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Numerical simulation of the sucker-rod pumping system 
 

Simulación numérica de un sistema de bombeo mecánico 
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ABSTRACT  

The sucker rod pump is an artificial lift method frequently applied in onshore petroleum wells. This system can be described using a 

numerical simulation based on the behavior of a rod string. In the past, the elastic behavior of the rod string made it difficult to model 

the system. However, since the 1960s and with the advent of digital computers, it has been modeled numerically. The rod string be-

haves like a slender bar, and thus, the propagation of elastic waves along the bar can be represented by a one-dimensional equation. 

Gibbs (1963) presented a mathematical model based on the wave equation, which is described on the basis of the analysis of forces 

on the rod string and is incorporated into a boundary value problem involving partial differential equations. The use of the finite differ-

ence method allows for a numerical solution by the discretization of the wave equation developed in the mathematical formulation 

with appropriate boundary and initial conditions. This work presents a methodology for implementing an academic computer code 

that allows simulation of the upstroke and downstroke motion of the rod string described by the wave equation under ideal operating 

conditions, assuming a harmonic motion of the rod at one end and downhole pump at the other end. The goal of this study is to 

generate the downhole dynamometer card, an important and consolidated tool that controls the pump system by diagnosing oper-

ational conditions of the downhole pump. 
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RESUMEN 

El bombeo mecánico es un método de elevación artificial, utilizado principalmente en campos terrestres. Este sistema, puede ser 

entendido mediante la simulación numérica del comportamiento de la sarta de varillas, que conecta la superficie con la bomba en 

el subsuelo. En el pasado, el comportamiento elástico de la sarta de varillas era difícil de modelar, sin embargo, desde 1960 con el 

surgimiento de los computadores digitales este proceso fue facilitado.  

La sarta de varillas se comporta como una barra esbelta, donde la propagación de las ondas elásticas es representada por una 

ecuación unidimensional y trascendente, la cual fue propuesta por Gibbs (1963), así mismo, el método de diferencias finitas permite 

obtener la solución numérica de dicha ecuación. En este trabajo, se explica la metodología para la implementación de un código 

computacional académico, que permite simular el movimiento alternativo de la sarta de varillas descrita matemáticamente por la 

ecuación de las ondas de Gibbs. De esta manera, se consideran como condiciones de entorno: el movimiento armónico en la 

superficie y la presencia de la bomba de fondo en el subsuelo, en condiciones ideales de operación.  

Finalmente, el objetivo es obtener la carta dinamométrica de fondo, que es una importante y consolidada herramienta de control y 

diagnóstico para las condiciones operacionales de la bomba de fondo. 

Palabras clave: sarta de varillas, bombeo mecánico, carta dinamométrica, elevación artificial de petróleo y diferencias finitas. 
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Introduction123 
In the beginning of a petroleum reservoir’s productive life, fluid lift 
occurs naturally because there is enough energy to raise fluids to 
the surface by natural lift. With the raise, this energy is gradually 
lost due to the decay of the reservoir’s pressure. As a conse-
quence, it is necessary to implement an artificial lift completion 
technique to transfer the fluid from the formation to the surface. 
The most common types of artificial lift are the sucker rod pump, 

                                                
1 Oldrich Joel Romero. Mechanical Engineer, UNI, Lima, Peru. MSc, PUC-Rio, Rio de 
Janeiro, Brazil. DSc, PUC-Rio, Rio de Janeiro, Brazil. Affiliation: Professor, Federal 
University of Espirito Santo (UFES), Espirito Santo, Brazil.  
E-mail: oldrichjoel@gmail.com 
2 Paula Almeida. BSc, Federal University of Espirito Santo (UFES). Affiliation: MSc stu-
dent, Universidade Estadual do Norte Fluminense (UENF), Rio de Janeiro, Brazil.  
 

centrifugal pump, progressive cavity pump, and gas lift. These tech-
niques utilize specific tools to reduce the flow pressure at the bot- 

tom of the well, therefore raising the pressure differential over the 
reservoir (Thomas, 2004). The choice of the most appropriate lift 
method for each well depends on several factors, including econ-
omy, environment, security, properties of the fluids to be pro-
duced, depth of the reservoir and available equipment (Gomes, 
2009). According to Takács (2002) and Clegg et al. (1993), over 
85% of all petroleum wells equipped with an artificial lift use a 
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sucker rod pump method. This high percentage can be attributed 
to the low cost of production throughout the productive life of a 
well. There are also other advantages of using this method, such 
as flow flexibility, energy efficiency, operation simplicity, mainte-
nance of new facilities and availability of pumping capacity accord-
ing to well conditions (Thomas, 2004). 

Figure 1 shows the relative frequency of the different types of ar-
tificial lifts installed in the USA in 1992. The predominance of rod 
pumps (85%) indicates that the vast majority of wells are on land 
locations in mature fields with low well production. 

 
Figure 1. Relative frequency of different types of artificial lift meth-
ods (Clegg et al., 1993). 

The components of a sucker rod pump system can be sorted into 
surface and sub-surface categories. Surface components include 
the motor, gearbox, pumping unit, polished rod and well head. 
Subsurface equipment consists of a rod string, tubing and a down-
hole pump (or plunger pump) submerged in the production liquid 
of the well. Figure 2 shows a typical installation of a sucker rod 
pump system. The pumping unit transforms the rotating motion 
given by the motor into an alternative motion to turn on the rod 
string. The polished rod and the stuffing box combine to make a 
high efficiency seal at the surface. The string moves the plunger in 
the lower end at the well’s bottom, which transmits energy to the 
fluid in order to be driven to the surface.  

 
Figure 2. Typical configuration of a sucker rod pump (Bellarby, 
2009). 

The downhole pump is installed below the dynamic liquid level. It 
consists of a working barrel, a plunger that is connected to sucker 
rods, a standing valve and a traveling valve (Figure 3). As the 
plunger is moved downward by the sucker rod string, the traveling 
valve is opened, allowing the fluid to pass through the valve; this 
lets the plunger move to a position just above the standing valve. 
During this downward motion of the plunger, the standing valve is 
closed, and thus, the fluid is forced to pass through the traveling 
valve. When the plunger is at the bottom of the stroke and begins 
an upward stroke, the traveling valve closes, and the standing valve 
opens. As the upward motion continues, the fluid in the well below 
the standing valve is drawn into the volume above the standing 
valve (fluid passing through the open standing valve). The fluid con-
tinues to fill the volume above the standing valve until the plunger 
reaches the top of its stroke (Guo et al., 2007). 

 
Figure 3. Pumping cycle (modified from Guo et al., 2007). 

The performance characteristics of sucker rod pumps are moni-
tored by measuring the load on the polished rod with a dynamom-
eter. A recording of the polished rod load over one complete cy-
cle is called the dynamometer card, which plots the polished rod 
load as a function of rod position. An example is presented in Fig-
ure 4 (Economides et al., 1994). 

 
Figure 4. Effect of gas on pump performance (Economides et al., 
1994). 

As noted by Takács (2002), “The rod string is composed of indi-
vidual sucker rods that are connected to each other until the re-
quired pumping depth is reached. The sucker-rod string is the 
most vital part of the pumping system, since it provides the link 
between the surface pumping unit and the subsurface pump. It is a 
peculiar piece of mechanical equipment and has almost no analo-
gies in man-made structures, being several thousand feet long and 
having a maximum diameter of slightly more than one inch. The 
behavior of this perfect ‘slender bar’ can have a fundamental im-
pact on the efficiency of fluid lifting and its eventual failure leads to 
a total loss of production. Therefore, a properly designed rod 
string not only assures good operating conditions but can consid-
erably reduce total production costs as well”.  



NUMERICAL SIMULATION OF THE SUCKER-ROD PUMPING SYSTEM 

  INGENIERÍA E INVESTIGACIÓN VOL. 34 No. 3, DECEMBER 2014 (4-11) 6  

The sucker rod pump was the first method of artificial lift created 
in the petroleum industry, and in view of its wide usage in onshore 
wells, the need for studies about its behavior has risen. The appli-
cation of the sucker rod pump and behavior of the rod and con-
sequently the downhole pump can directly influence the efficiency 
of the lift method. For this reason, it is necessary to verify if the 
system is operating close to its maximum lift efficiency to avoid 
system stops.  

Takács (2002) notes that the disadvantages of using a sucker rod 
pump are limited depth of pumping, limited mechanical resistance 
of material of rods and free gas presence in the pump’s admission, 
which is related to a gas locking problem. Additionally, application 
in deactivated wells causes friction in metallic parts and can pro-
voke mechanical failures. A heavy pump unit that occupies a large 
space on a surface drastically reduces the pumping efficiency. In 
the case of mature oil fields, the wellbore fluid behavior becomes 
complex, and the production and pumping efficiency gradually de-
cline (Suling et al., 2013). 

Gas locking has been a problem accompanying the ball and seat 
sucker rod pump ever since the inception of this pump into the oil 
industry. A gas lock occurs when a gas influx from the standing 
valve causes the pressure exerted by the fluid below the traveling 
valve in the closed chamber to not be able to overcome the weight 
of the liquid column lying above the traveling valve in the pump 
barrel. Figure 4 illustrates this effect on the dynamometric card. 
This fails to lift the ball off of the seat. Gala (2013) addressed this 
problem by proposing the design of a sucker rod pump consisting 
of a solenoid actuated hydraulic valve in the traveling plunger seat. 

Gareeb and Beck (2013) discussed the main concepts in sand han-
dling by highlighting some exclusion devices, which provided the 
most practical solution for best sand handling pump and comple-
tion design as a function of conditions. Jiménez et al. (2013) pre-
sented an application in heavy and extra heavy oil wells using rod 
pumping in the Samaria Field. 

An oil well with an installed sucker rod pump emits a characteristic 
sound spectrum that can be assessed, according to Chevelcha et 
al. (2013). Every change to the system (wear, beginning failures, 
etc) should be reflected in a corresponding change of the sound 
spectrum. The scope of the research of Chevelcha et al. was to 
study noise produced by the well and analyze the relationship be-
tween emitted noise and the production state of the system. 

A simulation of the behavior of the rod string is the most adequate 
way to describe the sucker rod pump system. Through the rod 
string, the transmission of motion occurs. Motion is generated on 
the surface by the pump unit to the downhole pump through the 
rod string, and energy is generated by charges in the surface pump 
(Takács, 2002). However, it is mathematically hardened by the 
elastic behavior of the rod string, which makes the course of the 
plunger different from the course of the polished rod on the sur-
face. Gibbs (1963) proposed the first model for the dynamic be-
havior of the rod string as a boundary value problem for a wave 
equation. This was described by Gibbs in analyzing active forces in 
the rod string. 

This article aims to study the rod string’s behavior in wells 
equipped with an artificial lift system by a sucker rod pump. The 
numerical solution of the transient wave equation that heads the 
problem with appropriated initial and boundary conditions was 
obtained by using finite differences and implemented through a 
computational code in Matlab®. The outputs of the computational 
modeling are the surface dynamometer cards, SDCs, and the 
downhole dynamometer cards, DDCs (Figure 5). These cards 

constitute an important consolidated tool that helps in the control 
of the pumping system by diagnosing the operational conditions of 
the downhole pump (Ordoñez, 2008). 

An SDC is a chart that shows the charge variation that operates 
in a polished rod during its displacement in the pumping cycle. An 
installed dynamometer between the clip and pump unit’s table, on 
the surface, allows the registration of active forces in the polished 
rod at the top of the rod string during its displacement.  

The DDC is a graphical representation of the effects generated by 
active forces in a downhole pump after propagation on a rod 
string. The elastic rod string behavior influences the effects gener-
ated in a downhole pump. For that reason, the SDC does not rep-
resent the actual downhole pump’s behavior. Thus, to obtain a 
DDC, one can utilize special tools at the bottom of the well or 
use the mathematical models that calculate them from the SDC. 

If the DDC shows a rectangle on the chart, that indicates the ideal 
conditions of pumping. Therefore, a hard and inelastic rod string 
with a low speed of pumping (which eliminates dynamic forces), 
incompressible pumped fluid and anchored rod tube are also ideal 
conditions. All energy losses along the rod are undesirable. 

Figure 5a presents a typical SDC from a strain-gage type of dyna-
mometer measured from a conventional unit operated with a 74-
in stroke at 15.4 strokes per minute (spm). The peak load is 22,649 
lb at the top of the 1 in rod. In Figure 5b, the peak load is 17,800 
lb at the top of the 7/8 in rod. In Figure 5c, the peak load is 13,400 
lb at the top of the ¾ in rod. In Figure 5d, the DDC is at the 
plunger. This DDC indicates a gross pump stroke of 7.1 ft, a net 
liquid stroke of 4.6 ft and fluid load of 3,200 lb. The shape of the 
DDC also indicates some downhole gas compression and that the 
tubing anchor is holding properly. The negative load value in Figure 
5d is due to the buoyancy of the rod string (Guo et al., 2007). 

 
Figure 5. Surface and downhole dynamometer cards (Guo et al., 
2007). 

Methods 

Physical model 

Adopted geometry consists of an ideal vertical rod string without 
gloves and without centralizers, of length L and diameter d con-
stants. The rod has an alternative motion inside the fixed tubing. 
The positions represented by A and B points are, respectively, the 
connections with a polished rod (on the surface) and with a down-
hole pump (on the subsurface) (Figure 6). At these points, bound-
ary conditions are applied in order to complete the mathematical 
formulation in which the solution describes the rod string’s behav-
ior: (i) A: kinematic of pump unit and (ii) B: operation of the down-
hole pump. 
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Figure 6. Representation of the geometry adopted for the rod string 
simulation (Almeida, 2012). 

Sucker rod pump systems utilize a rod string to transmit an alter-
native surface motion to the downhole pump. Rods are steel tubes 
– they also can be made of fiberglass with an average length of 9 
m and a diameter between 5/8 in (1.5875 cm) and 1 in (2,54 cm). 
They have connection gloves at each end, which allows for linking 
to other rods and forming a rod string with a total length that can 
be over 1,000 m. The input data related to the geometrical and 
operational features of the system and required to start the itera-
tive process are shown in Table 1. 

Table 1. Operational parameters and geometry.  

Parameter Value 

Velocity of sound in rod, ft/s 15,700 

Modulus of elasticity of the material of the rods, MPa 30.5 

Length of rod string, ft 2,200 

Number of increments in position 5 

Number of discretization in the time 500 

Pump velocity, cpm (cycles per minute) or spm (stroke per minute) 12.5 

Rod’s stroke length, in 42 

Diameter rod, in ¾ 

Specific weight of the rod’s material, lbf/ft³ 495.3 

Factor of dimensionless damping  0.1 

Specific gravity of fluid 0.82 

Diameter of tubing, in 2 3/8 

Mathematical model 

The governing equation is described as a function of the analysis 
of active forces in the rod string. Figure 7 shows the active forces 
in a long element of the rod string in an upward motion.  

The element has a cross-sectional area A constant. At time t, the 

variable x represents any point in the rod string, and Δx is the 

displacement starting from this point. T(x+Δx,t) and T(x,t) are the 
traction forces in both boundaries of the differential element, 
which are related to the sections above and below the element. 
W is the rod element’s weight, Fa is the fluid’s damping force in the 
annular space rod string/tubing that opposes the rod string, g is 
gravity, and v is the element’s velocity. 

   
Figure 7. Active forces in an element with rod in upward motion and 
displacement u(x,t) of a rod element. 

From the rate of change of its linear momentum in an inertial ref-
erential frame, it follows that 

, 
(1) 

whereas the damping force is approximated by the product of the 
rod string’s velocity v and a constant k, �� = −��. The negative 
exponent is due to the velocity of the rod being positive in the 
direction of motion, while the damping must act in the opposite 
direction, ρ is a constant density, and t is the time. Figure 5 also 
shows a draft of the displacement u of a differential element length Δx as a function of the position x of the rod string from a starting 
position u(x,t) to another position u(x+Δx,t) along the upward 
motion. Hooke's law, which is valid for the behavior of the elastic 
region, can be written as � = ��	��/��, where E is the modulus 
of constant elasticity or Young's modulus and A is the cross-sec-
tional area of the rod. A constant should be assumed for A, which 
implies that changes in the area of the gloves and centralizers were 
not considered. The velocity � of the rod can be obtained by the 
variation of a position in time, � = ��(�, �)/��. 
Finally, if the cross-sectional area A of the rod, Young's modulus E 
of the material, and the density of material ρ and k are constant, 
equation (4) can be rewritten as 

, 
(2) 

which is a one-dimensional transient partial differential equation of 
a second order known as the one-dimensional wave equation with 
viscous friction. The solution returns to the displacement u of a 
point x of the rod and time t. This equation, without gravitational 
effects, was initially presented by Gibbs in his pioneering work in 
1963. 

The damping factor portrays irreversible energy losses during the 
operation of the pump unit. According to Takács (2002), although 
these losses are derived from several varieties of complex phe-
nomena, the effects are commonly considered to be of a viscous 
nature only. Gibbs (1963) stated that the damping factor is defined 
as � = ���/(2 ), where c is the dimensionless damping factor, 
which can be found through field measurements, and L is the length 
of the rod string. 

To complete the mathematical formulation, the initial condition 
and boundary conditions are needed. As an initial condition, that 
is, at time t = 0, the system is considered at rest and mathemati-
cally represented by equation (3). 

�(�, 0) = 0, ��(�, 0)�� = 0. (3) 
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The boundary conditions are applied at the ends of the rod string. 

(i) Through the polished rod position on the surface, the simplest 
and most common approach that describes the rod string’s mo-
tion is an assumption of a simple harmonic motion. Thus, consid-
ering Figure 2, the construction of a surface dynamometer card 
(SDC) consists of plotting the active charges on point A as a func-
tion of the motion of a polished rod. Equation (4) expresses the 

surface motion Sh(θ) of a polished rod using a crank angle (θ) 
(Takács, 2002). 

#$(%) = #
2 (1 − �'(%) (4) 

where S represents the stroke length of polished rod. 
Construction of a downhole dynamometer card (DDC) must be 
plotted with the active charge in the position represented by point 
B in Figure 6 as a function of the plunger motion. For low velocities 
of pumping, the difference between the stroke length (Sh) of the 
polished rod and the length of the plunger (SP) is the sum of tubing 
stretch (et) and the rod string stretch (er), which occurs during 
the pumping process as shown in equation (5) (Takács, 2002) 

#. = #$ − (/0 + /1)	. (5) 

The application of Hooke’s Law allows for the determination of 
the tubing (non-anchored) and rod string stretching, represented 
by  

/0 = �2�0  and /1 = �2�1 , (6) 

where Fo is the fluid weight above the plunger and Et and Er are 
the elastic constants of tubing and rod material, respectively. 

(ii) On the subsurface and at the operational conditions of the 
pump, Gibbs (1963) is represented by 

5�( , �) + 	6 ��( , �)�� = 7(�), (7) 

where α, β e P(t) depends on the type of pump operation which 
is being simulated and L is the length of the rod string. 
For further details regarding the mathematical formulation briefly 
presented, we suggest consulting Doty and Schmidt (1983), 
Schmidt and Doty (1989), and Adams (2012). 

Numerical model 

The rod string, regarded as one-dimensional and schematized in 
Figure 6, was segmented in the context of spatial discretization in 
various small parts as shown in Figure 7. The wave equation rep-
resented by equation (2), along with the initial and boundary con-
ditions, equations (3), (4), (5) and (6), that govern the deformation 
of the rod string, was discretized by a finite differences method. 
The computational simulation of physical processes obtains time-
dependent solutions of partial differential equations. 

Discretization of the temporal terms was performed using an ex-
plicit method. In this approach, the unknown displacement at time 

instant n+1 is represented by �(�, �);<=, or �>�? , �@<=A, and the 
known variables, at time n, represented by �(�, �); , or �>�? , �@A. 
The continuous equation, equation (2), is evaluated in discrete 
points (xi,	tj), shown in Figure 8, resulting in 

�D�(�? , �@)
��D = �² �²�(�? , �@)��² − ς ��(�? , �@)��  (8) 

An approximation by finite differences for each of the three terms 
of equation (8) results in 

�>�? , �@<=A − 2�>�? , �@A + �>�? , �@G=A
∆�D 	

≈ 	 �D �>�?<=, �@A − 2�>�? , �@A + �>�?G=, �@A
∆�D

− ς	 �>�? , �@<=A − �>�? , �@G=A
2∆�  

(9) 

for i = 0,1,2,..., N-1 and j = 0,1,2,...,M-1. 

 
Figure 8. Cartesian plane x – t (position – time) to perform spatial 
and temporal discretization. 

Putting unknowns tj+1 in terms of tj and tj-1, equation (9) can be 
rewritten by isolating the term �>�? , �@<=A, resulting in 

�>�? , �@<=A
≈ 1
Kς∆�2 + 1L MN

�∆�
∆� O

D �>�?<=, �@A

+ P2 − 2 N�∆�∆� O
DQ �>�? , �@A+ N�∆�∆� OD �>�?G=, �@A

+ Nς∆�2 − 1O�>�? , �@G=AR 

(10) 

Thomas (1995) presented the CFL – Courant-Friedrichs-Lewy 
condition in order to obtain solutions for these discrete equations, 
which creates a dimensionless number known as the Courant 
number (Nc) 

UV = �∆�
∆�  

(11) 

where a is the wave velocity, Δt is the time interval, and Δx is the 
size of the mesh element. The CFL condition states that for the 
method to be stable, the Courant number should be less than or 

equal to one. Thus, adopting UV = 1 it can be said that �²∆0²∆W² = 1. 
Therefore equation (10) can be simplified to 

�>�? , �@<=A 	≈ �	�>�?<=, �@A + X	�>�?G=, �@A + C	�>�? , �@G=A (12) 
where A, B and C are constant defined by 

� = X = 	 1
ς∆�2 + 1 ,			Z =

�∆�2 − 1
�∆�2 + 1.		 

(13) 
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Note that equation (12) provides a solution for �>�? , �@<=A in 
terms of three points (xi+1,tj), (xi-1,tj) and (xi,tj-1). Details are ref-
erenced in Doty and Schmidt (1983) and Schmidt and Doty (1989). 
In addition, it is necessary to write the initial and boundary condi-
tion in discrete form (Almeida, 2012). 

The resulting discrete equations were implemented in Matlab® be-
cause the software has libraries that facilitate iterative calculations 
in space and time and provides a better graphical display of dyna-
mometer card results. 

The counterweight’s constant angular velocity was assumed for 
the numerical simulation. With no gas interference, the pump is 
completely filled by the fluid and the fluid inertia is disregarded. 
Finally, the input data required to start the iterative process are 
shown in Table 1. 

Results and discussion 
Figures 9, 10 and 11 present the results of numerical simulations 
performed with the data listed in Table 1. The surface dynamom-
eter card (Figure 9) shows the load in the polished rod based on 
its position. From this card, it was possible to obtain several op-
erating parameters from the system. The maximum (PPRL – Peak 
polished road load) and minimum loads (MPRL – Minimal polished 
road load) on the polished rod were 8,002 lbs and 1,774 lbs, re-
spectively. It was also possible to calculate the maximum torque 
that would be required of the gearbox’s output shaft when mov-
ing. 

 
Figure 9. Surface dynamometer card. 

As previously mentioned, a downhole dynamometer card shows 
the active load on the subsurface plunge. Figure 10 illustrates a 
downhole dynamometer card with non-anchored tubing. In addi-
tion to the elastic behavior of the tubing, the elastic behavior of 
the rod string shows the card has assumed the shape of a parallel-
ogram, i.e., the charge transfer from the standing valve to the trav-
eling valve in the upward motion and the charge transfer from the 
traveling valve to the standing valve in the downward motion oc-
curs gradually as a function of the rod’s elongation.  

Figure 10 was obtained by plotting the load on the piston by func-
tion of the plunger stroke represented by equation (5). Once the 
effective piston stroke length Sp is calculated by equation (5), it is 
possible to obtain volumetric displacement of the downhole pump 
(PD). Assuming that the pump barrel is completely filled with fluid 
during all the cycles, this displacement can be expressed by PD =
A]S]N,	where N is the pump velocity and Ap is the transversal area 
of the piston (square inches) of 2¼ in diameter. 

 
Figure 10. Downhole dynamometer card for non-anchored tubing 
considering elastic effects. 

If the elastic effect did not exist, i.e., if the stretching of equation 
(5) were equal to zero, then the card would present a rectangular 
shape, as plotted in Figure 11. 

 
Figure 11. Downhole dynamometer card for anchored tubing disre-
garding elastic effects of tubing and rods. 

Figure 12 shows a variation of the downhole dynamometer card 
presented in Figure 10, increasing the total length of the rod from 
2,200 ft (671 m) to 4,800 ft (1,463 m). When compared to Figure 
10, it is observed that the result of Figure 12 shows a more pro-
nounced stretching and a greater distortion of calculations in up-
ward and downward motions. This is due to the increased size of 
the new rod string. According to Gomes (2009), distortions of the 
surface card from the propagation effect generated by the rod 
string may result in an inefficient analysis in certain cases. This 
problem is further aggravated by increasing the depth of wells past 
3,280 ft (1,000 m). 

In order to qualitatively verify the validity of the computational 
code implemented, the results were compared to those of 
Tackács (2002), and the calculations of the surface dynamometer 
(SDC) and the pump (DDC) cards by the FINWAVE1 computer 
program are presented in Figure 13. The software performs a di-
agnostic analysis of the pumping system using the finite difference 
solution of the wave equation for a pump setting depth of 3,000 
ft, dynamic liquid level of 3,000 ft, measured productive rate of 
198 bpd, liquid specific gravity of 1.0, plunger size of 2.5 in, stroke 
length of 50 in, pumping speed of 9 spm, anchored tubing, pumping 
unit API size C-228-213-120, rod string steel of 0.31 psi, Young’s 
modulus ¾ in, 1.956 ft and 5/8 in 1.044. A qualitative comparison 
with Figures 9 and 10 corroborates our results. 
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Figure 12. Downhole dynamometer card for non-anchored tubing 
and a rod string length equal to 4,800 ft. 
 

 
Figure 13. Surface and Downhole dynamometer cards (Takács, 
2002). 

Conclusions 
This work presents the mathematical formulation of the Gibbs 
wave equation (1963) to predict the behavior of a sucker rod 
pump system, as well as the methodology for implementing an ac-
ademic, non-commercial code that can simulate the behavior of 
the rod string through the generation of downhole and surface 
dynamometer cards in ideal pumping conditions. Appropriate ini-
tial conditions and surface and bottom-hole boundary conditions 
are considered in order to apply the finite difference technique to 
numerically solve the proposed problem. 

Calculation of the downhole card consists of finding the charge 
immediately above the downhole pump from the surface data, and 
thus inferring operating conditions at the bottom of the well. 

The simulation performed portrays the comparison of the down-
hole dynamometer cards in two cases. The first case is the elastic 
behavior of the rod string and the non-anchored string, and the 
second disregards such effects. The results are promising because 
they represent the expected behavior, according to the literature, 
of the dynamometer card for the simulated cases. 

For future proposals, the implemented code will be the basis for 
the development of a simulation of more complex sucker rod 
pump systems. Other situations not considered in this study can 
dramatically alter the shape of the card, such as the presence of 

dynamic charges on the rod string, the fluid compressibility, non-
Newtonian viscosity, induction of stress waves in the rod string 
and any operational problems (lack of synchronization of the 
valves, blow fluid, gas interference, among others). 

The Gibbs damping factor (1963) was used in this study, which 
presents a problem for estimating the value of the dimensionless 
damping coefficient for new wells. Moreover, these coefficients 
are different during the upstroke and downstroke, which Gibbs 
did not consider. This simplification was used, but a more com-
prehensive model has been proposed by Lea (1990) for a damping 
term that takes into account the viscosity of the fluid and the di-
ameters of the plunger, tubing and rods. 

An important consideration is the incorporation of various geom-
etries of the pump unit, which can change boundary conditions at 
the surface. Substituting the consideration of a simple harmonic 
motion by a kinematic analysis of pump units allows for calculation 
of the polished rod’s position as a function of the crank angle ac-
cording to pump unit geometry. 

Another proposal is the adaptation of the code to enable the sim-
ulation of cases such as a combined rod string, deviated wells and 
consideration of the annular level from the background knowledge 
in the bottom hole pressure. 
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