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ABSTRACT
Within the framework of the energy transition, electrical distribution grid operators require effective tools to predict the demand of
individual users. These tools are necessary for an adequate planning of future generation resources and infrastructure modernization.
However, understanding future electricity needs poses a significant challenge, especially in emerging economies, where historical
data are manually collected on a monthly or bi-monthly basis and exhibit a significant amount of missing information. In response
to the above, this work proposes a novel heuristics-based method for medium-term energy demand forecasting with scarce data.
Qualitative and quantitative information was abstracted into a mathematical model representing the trend and noise components of
historical energy consumption observations. In addition, external factors were considered as an additional layer for the mathematical
model, in order to account for events that could not be foreseen by merely using the dataset. A train-test data split was proposed to
iteratively search for the best parameters to predict electricity demand with respect to different categorical divisions of users (social
stratum, rural or urban location, and municipality). For testing and validation, real historical data were used, as provided by the
regional distribution system operator (DSO) of the department of Huila, Colomba. The results suggest a trade-off between accuracy
and computational intensity, as well as the fact that a non-categorical approach leads to the algorithm with the best performance
(average absolute error of 1.61%) at a low computational cost.
Keywords: demand forecasting, energy, heuristics, scarce data

RESUMEN
En el marco de la transición energética, los operadores de redes de distribución eléctrica requieren herramientas efectivas
para predecir la demanda de usuarios individuales. Estas herramientas son necesarias para un planeamiento adecuado de los
recursos futuros de generación y la modernización de la infraestructura. Sin embargo, entender las necesidades futuras de
electricidad constituye un desafı́o significativo, especialmente en economı́as emergentes donde los datos históricos son recolectados
manualmente en perı́odos mensuales o bimensuales y presentan una cantidad significativa de información faltante. En respuesta
a esto, se propone un novedoso método basado en heurı́stica para el pronóstico de la demanda de energı́a en el mediano plazo
con datos escasos. Se abstrajo información cualitativa y cuantitativa en un modelo matemático que representa las componentes de
tendencia y ruido en observaciones históricas de consumo de energı́a. Adicionalmente, se consideraron factores externos como
capa adicional para el modelo matemático, en aras de dar cuenta de eventos que no podrı́an ser previstos solamente con el conjunto
de datos. Se propuso una división de datos de entrenamiento y prueba con el fin de buscar iterativamente los mejores parámetros
para predecir la demanda de electricidad respecto a diferentes divisiones categóricas de usuarios (estrato social, ubicación rural o
urbana y municipio). Para realizar pruebas y validaciones, se utilizaron datos históricos reales proporcionados por el operador del
sistema de distribución (OSD) regional del departamento del Huila, Colombia. Los resultados sugieren que hay una compensación
entre precisión e intensidad computacional, y que un enfoque no categórico resulta en el algoritmo con un mejor desempeño (error
absoluto promedio de 1.61 %) y un bajo costo computacional.
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Introduction
The electricity sector is undergoing significant changes due
to the energy transition. The inclusion of distributed energy
resources with uncertain behavior, e.g., solar photovoltaic
(PV), wind turbines, etc. (Cuenca and Hayes, 2022), the
electrification of heat and transport (Mehigan et al., 2022),
and the development of new local energy markets and price
schemes (Cuenca, Jamil, and Hayes, 2023) are changing the
way we produce, transport, use, and trade electrical energy.

Within this changing paradigm, there are numerous new
challenges for the operation and planning of electrical
distribution networks. One of these challenges is the

forecasting of energy demand. Forecasting requires the
use of historical data to determine a hypothetical future
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state. This is useful for researchers, regulators, system
operators, and utilities to understand how to schedule future
generation resources and infrastructure upgrades (Hemmati,
Hooshmand, and Taheri, 2015). In the energy sector,
numerous algorithms have been developed to this effect
(Klyuev et al., 2022). Previous research argues that, with
sufficient historical data, it is possible to approximately
predict energy customer behavior.

Traditionally, historical data on energy consumption have
been collected on a monthly or multi-monthly basis. The
utility dispatches personnel to physically visit the customers’
energy meters and record their consumption for the last
billing cycle (Bimenyimana and Asemota, 2018). This is
changing as we are moving towards the digital era: modern
smart energy meters include measuring capabilities on
smaller time steps (in the order of seconds or minutes) and
utilize wired or wireless communication. This information
on consumption is transmitted to the utility in close-to-real
time (Bimenyimana and Asemota, 2018). Numerous nations
are pioneering the rollout of smart metering, providing
the necessary inputs for the functioning of forecasting
algorithms in the literature.

Nonetheless, in emerging economies like Colombia, smart
meter rollout is still at an early stage, and historical data
on energy consumption are still collected according to
tradition (i.e., monthly or multi-monthly). This is especially
the case with rural areas, where access difficulties may
further delay the installation of smart meters. Within this
frame of data scarcity, it is important to develop alternative
methods for forecasting energy customer demand. In late
2021, the regional distribution system operator (DSO) of
the department of Huila (Colombia), i.e., Electrohuila SA
ESP, opened a call for data scientists, researchers, and
data enthusiasts to provide solutions to the issue of energy
forecasting with scarce data. A total of 25 proposals
were submitted to the Hackathon Opita Challenge call
(ElectroHuila S.A. E.S.P., 2021). This manuscript reports
on the most effective one of these methods.

The purpose of this study is threefold: (i) to provide
a framework for data processing to abstract qualitative
consumption patterns into numerical inputs; (ii) to describe
the algorithm search methodology and the train-test data
split in order to develop an effective heuristics-based method
for forecasting electricity demand that leverages scarce real
data provided by the DSO; and (iii) to report on the results
of the implementation and describe potential use cases in
Colombia and abroad.

Literature review
Electricity consumption forecasting has been a relevant
research topic for many years. As early as 1910,
experimental studies on electrical installations and the
application of mathematical methods related to probability
theory to calculate the future energy requirements of
customers were carried out (Bunn and Farmer, 1985). Since
then, and with the development of computer technology,
there have been studies on the application of technocenosis,
fuzzy set, game, pattern recognition, cluster analysis, and
decision theories. There are numerous reviews describing
the history of electricity consumption forecasting methods,
which the reader is encouraged to consult (vom Scheidt et
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Figure 1. Classification of forecasts by lead time
Source: Authors, based on Klyuev et al. (2022)

al., 2020; Wei, Li, Peng, Zeng, and Lu, 2019; Ghoddusi,
Creamer, and Rafizadeh, 2019; Biel and Glock, 2016).

Resulting from their review of the literature, (Klyuev et
al., 2022) recommended that, when designing forecasting
methods, it is important to report not only quantitative
estimates, but also qualitative features, as well as the specific
conditions that make methods applicable.

Out of the numerous ways to categorize forecasting models,
the most useful for the purpose of this work is by lead time
(i.e., the period of anticipation) (Klyuev et al., 2022). As
shown in Figure 1, depending on the prediction horizon,
forecasts can be classified as operational, short-, medium-
, and long-term (Hong and Fan, 2016). As will be
discussed ahead, due to data availability, the remainder of
this literature review will focus on medium-term forecasting
methodologies.

Medium-term energy consumption forecasting is useful for
the utility and system operators to schedule infrastructure
upgrades and maintenance, plan electricity pricing, and
measure the technical and economic performance of their
grids (Klyuev et al., 2022). Furthermore, a good knowledge
of future demand is useful when defining flexibility strategies
like price signaling for demand response (Honarmand,
Hosseinnezhad, Hayes, Shafie-Khah, and Siano, 2021).
Different approaches to the issue of energy demand
forecasting are available in the literature, a selection of which
is presented below.

Using deep machine learning algorithms, social and climatic
factors were considered to predict the energy demand
of six buildings in a city district (Yuce, Mourshed, and
Rezgui, 2017). The factors were weighed to account
for differential influences, and multiple regression analyses
were performed. The results of this study suggest that it is
possible to achieve increased forecasting accuracy in some
seasons given the selected climatic factors.

The G-, Z-, and GZ-methods from statistics and time
series theory were used to predict consumption by
technocenosis objects while considering their individual
and/or system properties (Gnatyuk, Polevoy, Kivchun, and
Lutsenko, 2020). In their work, the authors introduce
the autoregressive moving average (ARMA) model, the
time series decomposition (TVRD) model, and the singular
spectrum analysis (SSA) model.

A feature extraction algorithm was used in Meng, Niu, and
Sun (2011), in which forecasting was carried out by applying
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Figure 2. Structure of the proposed algorithm to select the forecasting model with scarce demand data
Source: Authors

a discrete waveform and decomposing power consumption
data into a trend, a periodic component, and noise.

In Amber et al. (2017), a simple mathematical equation was
conceived to determine future electricity usage via a multiple
regression technique, considering variables such as building
time, the temporal index, and surrounding temperature.
These variables were were found to have an important
influence on energy consumption.

Shallow neural networks were used in Shumilova, Gottman,
and Starceva (2008) to address the studied problem. A
three-layered perceptron with a sigmoid activation function
was proposed. The input layer had 24 inputs (i.e., neurons)
including the power consumption of the previous month,
the maximum and minimum monthly demand, the average
number of hours of daylight, the monthly temperature, the
number of holidays in the previous and target months, and
the geographical location. The hidden layer included five
neurons, and the third layer contained one neuron that gave
one predicted value of consumption as the output. The
authors also integrated adaptive feedback into their model
to improve performance and ultimately concluded that the
most accurate result is provided by a fuzzy neural network.

Classical probabilistic approaches, intelligent algorithms,
and hybrid methods are used in the literature to understand
trends and noise components of present demand and to
ultimately forecast energy needs. As suggested in Klyuev
et al. (2022), it is important to consider the frequency
and extent of the original demand dataset to decide on
the forecasting tool to be used. Monthly or multi-monthly
consumption data spanning numerous years are enough to
apply classical approaches, but the accuracy of intelligent
algorithms depends largely on the availability of large and
detailed data sources.

Considering social development, exogenous factors, the
stochastic nature of human behavior, and complex
macroeconomic conditions, the medium-term forecasting
of energy consumption is a difficult task. The literature
recommends identifying monthly electricity consumption
trends using data from numerous consecutive years
while considering periodic components (e.g., seasonal
temperature variations) and quantifying sources of noise.

The above highlights the gaps in the literature on medium-
term forecasting that this manuscript addresses: data
scarcity, the inclusion of complex periodic components, and
noise identification.

Methodology
The forecasting tool resulting from this work was obtained
using a modular algorithm to select a performing model,
including its structure, parameters, and rules. As seen
in Figure 2, an initial data assessment is followed by
the mathematical definition of the model and its variables
and additional rules. Two different approaches can be
applied to the mathematical model, i.e., categorical or
non-categorical, where the model finds or does not find
different parameters for different groups of data. A train-test
data split is used to analyze the performance of different
parameters and structures, ultimately aiming to contrast
models in terms of accuracy and computational intensity
for a final decision. This section presents the details of the
methodology employed in our work.

Exploratory data analysis
The first module considers a statistical analysis of the
historical data available. The purpose of this initial
assessment is to determine which parameters, data curation
approaches, exogenous factors, and general characteristics
of the dataset should be included in the mathematical
model. First, it is important to evaluate whether the available
historical data have significant missing portions that must be
filled. Depending on the quantity or quality of the dataset,
data curation approaches might be relevant, as discussed in
Dong and Peng (2013).

Second, it is important to consider whether there
are correlations between the available data and certain
parameters. The following questions should be asked:

• Are there significant variations in consumption
depending on the time of the year (e.g., the residential
electricity consumption is lower in June because it
coincides with the holiday season)?
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• Is temperature variation relevant (e.g., the warmest
month may be associated with extra electricity
consumption for air conditioning)?

• Is population density relevant (e.g., densely populated
areas have different consumption patterns compared
to rural settings)?

These questions must be framed within the socio-geo-
demographic context of the case study: for different
locations, social or economic contexts, different questions
can be asked.

Third, we propose considering exogenous factors as part of
the initial data analysis through the following questions:

• Are there any macroeconomic correlations (e.g.,
energy consumption may be correlated to changes
in energy prices)?

• Is it possible for consumption patterns to drastically
change due to an exogenous event (e.g., when
a household is vacated, the energy consumption
suddenly drops until there is a new resident)?

Lastly, provided that the dataset includes additional
information (i.e., not only on historical consumption),
performing a comparative analysis of different categorical
or grouping characteristics is very useful. If the dataset is
grouped by the type of user (e.g., residential, industrial, or
commercial), it is possible to assess the differences in the
consumption of each category. Ultimately, this illustrates
the need for a differential approach that addresses the
categorical nature of the dataset.

Mathematical modeling
The above-presented exploratory data analysis above sheds
light on the statistical variables that may be subjected to
study and are useful to build the mathematical model.
Among others, values like the mean, median, variance, and
standard deviation of the population or a sample can be
useful to define a mathematical model.

Once identified, different mathematical relations can be
drawn between variables (linear, polynomial, exponential,
logarithmic, etc.). The selection of these relations is reserved
to the model designer and involves subjective criteria, given
the stochastic nature of the problem. As suggested in
Lindsey (2004), mathematical model selection for stochastic
problems like demand forecast is important, but secondary
to the correct selection of parameters. In this vein, and
for the purpose of this heuristics-based study, a linear
combination of variables was selected as the mathematical
model, which is shown in Equation (1). Here, a, b,
and x were the selected variables, and α, β, and χ the
corresponding parameters.

f (a, b, ..., x) = (α × a) + (β × b) + ... + (χ × x) (1)

An intermediary block to test different mathematical
relations can be added to the proposed algorithm (Figure
2). Instead of arriving at the general mathematical model
directly from the exploratory data analysis, it is possible to
create a loop to select an adequate formula from several

candidates (e.g., linear, polynomial, exponential, etc.) by
means of a data sample. Nonetheless, given the added
complexity of that approach, and since this additional block
would still be influenced by the subjective criteria of the
model designer, its inclusion will be addressed in future
work.

After model selection, the additional rules, exceptions, or
constraints resulting from the exploratory data analysis
above can be superposed. It is important to correctly define
and document them in terms of origin, relevance, and scope.

The resulting model can be applied to different samples of
the population (i.e., groups or categories). Running the
selected model and adjusting parameters while considering
the entire population corresponds to the non-categorical
model. In contrast, the categorical model involves
separately adjusting parameters for each category or group.

Testing and parameter adjustment
The above-presented mathematical model provides
generality, but it is necessary to identify the parameters
that will better predict the energy demand. This subsection
proposes an iterative search algorithm to identify the set of
parameters for a better forecast.

Train-test split approach: To evaluate different parameters
for the mathematical formulation, we propose extracting a
sample of the entire dataset that corresponds to the most
up-to-date observations. The larger portion of the dataset
(i.e., the oldest observations) is used as input to train the
mathematical model, and the small sample is used to test the
accuracy of the predictions. This is known in the literature
as a train-test data split, a common technique for evaluating
the performance of machine learning algorithms (Medar,
Rajpurohit, and Rashmi, 2017).

Error calculations: The train-test split makes it possible
to evaluate a prediction using the existing dataset. To
quantify the accuracy of the forecast, the percent error
of the prediction ϵ%ω for the set of parameters ω is
calculated. This is done through the average error between
the corresponding forecast number x f or

c,ω from the training
data and the mathematical model in Equation (1), and
the actual observations xobs

c from the testing sample, using
Equation (2) for all customers c.

ϵ%ω =
∑
∀c

x f or
c,ω − xobs

c

xobs
c

 × 100 (2)

Sensitivity analysis: We selected the secant numerical
method to find zeros in a discontinuous function. In this
search algorithm, given two initial guesses ω0 and ω1, it
is possible to iteratively obtain the best-performing value
of each parameter in the set ω with a tolerance τ. The
equations for the secant search algorithm are as follows:

ω j = ω j−1 − ϵ
%
ω j−1
×
ω j−1 − ω j−2

ϵ%ω j−1
− ϵ%ω j−2

)
(3)

τ ≥ ω j − ω j−1 (4)

Alternatively, the parameter search can be performed using
an incremental approach, a bisection method, or inverse
quadratic interpolation (Allen and Isaacson, 2019).
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Figure 3. Evolution of the aggregated energy demand in a) the four
largest cities of Huila and b) the entire department
Source: Authors

Performance and decision-making
The categorical model is expected to perform better in terms
of accuracy and exhibit increased computation times. This
is because classification and grouping require additional
computation steps, and individually analyzing every group
or category also requires additional power and memory
compared to the entire population. Given this trade-off
between accuracy and processing times, the model designer
must evaluate their context, in order to decide between
a slower but more accurate categorical model or a non-
categorical one with fast solutions but increased error.

Results and simulation
To test the proposed methods, the regional DSO of Huila
provided a dataset containing monthly energy consumption
readings from its 159 039 electricity customers in the region
and other parts of the country over a 10-year period. This
section presents the data analysis and simulation results. It
was reported that 44 data scientists presented 25 solutions
to the prediction problem during the Hackathon Opita
Challenge (ElectroHuila S.A. E.S.P., 2021), and that the
solution reported in this manuscript resulted in the best
forecast after being tested on new data.

First, it is necessary to consider the big picture and analyze
the aggregated energy demand for the department of Huila.
Considering the entire population, the energy demand grows
on a yearly basis (Figure 3). This growth is explained
by the population increase and industrialization, and it
has been extensively discussed in the literature. Based
on this, a forecasting tool can simply identify the slope
of the corresponding curves (i.e., the growth rate) and
apply it to existing observations in order to predict the
demand. Nonetheless, the smooth behavior observed above
is only evident when a significant amount of customers is
aggregated. To extend on this, Figure 4 shows the average
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Figure 4. Yearly energy demand in the department of Huila: a) 2010
average per-customer electricity demand, b) change in electricity
consumption for the 2010-2015 period, and c) change in electricity
consumption for the 2015-2020 period
Source: Authors

Figure 5. Histogram of missing data. Number of customers with a
percentage of missing data points.
Source: Authors

per-customer energy demand for 2010 as well as the 5-year
growth seen in 2015 and 2020.

In Figure 4, note that the average per-customer variation
in energy consumption cannot be represented by a global
increase rate from Figure 3. In the same time horizon,
municipalities exhibit increases or decreases amounting to
the global aggregated increase. Moreover, when comparing
the two time horizons, a municipality can have demand
increases over a period and decreases over the next, a
behavior that is not reflected in the aggregated curves in
Figure 3. The global rate might be useful for a system-wide
estimation of future demand, but the stochastic nature of
per-customer demand requires the use of a more detailed
approach.
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Figure 6. Categorical analysis of the population. Boxplots showing energy demand a) by month, b) by socioeconomic stratum, c) by classification
(urban or rural), d) by municipality within the department, and e) by municipality outside the department. The red line represents the median, the
blue box represents the 25th and 75th percentiles, and the whiskers represent the lower and upper adjacent points. Outliers are not included.
Source: Authors

Data description and curation
After organizing and filtering the information, it was
necessary to curate the dataset. The main modification
involved identifying and eliminating repeated data points:
out of the initial 17.8 million monthly observations,
approximately 29.7% were repeated values. Considering
that the amount of customers over a 10-year period should
amount to over 19 million observations, 36.4% of the data
points were estimated to be missing. This may be due to
some new customers appearing later, or some old ones
disappearing before the end of the 10-year horizon. Figure
5 presents a histogram with the percentage of missing data
points as a proportion between the dates of the first and last
observations.

There are two peaks in Figure 5 at 0-5 and 50-55%.
This suggests that (i) most customers have at least some
data points missing, and (ii) more than 35 000 customers
have bimonthly observations, in contrast with the initially
reported monthly dataset.

Furthermore, a significant number of customers with
monthly observations have between 5 and 20% of missing
data points, and those with bi-monthly observations have
55-80%. This highlights the importance of an approach that
can deal with data scarcity.

Once the dataset had been homogenized, a categorical
analysis was performed. The DSO differentiates customers
by social stratum, location (i.e., rural or urban), and
municipality. The following questions must be considered:

• Is income disparity relevant?

• Is population density relevant?

• Can data be filtered in groups that exhibit different
behaviors?

To evaluate this, Figure 6 shows the boxplots of all the data
per category, as well as a monthly consumption analysis.

A relatively small difference between the energy
consumption for different times of the year is observed. The
months with the largest and smallest average consumptions
are January and March, reporting medians of 92 and 85 kWh,
respectively. Regarding the proportions of the quartiles in
Figure 6a, it is important to note that there are significant
variation values, as represented by the whiskers of the
boxplot. That is to say that, when considering the entire
population, the data variation is significant.

As for the different categories in Figure 6, it is clear
that a customer belonging to one or the other exhibits a
significantly different behavior. This suggests the value
of employing a segregated approach that considers the
categorization of the population. The most striking
categorical difference is observed in social stratification
(Figure 6b), where the median, the 25th and 75th
percentiles, and the upper adjacent points of customers
categorized as low-income (i.e., social strata 1 and 2) are
three times lower than those of high-income customers
(social strata 5 and 6). Users that are not categorized into a
social stratum are understood to be commercial, industrial,

6 of 10 Ingenierı́a e Investigación vol. 44 No. 3, December - 2024



Cuenca, J., Palacios-Castro, D., and Garcı́a, R.

0 10 20 30 40 50 60 70 80 90 100

Customer average active monthly

demand - last observations [kWh]

0

10

20

30

40

50

60

70

80

90

100

C
u
s
to

m
e
r 

a
v
e
ra

g
e
 a

c
ti
v
e
 m

o
n
th

ly

d
e
m

a
n
d
 -

 a
ll 

ti
m

e
 [
k
W

h
]

Last month

Last 2 months

Last 3 months

Last 4 months

Last 5 months

Last 6 months

Equivalent

2x larger

3x larger

4x larger

5x larger

6x larger

Figure 7. Scatter plot to determine recent changes in consumption
patterns. The y-axis presents the average consumption of a customer
based on all observations, and the x-axis corresponds to the last few
months.
Source: Authors

or agricultural in nature, which explains the high variability
in their energy consumption.

Different municipalities exhibit distinct energy consumption
patterns. Neiva, the capital of Huila, reports the highest
median energy consumption and has the largest observation
variability. In addition, note the difference in scales between
Figures 6d and 6e. Customers located outside Huila
exhibit consumption patterns many times larger than those
within the department. While this is not clarified in the
documentation of the original dataset, it may be due to the
existence of large-scale customers outside the department
which are not physically connected to the grids of the DSO
but employ it as a service provider.

The last consideration of the data analysis was whether there
were exogenous factors to consider in the mathematical
models. The assumption made in this work was that
consumption patterns may change in the last observations.
Figure 7 shows a scatter plot of the average values for the
last one to six observations and the average value of all
observations, given a random sample of 100 customers.

In this Figure, the diagonal grey-dashed line represents an
equivalent value between the last observations and the all-
time averages, which means that values close to the diagonal
correspond to customers whose consumption patterns have
not changed in the last few months. In contrast, the other
color-dashed lines (i.e., navy, orange, green, blue, and
burgundy) represent how many times larger or smaller the
short-term average is relative to the all-time value. Data
points located between the blue-dashed line and the orange-
dashed one counting counter-clockwise from the diagonal
show short-term observations that are two to three times
smaller than the all-time average, suggesting a change in
consumption patterns.

Note that a significant number of points is located counter-
clockwise from the burgundy-dashed line, representing

Algorithm 1 Parameter selection pseudo-code
1: Get C ▷ Number of categories
2: Get ω0 and ω1 ▷ Two initial parameter guesses
3: Get τ ▷ Error tolerance
4: Get imax ▷ Maximum iterations allowed
5: Ptrain = P ∩ Ptest ▷ Split population for training-testing

Calculate forecast for initial guesses (Equation (1)):

6: x f or
ω0
,← f (Ptrain, ω0)

7: x f or
ω1
← f (Ptrain, ω1)

8: xobs
← Ptest ▷ Get observations from testing population

Calculate error for initial guesses (Equation (2)):

9: ϵ0 ← g(x f or
ω0
, xobs)

10: ϵ1 ← g(x f or
ω1
, xobs)

11: for c← 1 to C do ▷ Do this for each category
12: for i← 1 to imax do ▷ Do this for each iteration

Calculate new guess for next iteration (Equation (3)):
13: ωi ← h(ωi−1, ωi−2, ϵi−1, ϵi−2)
14: T← ωi − ωi−1 ▷ Calculate tolerance (Equation

(4))
15: if T ≤ τ then
16: ωc ← ωi ▷ Store parameters for category c
17: break ▷ Stop the for loop, parameters found
18: else
19: x f or

ωi
,← f (Ptrain, ωi) ▷ Equation (1) for ωi

20: ϵi ← g(x f or
ωi
, xobs) ▷ Equation (2) for ωi

21: end if
22: end for
23: end for

short-term observations more than six times smaller than
the all-time average. This procedure was followed for five
different 100-customer random samples, with equivalent
results. While there is no additional information, this evinces
that changes in consumption patterns are an important
factor for energy forecasting.

The lower portion of Figure 7 (i.e., counting clockwise from
the grey-dashed line) includes significantly fewer relative
observations. This means that, while it is common for the
average consumption to be significantly reduced in the last
few months compared to all observations, the opposite is not
often the case. Consumption patterns change towards a net
decrease, which may be due to short periods of residential
vacancy or industry stall periods. Considering that these
low-consumption periods are expected to be short in the
scale of the dataset (a few months of the 10-year period), any
increase in consumption caused by re-occupancy is diluted
by a longer average occupancy over previous months.

Based on the exploratory analysis of the information
provided by the DSO, we decided to include the monthly
median and standard deviation of the user in the
mathematical model. These variables represent the trends
and noise, respectively. The categorical and non-categorical
models were tested to assess the trade-off between accuracy
and computational intensity. Each parameter associated
with these variables is presented in the next subsection.
In addition, an exogenous rule to account for changes in
consumption patterns was included: if the average energy
consumption of a customer for the last six observations
was more than six times larger/smaller than the average
of all their observations, a change in consumption pattern
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Figure 8. Results for the non-categorical parameter selection
algorithm: a) forecast error for the train-test split and b) its
corresponding tolerance
Source: Authors

was assumed { these values represent the most critical
change observed in Figure 7. In this case, the forecast from
the model was replaced by the average of these last six
observations.

Parameter adjustment
The parameters for each categorical model (and its relevant
categories) were calculated using an iterative search
algorithm based on the secant method, whose pseudo-code
is presented in Algorithm 1. This algorithm was executed for
every categorical division outlined in the previous sections.

Depending on how the population is split, the runtime of
Algorithm 1 can be significant. We recommend carefully
selecting the size of the testing population. This is especially
important for categorical models, as the algorithm includes
a for loop to calculate the parameters of each category.
Computational intensity is therefore linked to the testing
population size and the number of categories.

The least computationally intensive scenario corresponded
to the non-categorical model, whose parameters were
calculated for the entire population. To illustrate this,
Figure 8 presents the error and tolerance of each iteration
in obtaining the non-categorical parameters. The testing
portion of the population was January, February, and March
2020, and the training portion included every previous
observation (i.e., from January 2010 until December 2019).

The behavior in Figure 8 suggests that the search algorithm
correctly identifies a solution with a low forecasting error
given the selected tolerance. However, note that iteration 6
almost fulfilled the condition τ = 0.03%. The discontinuous
nature of the error function from Equations (1), (2), and
(3) leads to locally minimum tolerances and, hence, to
premature solutions. Future developments of this work

should include additional iterations to confirm whether there
is a nearby local minimum with a better performance.

Algorithm selection
The algorithm was coded in the SciLab 6.1.1 open-access
software and run using a desktop with 16 GB RAM and
an Intel Core i5-8400 CPU. The accuracy and computational
intensity resulting from the train-test split analysis are shown
in Table 1.

Table 1. Comparison of the results obtained from the train-test split
for different categories

Categorical Num. Total Run time [h] Train-test
Division Categ. Iter. Train Test Error [%]
None 1 9 14.5 1.73 1.61
Social stratum 7 39 61.4 5.72 1.59
Location 2 15 23.13 2.56 1.64
In/out of Huila 2 23 36.88 3.14 1.58
Municipality 54 342 457.2* 37.6 1.43
* This long parameter search was run for two categories at a time.

Source: Authors

The previously hypothesized trade-off between computa-
tional intensity and accuracy was confirmed by the results in
Table 1. The best-performing algorithm involves segregating
parameters for each municipality, but this comes at a very
high computational cost: 19 days of training time. Assigning
equal value to accuracy and computational intensity, it is
possible to compare the relative computational cost per
error unit. In the design constraints, the DSO specified that
computational intensity was an important decision variable,
so the non-categorical model was selected, with an average
error of 1.61% in the train-test simulation and a total training
time of 14.5 hours.

The methods presented in this work provide the DSO with
the flexibility to decide which categorical division to select
according to its particular needs regarding accuracy and
computational intensity. This is reserved as a decision
variable for future applications of this work.

Discussion
The review by Klyuev et al. (2022) shows that the
absolute percentage error of medium-term electricity
demand predictions oscillates between 7.95 and 15.92%.
For the sake of comparison, the absolute percent errors
reported by other authors are compared against our results
in Table 2. The authors referenced therein did not report
execution times, which are difficult to benchmark in any
case because each study uses different population sizes, has
varying degrees of missing data, and considers more or less
historical data.

This tool can be extended for application by other regional
and national DSOs. Considering the computational
constraints, it is possible to obtain a more accurate solution
via the train-test split of historical data. This is also
determined by the purpose of the forecast (e.g., if it aims
to schedule and prioritize infrastructure upgrades, accuracy
is more important than computational intensity (Migliavacca
et al., 2021)).

The work of Schafer (1999) suggests that missing data
amounting to 5% or less can be tolerated in statistical
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Table 2. Benchmarking against other methods in the literature

Reference Method Dataset Reported
(granularity) Error [%]

Proposed Heuristics 10 years 1.61
(1-2 month)

(Yuce et al., 2017) Deep ML 1.5 years 4.5-8.8
(not reported)

(Meng et al., 2011) Feature 2 years 2.7-2.8
extraction (1 month)

(Amber et al., 2017) Multiple 5 years 8.6-9.8
regression (not reported)

* ML = machine learning.

Source: Authors

analysis. Furthermore, Bennett (2001) argues that more
than 10% of missing data points causes any statistical
analysis to be biased. Thereupon, as future work, we
propose the use of regression to fill large gaps in energy
consumption datasets (e.g., there are more than 36% missing
data points in the set used in this work). Numerous
approaches for data regression are suggested in Dong and
Peng (2013) in relation to the missing data mechanism or its
origin.

The historical consumption dataset used in this article
includes one temporal (month), two spatial (municipality
and urban/rural location), and one socioeconomic feature
(social stratum) for individual consumers. Note that the
social stratum is an official classification implemented by
the Colombian government to group dwellings with similar
social and economic characteristics within a delimited
area, and it does not include useful information about
individual household characteristics (Chica-Olmo, Sánchez,
and Sepúlveda-Murillo, 2020). In this regard, we propose
treating social and economic factors independently and on
a larger spectrum, i.e., economic factors such as family
employment, household income, debt capacity, and savings;
and social/demographic factors like family size, behavior
towards the environment, and population density, among
others. These can be used to build and select models that
better represent individual behavior (Yuce et al., 2017). Due
to lack of data, this will be studied in future work.

Future applications of this work could include the definition
of dynamic tariffs that account not only for generation
resource availability but also for forecast demand scenarios
(Ochoa, Dent, and Harrison, 2010). Flexibility resources,
demand response, and infrastructure upgrades could
be optimally planned if the future demand is known
(Capitanescu, Ochoa, Margossian, and Hatziargyriou,
2015). The hosting capacity of distribution networks largely
depends on operational states that rely on an accurate
representation of future demand (Ochoa et al., 2010).
Ultimately, a good demand prediction is key to assess
the reliability and resilience of modern distribution grids
(Escalera, Hayes, and Prodanović, 2018).

Conclusions
This manuscript presents a historical demand data process-
ing framework for medium-term electricity consumption
forecasting. Qualitative and quantitative patterns were
abstracted to build a mathematical model, which was

later tested given different categorical divisions. The best-
performing method was selected while considering the
trade-off between accuracy and computational intensity.
This method was tested using real data from the regional
DSO of the department of Huila, Colombia. This DSO
reported that applying the selected algorithm resulted in
a forecast that was at least 3% more accurate than other
solutions regarding the real customer demand (i.e., data not
used to train or test the algorithm).

Through heuristics, simple statistical quantities of the
population and samples of it can be used to build a robust
model with accurate outputs. It was found that it is
necessary to account for exogenous factors. In this case,
changes in consumption patterns played an important role
in forecasting energy demand.

Opportunities for future work include filling the gaps in
the dataset, especially considering that a significant amount
of customers exhibit a bimonthly cycle of observations.
Moreover, additional categories could be created for data
filtering. By mixing two categories, subcategories that better
inform customer behavior could be obtained (e.g., by mixing
social stratification and the type of location, consumption
patterns can be better represented). However, this would
be limited by computation time constraints, as it represents
the inclusion of subcategories, which would considerably
increase the size of the problem.
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