of these techniques in precipitation analysis and estimation. The selection and comparison criteria used were 
the model type, the input and output variables, the performance metrics, and the fields of application. An increase in the number 
of this type of studies was identified, mainly in applications involving neural network models, which tend to get more sophisticated 
according to the availability and quality of training data. On the other hand, fuzzy logic models tend to hybridize with neural models. 
There are still challenges related to prediction performance and spatial and temporal resolution at the basin and micro-basin levels, 
but, overall, these paradigms are very promising for precipitation analysis.
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RESUMEN
La estimación de la precipitación a nivel de cuenca hidrográfica es esencial para la gestión de cuencas, el análisis de eventos 
extremos y dinámicas meteorológicas y climáticas, y el modelado hidrológico. En los últimos años se han empleado nuevos 
enfoques y herramientas como las técnicas de inteligencia artificial para estimar la precipitación, ofreciendo ventajas sobre los 
métodos tradicionales. Dos paradigmas principales son las redes neuronales artificiales y los sistemas de lógica difusa, que pueden 
utilizarse en una amplia variedad de configuraciones, incluyendo modelos híbridos y modulares. Este trabajo presenta una revisión 
de la literatura sobre modelos híbridos metaheurísticos y de inteligencia artificial basados en procesos de señales, centrándose en 
las aplicaciones de estas técnicas en el análisis y la estimación de la precipitación. Los criterios de selección y comparación utilizados 
fueron el tipo de modelo, las variables de entrada y salida, las métricas de desempeño y los campos de aplicación. Se identificó 
un aumento en el número de este tipo de estudios, principalmente en aplicaciones que involucran modelos de redes neuronales, 
los cuales tienden a volverse más sofisticados según la disponibilidad y calidad de los datos de entrenamiento. Por otro lado, los 
modelos de lógica difusa tienden a hibridarse con modelos neuronales. Aún existen desafíos relacionados con el desempeño de 
las predicciones y la resolución espacial y temporal a nivel de cuenca y microcuenca, pero, en general, estos paradigmas son muy 
prometedores para el análisis de la precipitación.
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Introduction

Precipitation is a critical component of the global water 
cycle, significantly influencing both climatic and hydrological 
dynamics [1]. Variations in precipitation intensity have diverse 
impacts on natural and societal systems [2]. For instance, 
light rainfall, which soils readily absorb, aids in drought 
mitigation and boosts agricultural productivity. In contrast, 
intense downpours frequently result in catastrophic floods 
and landslides. Consequently, a thorough understanding of 
the precipitation intensity spectrum is vital for developing 
specific adaptation strategies. Estimating precipitation at the 
watershed level is highly valuable for environmental studies, 
given its role as the primary input in a hydrological system, 

directly contributing to the analysis of the water budget and 
related socio-economic and ecosystem interactions [3]. 
Therefore, accurately estimating precipitation is crucial for 
understanding meteorological and hydroclimatic processes 
and their impact on extreme events such as floods and 
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droughts [4]. Various statistical, analytical, and numerical 
methods are employed for precipitation estimation [5]. 
The main approaches involve developing models with 
explanatory and response variables. Diverse meteorological 
and physiographical parameters have been included as 
explanatory variables, and, in recent years, data from 
remote sensing systems such as satellite images and radars 
have been progressively incorporated. Significant models 
like the Global Circulation Model (GCM) and numerical 
weather prediction (NWP) models are particularly relevant 
and extensively used on the macroscale [6]. However, more 
robust and locally adapted models are required for regional 
and local scales.

Monitoring precipitation enables the acquisition of data 
for historical analysis, facilitating the development of 
estimation and prediction models. Measurements are 
obtained through rain gauges, weather radars, or satellite 
products with varying spatial and temporal resolutions [7]. 
The challenges in accurately estimating precipitation on 
the river basin scale include improving the spatial density 
of gauges and addressing the coarse resolution of remote 
sensing products [8]. Furthermore, the evident impacts 
of climate change in recent years, such as the progressive 
alteration of precipitation regimes and variations in the 
frequency and intensity of extreme events (including heavy 
rain and droughts) underscore the need for more robust 
and precise estimation at the regional level. Another 
limiting factor is coupling precipitation with the chaotic 
behavior of atmospheric dynamics. For example, a known 
issue in numerical systems corresponds to the errors and 
significant deviations in predictions caused by even slight 
changes in initial conditions [9]. Statistically, it has been 
also recognized that precipitation does not necessarily 
follow a normal distribution and can be modeled using 
asymmetrical distributions [10]. Consequently, more 
effective and powerful approaches, such as the use of 
artificial intelligence, are being studied to better approximate 
the correct behavior.

As a result of technological advances in the field of artificial 
intelligence and related areas such as data science, new 
approaches for processing and analyzing data for precipitation 
estimation are being employed. These include machine 
learning techniques like neural networks and the application 
of expert knowledge through fuzzy logic [11]. Such 
techniques provide flexibility and facilitate the development 
of more robust models for estimating precipitation, given 
their inherent ability to model complex nonlinear behaviors 
[12]. Few studies have been found which review artificial 
intelligence techniques for precipitation assessment, 
especially in relation to neural networks and fuzzy logic. [13] 
presented a review on resilient rainfall forecasting models 
using artificial intelligence techniques, with an emphasis 
on artificial neural networks (ANNs) as well as on hybrid 
models including neuro-fuzzy systems.

This document presents a bibliographic review of artificial 
intelligence techniques used for estimating precipitation. 

The main objective is to compare ANNs against fuzzy logic 
models, focusing on the differences between machine 
learning and expert systems approaches. The methodology 
for the literature search and the criteria for selection are 
detailed in the next section. Afterwards, the theorical basis 
for each method is explained, followed by a discussion of 
their main applications, and the article concludes with a 
succinct comparison of the two types of models.

Methodology

We conducted a systematic review to identify relevant 
studies on rainfall forecasting using artificial intelligence 
(AI), specifically fuzzy logic, neural networks, and neuro-
fuzzy models.  A literature search was conducted in the 
Scopus database, utilizing strategically selected keywords 
to capture a comprehensive overview of the most relevant 
studies. With the search criteria presented below, 134 
articles were selected for analysis. Each study was 
systematically reviewed in a specific reading sequence: 
abstract, conclusion, results and discussion, methodology, 
and, finally, the introduction. This method facilitated the 
identification of potential themes and categories in the 
information presented by each paper.

Selection criteria
The main objective of this systematic review was to analyze 
the use of AI for precipitation estimation at the river 
basin level. The main selection criterion was a focus on 
precipitation analysis, with a preference for river basins and 
limited to neural networks and fuzzy logic approaches. A 
secondary objective involved determining and understanding 
the input and output variables, the model architecture, the 
performance metrics, and the scope of each case.

Search equations
The set of keywords encompassed terms like river basin, 
precipitation, and artificial intelligence, with additional 
specific terms for each technique: neural networks and fuzzy 
logic. It should be acknowledged that these terms were 
consulted in several permutations, including synonyms, 
nomenclatures, and broader keywords, in order to enhance 
the search breadth. The following variations were included 
in the search equations:

•	 River basin, catchment, watershed
•	 Precipitation, rainfall, rain estimation, rain rate, 

precipitation estimation
•	 Artificial intelligence, machine learning, soft computing
•	 Artificial neural networks, neural networks, deep 

learning, machine learning, artificial intelligence
•	 Fuzzy logic, fuzzy inference systems, expert systems, 

soft computing, artificial intelligence

Eq. (1) was used for the initial search in Scopus: 
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(precipitation OR rainfall OR rain OR "precipitation 
estimation") AND ("river basin" OR watershed OR 
basin OR catchment) AND ("artificial intelligence" 
OR "machine learning" OR "neural network" OR 
"fuzzy logic" OR "soft computing")

(1)

Subsequently, a more specialized search was conducted, 
using several widespread databases (Elsevier, Springer, IEEE) 
as well as conventional search engines like Google or those 
oriented towards academic results (Google Scholar), in order 
to include non-indexed results (e.g., Arxiv). To correctly filter 
by AI paradigm, Search Eqs. (2) and (3) were employed.

(“fuzzy logic”) AND (watershed OR “river 
basin” OR “catchment”) AND (precipitation OR 
“precipitation estimation” OR “rainfall”)

(2)

(“neural network”) AND (watershed OR “river 
basin” OR “catchment”) AND (precipitation OR 
“precipitation estimation” OR “rainfall”)

(3)

Software tools
VOSViewer [14], [15] was used for the bibliometric analysis, 
enabling the generation of bibliometric network plots and 
clustering algorithms. This software facilitates the visual 
inspection of relevant information from bibliographic 
metadata such as the authors, keywords, and important 
terms. Additionally, a thesaurus file was manually elaborated 
to organize similar concepts within the results of VOSViewer.

Results

The general search using Scopus allowed for the analysis of 
global concepts. A bibliographic network is shown in Fig. 1, 
which includes the occurrence of keywords by total count, 
with the maximum limit of connections set to 200 in order 
to facilitate visualization. The most important concept found 
was ANN. Other AI techniques like genetic algorithms, 
random forests, and support vector machines were also 
visible in the network, highlighting their importance in more 
recent studies. Fuzzy logic did not seem to be included 
at first glance, but, after zooming in on the network, this 
concept indicated a higher similarity to precipitation.

Figure 1. Bibliometric map of the preliminary search
Source: Authors 

In the preliminary search, some concepts like climate 
change, downscaling, forecast, drought and flood forecasting, 
and hydrological modeling were also highlighted. Several 
papers reference rainfall-runoff modeling, but precipitation 
dynamics is the only concept that pertains to this review.

The specific search for each approach returned different 
results, and some representative papers were identified 
for both neural networks and fuzzy logic according to the 
selection criteria. It is noteworthy that several of these papers 
compared their approach against different AI techniques. We 
prioritized papers using rain gauges and weather stations 
as the primary data source, as they favor watershed-level 
analysis. Still, some papers that only used radar or satellite 
images were also included.

Each of these AI paradigms has behaved differently in recent 
years. Although the use of AI has generally increased and 
expanded in the last decades, the number of neural network-
related studies has increased significantly, while research 
involving fuzzy logic seems to be stagnant and has even 
decreased, with most studies appearing between 2013 and 
2016 (Fig. 2). A summary of the main references is presented 
in Table I.

Figure 2. Number of papers by year and subject
Source: Authors

Neural networks for precipitation estimation
Artificial neural networks

ANNs, or simply neural networks (NNs), are connectionist 
models used to approximate a general function through 
a series of non-linear transformations performed by 
interconnected nodes or neurons [16]. ANNs are widely used 
in the field of machine learning, specifically in supervised 
learning with known input and output data (observations). 
During the initial training, iterative optimization algorithms 
are applied to slightly update the network in each iteration. 
This process runs until the known input data generate a very 
similar value to the known output data, which implies an 
optimal network configuration [17]. A well-trained NN can 
internally generalize the relationship between input and 
output, correctly approaching the objective function (e.g., 
modeling the behavior of precipitation from historical data).

The simplest NN model is the multilayer perceptron (MLP), 
which has at least three layers: an input layer, a hidden layer, 
and an output layer (Fig. 3). Each node or perceptron is partially 
modeled as a biological neuron, wherein backpropagation 
is the usual training method. Thus, MLPs are also called 
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backpropagation neural networks (BPNNs). In several studies, 
ANN, NN, and BPNN are used interchangeably, but it must 
be clarified that are differences in the in the configuration 
of the network and in internal parameters like the weights, 
the bias matrix, the transfer function, and the optimization 
algorithm [18]. [19] conducted a study aimed at identifying 
relationships between atmospheric temperature and rainfall 
with ANN models. 

Different types of AI and machine learning models can be 
used for precipitation prediction and forecasting applications, 
such as expert systems, NNs, and deep learning. In the 
realm of deep learning, it is possible to find models 
like convolutional NNs, recurrent NNs, and generative 
adversarial networks. ANNs have been used to complete 
missing data in precipitation time series [20], as well as in 
autoregressive models, where precipitation is modeled from 
historical data, as was done by [21] for 15 min precipitation, 
by [22] for daily precipitation, by [23] for daily precipitation 
with wavelets analysis, and by [24] for monthly precipitation 
from rain gauge data between 1961 and 2018 in the Wujiang 
River Basin while using an artificial bee algorithm. Moreover, 
[25] performed a similar study in Greece. Simpler single-
layer models like the ADALINE network have been used for 
monthly precipitation forecasting [26]. 

Figure 3. Neural network topology 
Source: Adapted from [27]

Different input variables can be used besides precipitation. 
[28] included precipitable water vapor, pressure, 
temperature, relative humidity, cloud top temperature, 
cloud top pressure, and cloud top altitude to predict hourly 
precipitation. Other studies have used climate indices such 
as the southern oscillation index (SOI), the interdecadal 
pacific oscillation index (IPO), La Niña 3.4 [29], [30], and 
the standard precipitation index (SPI) [31] as input variables.

[32] used different types of NNs to estimate monthly 
mean precipitation and temperature based on data from 
90 weather stations, with the purpose of elaborating a 
climatic cartography of Chile. Likewise, [33] delved into 
spatiotemporal predictions in Brazil. [34] used precipitation 
time series derived from stations monitoring data and radar 
and satellite images from different weather products, and 
[35] applied NNs to estimate precipitation using the WSR-
88D radar in Oklahoma.

[36] were the first to describe the application of ANNs to 
satellite images in order to improve spatial precipitation 
estimation. Multiple products were derived from their 
studies, e.g., the PERSIANN system. Furthermore, with the 
advent of new weather products, precipitation databases, 
and new research, new studies have mostly taken interest 
in integrating data from various sources [12]. [37] used data 
from satellite products (ERA-5, CHIRPS, IMD, PERSIANN-
CDR) to create a machine learning algorithm that combined 
different sources to achieve what they called secondary 
precipitation estimate merging using machine learning 
(SPEM2L).

Since the target variable is precipitation, most papers seek to 
implement regressions. However, classification processes 
can also be applied, as was the case with [38], who used 
data from the global navigation satellite system (GNSS) to 
identify heavy precipitation.

Recurrent neural networks

Recurrent NNs are a special type of network whose neurons 
include an additional connection to themselves that works 
as a buffer or memory element (Fig. 4). This configuration 
is particularly useful to approximate relations depending on 
previous data such as time series [39]. There are different 
types: the basic recurrent neural network (RNN), the gated 
recurrent unit (GRU), and long short-term memory (LSTM). 

Figure 4. Recurrent neural network topology 
Source: [40]

Deep and convolutional neural networks

Deep neural networks (DNNs) are a relatively new concept 
that involves ANNs containing many neurons, hidden layers, 
and training data. This kind of architecture has shown very 
good results in practice, especially with large amounts of 
quality data and high computational power available for 
training and validation [41]. The field of deep learning has 
gained ground for its great performance, to the point that 
the term neural networks is now directly associated with 
deep learning. [42] integrated data from different sources 
to predict precipitation using a deep network. Meanwhile, 
[43] implemented a classification model to identify heavy 
rain events, and [44] used bio-spectral images to predict 
precipitation.
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Satellite Server (GOES), together with physical weather 
models commonly used in meteorology. They obtained 
good results for 12 h forecasts. [56] applied a hybrid MLP 
and CNN model to predict extreme regional precipitation 
in central-eastern China. Similarly, [57] conducted a 
quantitative precipitation forecasting study for China with a 
multi-stream CNN. On the other hand, [58] applied CNNs in 
the United Kingdom. They added a generative component, 
wherein two modules (the generator and the discriminator) 
compete to generate an optimal output.

Optical flow can also be used on radar images [59] and in 
direct processing and detection from satellite images [60], 
[61]. Due to the sequential nature of precipitation data, it is 
possible to merge image and temporal analysis [62] using 
models that integrate convolutions and LSTM [63]. [64]
proposed a transformer-enhanced spatiotemporal neural 
network called TransLSTMUNet for the post-processing of 
precipitation forecasts, and, using a DNN, [65] developed a 
forecasting model based on the global normalized difference 
vegetation index (NDVI), air temperature, soil moisture, and 
precipitation.

Thanks to the availability of precipitation data from satellite 
images, videos, and climate reanalysis products, a whole 
new wave of studies using computer vision has emerged. 
For instance, [66] compared several convolutional models 
(LSTM and U-Nets) for precipitation nowcasting within a 15 
min temporal scale. Notably, a large volume of precipitation 
images was required. 

Downscaling methods

The downscaling and regionalization of data allows 
improving the spatial scale of weather data or radar and 
optical images obtained via remote sensing in order to 
produce information that better captures the study area [11]. 
[67] applied downscaling with different machine learning 
models for precipitation estimation, using data from the 
Coupled Model Intercomparison Project Phase 5 (CMIP5). 
[68] and [69] used CNNs for the micro-regional monitoring 
of precipitation, while [70] analyzed the probability of 
extreme events through downscaling. [71] applied radial-
basis NNs based on downscaling, integrating data from 
precipitation time series, global circulation models, and 
different climate change scenarios as inputs. Downscaling 
can be applied by means of different models (e.g., statistical 
methods) or through classical NNs [72], CNNs, and U-nets 
[73]. Depending on the data available, this can be done on 
different temporal scales (annual, monthly, or daily) [74].

Fuzzy logic for precipitation estimation
Fuzzy inference systems

Fuzzy logic is based on the concept of fuzzy sets. A fuzzy 
set is a set with no crisp or clear boundary. Unlike two-
valued Boolean logic, fuzzy logic is multi-valued, and it deals 
with degrees of membership and truth. Fuzzy logic uses 

The progress of DNNs also allowed developing new 
configurations like convolutional neural networks (CNNs). 
These networks use specialized nodes (Fig. 5) that work 
as sliding filters (i.e., they convolute) on the input data to 
identify the particular characteristics that activate them 
[45]. This behavior is suitable for image analysis aimed at 
object detection, instance segmentation, and image and 
pixel classification [46]. In precipitation analysis, this can 
be applied in the detection of clouds, weather fronts, and 
atmospheric dynamics in radar products, etc.

Figure 5. Convolutional neural network topology 
Source: Adapted from [40]

[47] merged data from rain gauges, radar satellite images, and 
digital elevation models for precipitation estimation. They 
used CNNs and an additional post-processing step related 
to precipitation probability and intensity. The integration of 
radar data was improved, and the station bias was reduced 
in subsequent research [48]. Precipitation dynamics were 
analyzed in another study using both DNNs and CNNs 
applied to images obtained from terrestrial radars [49]. A 
CNN-based deep learning method was used to improve 
rainfall-runoff modeling in the Mekon River Basin [50]. One 
study explored the application of a CNN-based architecture 
for detecting and estimating near real-time precipitation in 
the USA [51].

In recent years, methods based on deep CNNs have achieved 
significant success, and their performance continues to 
improve [52]. [53] set about correcting the bias of daily 
satellite precipitation in tropical regions using a DNN. Most 
deep and convolutional models use non structured data 
as input (e.g., images). A specific study on precipitation 
presented a nowcasting method based on sparse 
correspondence and a DNN [49]. The necessary data can be 
obtained directly from remote sensing products, generated 
from curated data provided by multiple sources, or generated 
from statistical or numerical models. For example, [54] used 
data from the ERA5 numerical and reanalysis model and the 
E-OBS database to apply a U-net (deep and convolutional 
network). The input data included weather and physical 
variable maps considering temperature, wind speed, water 
vapor, and geopotential altitude to generate the output, in 
the form of an hourly precipitation map. 

Another project, focused on short-term weather forecasting 
(i.e., nowcasting), mainly used CNNs or variants with 
recurrent components. Here, [55] used precipitation data 
from radar and satellite images provided by the Geostationary 
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any logical value from the set of real numbers between 0 
(completely false) and 1 (completely true). This is known as 
the membership value, and the function that represents such 
value is called a membership function [75]. Fuzzy logic takes 
advantage of expert knowledge and the flexibility of fuzzy 
sets to model complex systems [18]. It allows representing 
numerical variables as identifiable linguistic values through 
membership functions (facilitating the representation of 
uncertainty and vagueness) (Fig. 6). Moreover, interpretable 
logic rules can be applied to these linguistic variables in 
the inference process. The fuzzy inference system (FIS) is 
the common configuration, comprising three main steps: 
fuzzification, inference, and defuzzification (Fig. 7).

Figure 6. Example of a membership function 
Source: Adapted from [76]

Figure 7. Fuzzy inference system
Source: Adapted from [77]

A special instance of this approach is the Mamdani fuzzy 
inference system (MFIS), which is widely accepted among 
the scientific community due to its interpretability. Here, the 
consequent of the implication rules is a single value. On the 
other hand, the Sugeno fuzzy inference system (SFIS) has a 
consequent with an arbitrary fuzzy function that considers 
all the variables in the antecedent [16]. The behavior of a FIS 
can be visualized, for two inputs and a single output, as a 
three-dimensional surface indicating the non-linear relation 
between the variables (Fig. 8) – when more variables are 
added, it generates an n-dimensional hyperplane [78]. 

Figure 8. FIS output surface example for precipitation estimation from 
time series data 
Source: [78]

[79] applied triangular membership functions to a FIS for 
precipitation data imputation. Precipitation prediction from 
other weather variables is also possible: [80] implemented 
a FIS using maximum, minimum, and mean values for wind 
speed, precipitation, and temperature as input in a model 
with 23 inference rules. [76] only used wind speed and air 
temperature. [81] applied fuzzy logic to a set of geographical 
variables including altitude, distance to the coastline, 
and slope – in addition to rain gauge data – to improve 
precipitation maps from meteorological radars.

[82] incorporated atmospheric pressure, humidity, dew 
point, temperature, and wind speed as input variables. The 
membership functions for each variable were triangular, 
with simple linguistic categories ranging from very low to 
very high in a MFIS. Furthermore, [83] added a temporal 
variable to differentiate the current day from the day before 
in their accumulated daily precipitation analysis. It is also 
possible to use preprocessed data such as those from the 
meteorological aerodrome report (METAR), a very common 
source in aerospace applications and weather analysis for 
air bases [84]; or those from the National Oceanic and 
Atmospheric Administration (NOAA) which offers data on 
different weather variables [85]. The main objective of the 
study by [84] was to predict rainfall events using a rule-based 
FIS that incorporated five parameters: relative humidity, 
total cloud cover, wind direction, temperature, and surface 
pressure. Similarly, [86] analyzed the uncertainties associated 
with extreme rainfall in terms of return levels. They also 
quantified the potential risk of these events in the coastal 
wetlands of India using fuzzy logic. [87] worked with fuzzy 
rainfall-runoff models to generate predictions for claypan 
catchments with conservation buffers in northeastern 
Missouri. Finally, [88] studied the climate sensitivity of 
mountainous regions to natural hazards through a fuzzy 
logic approach, identifying alterations in the level, intensity, 
or type of precipitation as the main drivers, together with 
glacier melting and permafrost thawing.

Fuzzy clustering and interpolation

Fuzzy systems can be implemented to improve the spatial 
interpolation of precipitation. [89] applied fuzzy logic to 
inverse distance weighting (IDW) for the spatial interpolation 
of precipitation, aiming to reduce the estimation error at river 
basin level. There are similar methods exclusively based on 
spatial interpolation [90] or classification, as is the case of 
[91], who used fuzzy logic to zone monthly precipitation 
and improve decision-making for cacao cultivation.

On the other hand, fuzzy clustering, or fuzzy C-means 
(FCM), is the use of membership functions to cluster, 
group, or categorize elements according to a similarity 
criterion. For example, [92] implemented this method to 
estimate precipitation and generate flood maps, and [90]
applied it to validate spatial precipitation estimation. Fuzzy 
clustering can also be applied for downscaling precipitation 
data [93].
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Fuzzy time series

Although FIS are mainly used for a system of inputs and 
outputs where the temporal component is not clearly 
incorporated, fuzzy logic can also be used for time series 
analysis. In this case, the time series should be interpreted 
as a fuzzy set. For example, [94] used fuzzy time series and 
NNs to predict rainfall, and, in complementary work, [78] 
focused exclusively on precipitation time series. 

Within a purely autoregressive approach, membership 
functions are created by temporally dividing the precipitation 
time series [96]. In said cases, the membership functions 
split the data according to their temporal scale, i.e., the 
linguistic variable can be the month of the year, and, after 
the fuzzification of the inputs, the inference rules can 
directly reference the known experimental behavior of the 
precipitation in certain months (Fig. 9). 

Figure 9. Membership functions for fuzzy time series
Source: Adapted from [97]

Hybrid models: neuro-fuzzy systems

Hybrid models refers to instances that integrate machine 
learning components to complement FIS, e.g., NNs and 
genetic algorithms. Given the high effectiveness recently 
shown by machine learning applied to big data applications, it 
is increasingly common to include it as an additional step for 
expert systems. For example, NNs can be used to automatically 
generate membership functions for FIS, or even to generate 
inference rules [98]. [99] used NNs to generate inference rules 
within a so-called neuro-fuzzy system (NFS), using coordinates 
and their corresponding precipitation values, in a study similar 
to that by [100]. [101] merged data from stations, radar, and 
satellite images using a neuro-fuzzy network.

Another very common architecture in the literature 
corresponds to the adaptive neuro-fuzzy inference system 
(ANFIS) (Fig. 10). Neuro-fuzzy hybridization results in a 
hybrid intelligent system that synergizes ANNs and fuzzy 
logic by combining the human-inspired reasoning of fuzzy 
systems with the learning and connectionist structure of 
NNs [75]. [102] applied ANFIS to estimate precipitation from 
several rain gauge stations in Serbia, reporting improved 

reliability against uncertainty. Using ANFIS, [103] managed 
to identify the most relevant meteorological variables and 
their influence on precipitation estimation. They included 
data on vapor pressure, air temperature, the monthly 
frequency of wet days and the percent monthly cloud 
cover. Meanwhile, [104] used this approach to improve 
precipitation estimation from radar data. Some comparative 
studies have implemented the ANFIS method [23], as well as 
others focused on predicting precipitation-related climatic 
indices [105] or on using historical precipitation series.

Several models can also be merged into this approach, 
wherein the fuzzy logic component serves as a module 
integrator [106]. [107] presented a self-identification 
neuro-fuzzy inference model (SINFIM) for modeling the 
relationship between rainfall and runoff on a Chilean 
watershed. Another work studied the trends and patterns of 
rainfall to conduct an analysis of the city of Mumbai via the 
rainfall regionalization approach coupled with fuzzy logic 
and clustering [108]. [109] applied an ANFIS to evaluate 
rainfall-runoff modeling in a sub-catchment of the Kranji 
Basin in Singapore, and another study used NNs and fuzzy 
logic in statistical downscaling to support daily precipitation 
forecasting [110]. 

Figure 10. Topology of an ANFIS model
Source: Adapted from [103]

Hybrid metaheuristic algorithms
Hybrid metaheuristic algorithms are advanced tools in 
the field of AI [111]. These techniques can solve problems 
via prediction errors, hyperparameter determination, and 
feature selection using machine learning algorithms [112], 
which is why they are gaining popularity and are being 
used for the development of hybrid models for hydrological 
research [113], including those dealing with the prediction 
of reference evapotranspiration (ETo), a very important 
parameter for determining the availability of water resources 
and in hydrological studies. However, they are mainly used to 
predict ETo, as stated by [114]. To this effect, they studied and 
compared the prediction capabilities of two support vector 
regression (SVR) models along with three metaheuristic 
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algorithms, i.e., particle swarm optimization (PSO), gray wolf 
optimization (GWO), and the gravitational search algorithm 
(GSA), using meteorological variables in monthly ETo 
prediction used meteorological variables as input.

Hybrid metaheuristic algorithms have also been used to 
elaborate flood susceptibility maps, and the optimization 
capabilities offered by different machine learning algorithms 
has been leveraged by means of metaheuristic algorithms 
[111]. In the Haraz Basin, Iran, [115] employed an ANFIS 
coupled with the cropping (CA), bee (BA), and invasive weed 
optimization (IWO) algorithms. [116] used a combination of 
ANFIS, the genetic algorithm (GA), ant colony optimization 
(ACO), and PSO to generate a flood susceptibility map for 
the municipality of Jahrom, Iran. [24] performed ANFIS 
optimization with biogeography-based optimization (BBO) 
and the imperialist competitive algorithm (ICA). [117] used 
differential evolution (DE), the GA, and PSO along with an 
ANFIS to elaborate a flood susceptibility map for the Ganges 
Plain in India. [118] also used a combination of SVR, the 
GWO, and the bat optimizer (Bat) to generate this type of 
map. [119] used GWO and the whale optimization algorithm 
(WOA) to optimize SVR and create a flood susceptibility 
map for the Ardabil province in Iran. [120] combined SVR, 
PSO, and the grasshopper optimization algorithm (GOA) to 
develop a flood susceptibility map. [121] used the group 
method of data management (GMDH), DE, and the GA 
to generate a flood susceptibility map for the Haraz-Neka 
Basin, Iran. Moreover, [122] conducted GMDH optimization 
with the help of GWO in flood modeling.

[123] explored the accurate prediction of daily rainfall via 
AI methods. These methods were grounded in an ANFIS. 
Some metaheuristic optimization algorithms were also 
employed: the artificial bee colony algorithm (ABC), the GA, 
and simulated annealing (SA). [124] presented a method for 
providing explainability in the integration of inductive rules, 
combined with fuzzy logic and data mining techniques, 
when dealing with meteorological predictions.

Machine learning
Machine learning (ML) is a field of AI that deals with the 
development and study of statistical algorithms capable of 
learning from data and generalizing to unseen data, allowing 
them to perform tasks without explicit instructions.

In this vein, there are some studies related to precipitation 
forecasting and ML. [125] developed a conceptual 
metaheuristics-based framework for improving runoff time 
series simulation in glacierized catchments, combining 
hydrological model with a series predictor model and the 
optimization-driven parameter tuning of the firefly algorithm. 
Furthermore, [126] used a MLP network – optimized via the 
GA, PSO, the firefly algorithm, and teleconnection pattern 
indices – for rainfall modeling in the Mediterranean Basin. 
In addition, nested hybrid rainfall-runoff modelling has been 
performed via embedding ML techniques [127]. [128] used a 
combination of approaches, i.e., statistical, ML, deep learning 

(DL), and hybrid algorithms, in order to build a precipitation 
forecasting system. In addition, [129] proposed a new rainfall 
prediction model that employs different techniques as well 
as indicator features like average directional movement 
(ADX), moving average convergence divergence (MACD), 
and Welles Wilder’s smoothing average (WWS). [130]
developed a metaheuristic evolutionary DL model based 
on a temporal convolutional network for rainfall-runoff 
simulation and multi-step runoff prediction. [131] assessed 
some rainfall prediction models to explore the advantages 
of ML and remote sensing approaches. Furthermore, an 
assessment of hybrid ML algorithms using TRMM rainfall 
data for daily inflow forecasting was carried out in eastern 
Brazil [132]. In China, a study on automated ML for rainfall-
induced landslide hazard mapping was conducted [133]. 
[134] performed a comparative assessment of rainfall-based 
water level prediction methods using ML. [135] evaluated 
traditional and ML approaches to rainfall prediction, and 
[136] examined a combination of the ERA5 dataset and 
ML. Long-term rainfall prediction was performed by [137], 
using atmospheric synoptic patterns in semiarid climates 
with statistical and ML methods. [138] studied ML-based 
rainfall models for accurate flood mapping in Pakistan. [139] 
conducted specific studies on short-term rainfall forecasting 
using cumulative precipitation fields from station data with 
a probabilistic ML approach. 

Comparative analysis
Input variables

Both NNs and fuzzy logic models depend on the available 
input variables. An initial knowledge of the objective function 
and the possible relationships between the explanatory and 
response variables is assumed in order to build the model. Fig. 
11 shows the common input variables for the studied field. In 
general, these parameters can be classified as meteorological, 
physiographic, or hydrological variables; climatic indices; 
data derived from physical or numerical models; satellite or 
radar products; or other derived databases.

Figure 11. Input variables used in the references
Source: Authors
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Output variables

As the purpose of these models is estimating it, precipitation 
should be the output or target variable in most cases. 
However, this variable can be expressed in diverse temporal 
scales, units, or configurations, as shown in Fig. 12. In some 
studies, both precipitation and temperature are included 
as output variables [32]. The most widely used output 
is monthly precipitation, mainly in the fields of weather 
forecasting and climate analysis. These variables also allow 
evaluating extreme events and return periods.

Figure 12. Output variables used in the references
Source: Authors

Model architectures

Fig. 13 shows the common NN architectures for 
precipitation estimation. ANNs and BPNN are differentiated 
as in the referenced literature. Although DNNs, CNNs, 
and convolutional-recurrent networks (CRNs) are shown 
separately, they could be grouped into a single category 
(i.e., deep networks) that is representative of the selected 
references.

Figure 13. Neural network models found in the references
Source: Authors

Fig. 14 shows fuzzy logic models for precipitation estimation. 
ANFIS, FIS, and MFIS are the most commonly used. It could 
be said that MFIS are just a special case of FIS. On the other 
hand, both ANFIS and NFS integrate neural elements, so 
they represent the hybrid models in the references.

Figure 14. Fuzzy logic models found in the references
Source: Authors

Performance metrics

To validate the techniques discussed herein, it is necessary 
to use certain performance metrics or criteria in order to 
compare actual values to those generated by the models. 
Some of the most common metrics include the root mean 
square error (RMSE), the correlation coefficient (R), the 
determination coefficient (R2), and the mean absolute error 
(MAE), which are mainly applied to regression models. In 
the case of classification models, performance evaluation 
should be mixed; for example, a confusion matrix can be 
used, as well as the F1 score or accuracy values. Among 
the performance metrics used in the referenced literature 
(Fig. 15), there are specific indicators for the field of 
hydrology, such as the average flood exposure risk (AFER), 
a specialized metric for flood analysis; Nash-Sutcliffe 
efficiency (NSE), widely employed in model assessment; the 
fractions skill score (FSS) for forecasting; and the skill score 
(SS) denominations, which are employed in quantitative 
precipitation forecasting (QPF). Apart from these, the RMSE, 
MAE, and R stand out as the most common parameters in 
fuzzy logic models implementing regression approaches.

Figure 15. Neural network performance metrics
Source: Authors

Software tools and implementation

AI models can be implemented using different software 
tools and programming languages. A few references clearly 
describe the software used for implementation, but most of 
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them do not provide clear information in this regard. The 
MATLAB software is notably used to implement of both NNs 
and fuzzy logic models [80]. In addition, the R language is 
applied for statistical analysis and downscaling [71], and 
some Python libraries are used for DL models [62]. It is 
important to highlight that the use of statistical software and 
geographical information systems is essential in this field.

Applications

For the general applications mentioned in the literature on 
precipitation estimation, some categories are identified. 
Firstly, as expected, precipitation forecasting on different 
temporal scales tends to be the main objective of several 
papers. For long-term temporal scales (30 years or more), 
the objective is climate analysis. Some papers emphasize the 
usefulness of AI techniques for issuing extreme event early 
warnings and in watershed management [21], [24], [78], [92].

Advantages and challenges of AI methodologies

AI methods exhibit both limitations and advantages. The 
fundamental aspects of the main methods are outlined 
below.

ML offers significant advantages regarding automation, 
accuracy, and scalability, but it poses challenges related 
to data dependence, model complexity, resource 
requirements, and ethical considerations. Fuzzy logic is 
quite advantageous in handling uncertainty, providing 
intuitive solutions and adaptability across various domains. 
However, its limitations are related to precision, rule 
design complexity, computational effort, and the lack of 
self-learning capabilities. Moreover, NNs are powerful and 
versatile tools capable of learning complex patterns from 
large datasets with good learning performance, adaptability, 
versatility, and the possibility of continuous improvement. 
However, they come with significant challenges related to 
data dependence, computational load, interpretability, and 
overfitting, all of which need to be carefully managed to 
ensure an effective and ethical use. NFS offer a powerful 
combination of the learning capabilities of NNs and the 
interpretability and uncertainty management of fuzzy 
logic. These hybrid models are particularly valuable in 
applications that require both adaptive learning and human-
like reasoning. However, they pose challenges pertaining 
to complexity, computational effort, overfitting, and data 
quality dependence. Careful design and implementation are 
required to fully realize these techniques’ potential while 
managing their limitations.

Conclusions

This work presents the results of a thorough review of the 
literature on prediction precipitation using AI techniques. 
Our findings provide academia and society in general with 
perspectives for future research in the field. There are various 

approaches for precipitation estimation using AI, even when 
limiting the search to two specific paradigms such as NNs 
and fuzzy logic. Model selection widely depends on the 
type, quantity, and quality of the available data, and there is 
no single configuration that guarantees the best results. The 
integration of multiple data sources holds great potential for 
performing regression in future studies.

Although the number of studies involving fuzzy logic has 
decreased, these models remain a relevant option due to 
their interpretability. Access to large amounts of data could 
benefit fuzzy logic, as achieved through the inclusion of ML 
components to create hybrid models, allowing for scaling 
while maintaining interpretability.

NN research applied to precipitation estimation has grown 
in recent years, with more sophisticated models like deep, 
recurrent, and convolutional networks being incorporated 
and showing significantly better results. However, among 
their limitations is the availability of and access to large 
amounts of data or high computational power, as well as the 
lack of interpretability and implementation issues.

There are still many challenges for precipitation estimation 
at the river basin level. Advances in the field of AI and access 
to new data sources, models, and software tools have 
yielded very promising results for the study of precipitation 
at different levels, from mere forecasting to extreme events 
forecasting and hydrological and environmental modeling.
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Table I. Main references by year and category regarding artificial neural networks and fuzzy logic-based approaches
Source: Authors

Title Authors Year Country Category AI Model

Precipitation estimation from remotely sensed information 
using artificial neural networks Hsu et al. 1997 USA

Artificial 
Neural 

Networks
ANN

An application of artificial neural networks for rainfall 
forecasting Luk et al. 2001 Australia

Artificial 
Neural 

Networks
BPNN, RNN, TDNN

Data mining techniques for improved WSR-88D rainfall 
estimation Trafalis et al. 2002 USA

Artificial 
Neural 

Networks
ANN

Precipitation estimation from remotely sensed imagery 
using an Artificial Neural Network Cloud Classification 

System
Hong et al. 2004 USA

Artificial 
Neural 

Networks
ANN

Spatiotemporal monthly rainfall reconstruction via artificial 
neural network -case study: south of Brazil Lucio et al. 2007 Brazil

Artificial 
Neural 

Networks
ANN

Rainfall forecasting by technological machine learning 
models W. Hong 2008 Taiwan

Artificial 
Neural 

Networks
RNN

Elaboración de la cartografía climática de temperaturas y 
precipitación mediante redes neuronales artificiales: caso 
de estudio en la Región del Libertador Bernardo O"Higgins

Román & 
Andrés 2010 Chile

Artificial 
Neural 

Networks
BPNN

Precipitation forecast using artificial neural networks in 
specific regions of Greece Moustris et al. 2011 Greece

Artificial 
Neural 

Networks
ANN

Estimation of missing precipitation records using modular 
artificial neural networks Kajornrit et al. 2012 Thailand

Artificial 
Neural 

Networks
BPNN, MNN

The application of artificial intelligence for monthly rainfall 
forecasting in the Brisbane Catchment, Queensland, 

Australia

Abbot and 
Marohasy 2013 Australia

Artificial 
Neural 

Networks
ANN

Artificial neural networks modeling for forecasting the 
maximum daily total precipitation at Athens, Greece Nastos et al. 2014 Greece

Artificial 
Neural 

Networks
TDNN

Forecasting daily precipitation using hybrid model of 
wavelet-artificial neural network and comparison with 

adaptive neurofuzzy inference system (case study: Verayneh 
Station, Nahavand)

Solgi 2014 Iran
Artificial 
Neural 

Networks
ANN-wavelets

Input selection and optimisation for monthly rainfall 
forecasting in Queensland, Australia, using artificial neural 

networks

Abbot and 
Marohasy 2014 Australia

Artificial 
Neural 

Networks
ANN

Estimating spatial precipitation using regression kriging and 
artificial neural network residual kriging (RKNNRK) hybrid 

approach
Seo et al. 2015 South Korea

Artificial 
Neural 

Networks
ANN

Artificial neural networks in precipitation nowcasting: An 
Australian case study Schroeter 2016 Australia

Artificial 
Neural 

Networks
Shallow NN

Precipitation identification with bispectral satellite 
information using deep learning approaches Tao et al. 2017 USA

Artificial 
Neural 

Networks
DNN

Comparison of adaline and multiple linear regression 
methods for rainfall forecasting

Sutawinaya 
et al. 2018 Indonesia

Artificial 
Neural 

Networks
ADELINE

A learning framework for an accurate prediction of rainfall 
rates

Damavandi and 
Shah 2019 China, India, 

Pakistan

Artificial 
Neural 

Networks
BPNN
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Deep learning for precipitation estimation from satellite 
and rain gauges measurements Moraux et al. 2019

Germany, 
Belgium, 

Netherlands

Artificial 
Neural 

Networks
DNN, CNN

Neural network approach to forecast hourly intense rainfall 
using GNSS precipitable water vapor and meteorological 

sensors
Benevides et al. 2019 Portugal

Artificial 
Neural 

Networks
NARX

Predicción de precipitación mensual mediante redes 
neuronales artificiales para la cuenca del río Cali, Colombia

Montenegro 
Murillo et al. 2019 Colombia

Artificial 
Neural 

Networks
ANN

Improving precipitation estimation using convolutional 
neural network Pan et al. 2019 USA

Artificial 
Neural 

Networks
CNN

Rainfall and atmospheric temperature against the other 
climatic factors: A case study from Colombo, Sri Lanka Anushka-Perera 2019 Sri Lanka

Artificial 
Neural 

Networks
ANN

Modeling short term rainfall forecast using neural networks, 
and Gaussian process classification based on the SPI 

drought index

Azimi and 
Azhdary-

Moghaddam
2020 Iran

Artificial 
Neural 

Networks
BPNN

Precipitation forecast of the Wujiang River Basin based on 
artificial bee colony algorithm and backpropagation neural 

network
Wang et al. 2020 China

Artificial 
Neural 

Networks
ABC-BPNN

Secondary precipitation estimate merging using machine 
learning: Development and evaluation over Krishna River 

Basin, India
Kolluru et al. 2020 India

Artificial 
Neural 

Networks
ANN

A comparative study on machine learning techniques for 
intense convective rainfall events forecasting

Sangiorgio 
et al. 2020 Italy

Artificial 
Neural 

Networks
DNN

Deep multilayer perceptron for knowledge extraction: 
Understanding the Gardon de Mialet flash floods modeling

Saint Fleur 
et al. 2020 France

Artificial 
Neural 

Networks
ANN

Downscaling satellite and reanalysis precipitation products 
using attention-based deep convolutional neural nets Sun and Tang 2020 USA

Artificial 
Neural 

Networks
CNN

MetNet: A neural weather model for precipitation 
forecasting Sønderby et al. 2020 USA

Artificial 
Neural 

Networks
ConvLSTM

Improving near real-time precipitation estimation using 
a U-Net convolutional neural network and geographical 

information
Sadegui et al. 2020 USA

Artificial 
Neural 

Networks
CNN

Artificial intelligence-based techniques for rainfall 
estimation integrating multisource precipitation datasets

Khan and 
Bhuiyan 2021 Ethiopia

Artificial 
Neural 

Networks
ANN

Long short-term memory algorithm for rainfall prediction 
based on El-Niño and IOD data Haq et al. 2021 Indonesia

Artificial 
Neural 

Networks
LSTM

SCENT: A new precipitation nowcasting method based on 
sparse correspondence and deep neural network Fang et al. 2021 China

Artificial 
Neural 

Networks
DNN,CNN

Skilful precipitation nowcasting using deep generative 
models of radar Ravuri et al. 2021 United Kingdom

Artificial 
Neural 

Networks
Generativo

Skillful twelve hour precipitation forecasts using large 
context neural networks Espeholt et al. 2021 USA

Artificial 
Neural 

Networks
CRN

TRU-NET: A deep learning approach to high resolution 
prediction of rainfall Adewoyin et al. 2021 United Kingdom

Artificial 
Neural 

Networks
CRN

Modeling high-resolution precipitation by coupling a 
regional climate model with a machine learning model: an 
application to Sai Gon-Dong Nai Rivers Basin in Vietnam

Trinh et al. 2021 Vietnam
Artificial 
Neural 

Networks
ANN

A deep learning multimodal method for precipitation 
estimation Moraux et al. 2021

Germany, 
Belgium, 

Netherlands

Artificial 
Neural 

Networks
DNN, CNN
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A neural network-based approach for the detection of 
heavy precipitation using GNSS observations and surface 

meteorological data
Li et al. 2021 China

Artificial 
Neural 

Networks
BPNN

SCENT: A new precipitation nowcasting method based on 
sparse correspondence and deep neural network Fang et al. 2021 China

Artificial 
Neural 

Networks
SCENT

Precipitaion nowcasting using deep neural network Bakkay et al. 2022 France
Artificial 
Neural 

Networks
CNN, LSTM

Extreme precipitation prediction based on neural network 
model – A case study for southeastern Brazil

de Sousa 
Araújo et al. 2022 Brazil

Artificial 
Neural 

Networks
LSTM

Convolutional neural network-based statistical post-
processing of ensemble precipitation forecasts Li et al. 2022 China

Artificial 
Neural 

Networks
CNN

Deep neural network high spatiotemporal resolution 
precipitation estimation (Deep-STEP) using passive 

microwave and infrared data
Gorooh et al. 2022 USA

Artificial 
Neural 

Networks
CNN

Correcting the bias of daily satellite precipitation estimates 
in tropical regions using deep neural network Yang et al. 2022 China

Artificial 
Neural 

Networks
Bi-LSTM-T

Hybrid multilayer perceptron and convolutional neural 
network model to predict extreme regional precipitation 

dominated by the large-scale atmospheric circulation
Jiang et al. 2024 China

Artificial 
Neural 

Networks

MLP, CNN, MLP-
CNN

Post-processing of short-term quantitative precipitation 
forecast with the multi-stream convolutional neural 

network
Tian et al. 2024 China

Artificial 
Neural 

Networks
CNN, MSCNN

Transformer-enhanced spatiotemporal neural network for 
post-processing of precipitation forecasts Jiang et al. 2024 China

Artificial 
Neural 

Networks

Transformer, 
TransLSTMUNet, 

ConvLSTM

Improving rainfall-runoff modeling in the Mekon river 
basin using bias-correct satellite precipitation products by 

convolutional neural networks
Le et al. 2024

China, Burma, 
Laos, Thailand, 

Cambodia, 
Vietnam

Artificial 
Neural 

Networks
CNN

Deep neural network based on dynamic attention and layer 
attention for meteorological data downscaling Wang et al. 2024 China

Artificial 
Neural 

Networks
DNN

Rainfall prediction model using soft computing technique Wong et al. 2003 Italy Fuzzy Logic NFS

An adaptive neuro-fuzzy inference system for the post-
calibration of weather radar rainfall estimation Hessami et al. 2003 Canada Fuzzy Logic ANFIS

Applying fuzzy theory and genetic algorithm to interpolate 
precipitation Chang et al 2005 Taiwan Fuzzy Logic FI

Fuzzy model comparison to extrapolate rainfall data Tzimopoulo 
et al. 2008 Greece Fuzzy Logic ANFIS

Model for predicting rainfall by fuzzy set theory using USDA 
scan data Hasan et al. 2008 USA Fuzzy Logic FIS

Annual rainfall forecasting by using mamdani fuzzy 
inference system Abbas et al. 2009 Iran Fuzzy Logic MFIS

Evaluation of rainfall and discharge inputs used by adaptive 
network-based fuzzy inference systems (ANFIS) in rainfall-

runoff modeling
Talei et al. 2010 Singapore Fuzzy Logic ANFIS

Rainfall events prediction using rule-based fuzzy inference 
system Asklany et al. 2011 Egypt Fuzzy Logic FIS

Rainfall prediction in the northeast region of Thailand using 
modular fuzzy inference system Kajornrit et al. 2012 Thailand Fuzzy Logic FIS

A modular technique for monthly rainfall time series 
prediction Kaiornrit et al. 2013 Thailand Fuzzy Logic MFIS

Cluster validation methods for localization of spatial rainfall 
data in the northeast region of Thailand

Kajornrit and 
Wong 2013 Thailand Fuzzy Logic FCM

Development of a fuzzy logic based rainfall prediction 
model Helen et al. 2013 Nigeria Fuzzy Logic MFIS
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Forecasting rainfall of a region by using fuzzy time series (Dani & 
Sharma 2013 Fuzzy Logic FIS

An integrated intelligent technique for monthly rainfall time 
series prediction Kajornrit et al. 2014 Thailand Fuzzy Logic ANFIS

Interpretable fuzzy systems for monthly rainfall spatial 
interpolation and time series prediction Kajornrit 2014 Thailand Fuzzy Logic FIS, ANFIS, Modular 

FIS

Watershed rainfall forecasting using neuro-fuzzy networks 
with the assimilation of multi-sensor information F. Chang et al. 2014 Taiwan Fuzzy Logic ANFIS

Neural network and fuzzy logic statistical downscaling of 
atmospheric circulation-type specific weather pattern for 

rainfall forecasting
Valverde et al. 2014 Brazil Fuzzy Logic FSD

Adaptive neuro-fuzzy computing technique for 
precipitation estimation Petković et al. 2016 Serbia Fuzzy Logic ANFIS

Hydrologic simulation approach for El Niño Southern 
Oscillation (ENSO)-affected watershed with limited 

raingauge stations
Sharma et al. 2016 USA Fuzzy Logic ANFIS

Selection of meteorological parameters affecting rainfall 
estimation using neuro-fuzzy computing methodology Hashim et al. 2016 India Fuzzy Logic ANFIS

Rainfall and financial forecasting using fuzzy time series and 
neural networks based model Singh 2018 India Fuzzy Logic FTS

Downscaled rainfall projections in south Florida using self-
organizing maps Sinha et al. 2018 USA Fuzzy Logic FCM

Fuzzy rules to help predict rains and temperatures in a 
brazilian capital state based on data collected from satellites

de Campos 
Souza et al. 2019 Brazil Fuzzy Logic ANFIS

Improving weather radar precipitation maps: A fuzzy logic 
approach Silver et al. 2019 Israel Fuzzy Logic FIS

Rainfall zoning for cocoa growing in Bahia state (Brazil) 
using fuzzy logic Franco et al. 2019 Brazil Fuzzy Logic FIS

Improvement of rainfall prediction model by using fuzzy 
logic Rahman 2020 Bangladesh Fuzzy Logic FIS

Generating flood hazard maps based on an innovative 
spatial interpolation methodology for precipitation Zare et al. 2021  Luxembourg, 

Germany, France Fuzzy Logic FCM

Prediction of rainfall using fuzzy logic Janarthanan 
et al. 2021 India Fuzzy Logic FIS

Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-
based machine learning models for flood susceptibility 
prediction mapping in the middle Ganga Plain, India

Arora et al. 2021 India Fuzzy Logic Metaheuristic ANFIS

Rainfall prediction system using machine learning fusion for 
smart cities Rahman et al. 2022 Pakistan Fuzzy Logic FIS

Identification of homogenous rainfall regions with trend 
analysis using fuzzy logic and clustering approach coupled 
with advanced trend analysis techniques in Mumbai city

Shahfahad et al. 2022 India Fuzzy Logic FCM

A general explicable forecasting framework for weather 
events based on ordinal classification and inductive rules 

combined with fuzzy logic

Peláez-
Rodríguez et al. 2024 Spain Fuzzy Logic FIS

Hybrid artificial intelligence models based on adaptive 
neuro fuzzy inference system and metaheuristic 

optimization algorithms for prediction of daily rainfall
Pham et al. 2024 Vietnam Fuzzy Logic Metaheuristic ANFIS

Evaluating the future risk of coastal Ramsar wetlands in 
India to extreme rainfalls using fuzzy logic Rakkasagi et al. 2024 India Fuzzy Logic FIS


