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ABSTRACT: An accurate estimation of extreme claims is fundamental to assess solvency capital
requirements (SeR) established by Solvency II. Basing on the Extreme Value Theory (EVT),this paper
performs a parametric estimation to fit the motor liability insurance historical datasets of two sig-
nificant and representative companies operating within the Spanish market to a Generalized Pareto
Distribution. \Ne illustrate how EVT improves classical adjustments, as it considers outliers apart
from mass risks. what leads to optimize the pricing decision-making and fix a risk transfer posirion.
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1. INTRODUCTION
Solvency II, the new global framework of European Insurance supervIsion
(IAIS, 2003 and 2005; IAA, 2004), includes the behavior of extreme events
among the insurers' overall financial position parameters, by contrast with
Solvency I, which did not consider the whole variety of risks (IAIS, 2005,
and IAA, 2004).

With extremes being low-frequency, high-severity, heavy-tail-distributed oc-
currences (Kellezi and Gilli, 2000), the claSSical risk theory is not entirely
explicative. Extremes fluctuate even more than the risks of volatility and
uncertainty and this hinders the assessment of loss amounts and capital
sums necessary to their coverage.

Management of extreme events requires a special consideration over a
sufficiently wide perrod to accurately gauge their impact and whole effects
(Coles, 2001). While up to now the Pareto distribution was commonly em-
ployed to modeling the tails of loss severities, adjustments with Extreme Va-
lue Theory (EVT)-based distributions significantly improve tail distribution
inference and analysis

EVT proVides insurers with a useful tool to manage risks (Embrechts et aI.,
1997), for it allows a statistical-based inference of extreme values in either
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a population or a stochastic process, and hence a more ac-
curate probability estimation of more extreme events than
the historical ones. By modeling extremes aside the glo-
bal sample data, EVT captures high values at the tail (out-
liers) and situalions exceeding the records, not needing to
turn to the global distribulion of the data observed. Con-
sequently, the study of extreme risk preserves insurers' sta-
bility and solvency when facing the occurrence of extreme
losses. The application of statistical models helps to more
precisely measuring risks and optimally deciding on capi-
tal requirements, reserving, pricing and reinsurance layers.

Similarly to McNeil and Saladin (1997), McNeil (1997), Em-
brechts et al. (1999), Cebrian et al. (2003), or Watts et a!
(2006), we illustrate the possibilities of EVT by means of
an empirical study on the loss claims databases of two re-
presentative insurers operating within the Spanish motor
liability insurance market.

We underline the importance of analyzing largest losses,
not only for the reinsurer, but also for the direct insurer,
to accurately infer the occurrence of extreme events upon
historical information. Since uncertainty of major events
may be lowered with a limit distribution of extreme claims
ascertaining both their probabilities and return periods,
extreme-modeling-based Inference becomes an additional,
valuable input to the information system supporting each
insurer's solvency decision-rnakinq process (i.e., within the
Solvency II framework).

The remainder of the paper is organized as follows. Section
2 summarizes those EVT results underlying our modeling
Section 3 describes the sample databases of two Spanish
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motor-liability Insurers and presents some preliminary re-
sults on the historical losses of each company. Section 4
models the extreme events analyzed. Section 5 applies our
modeling to approximate the reinsurance's risk premium as
well as two significant solvency-linked risk measures: the
VaR and the TVaR. Section 6 applies EVT as a manage-
ment tool Finally, Section 7 concludes.

2. THEORETICAL BACKGROUND: THE
GENERALIZED PARETO DISTRIBUTION
AND THE PICKANDS-BALKEMA-DE HAAN
THEOREM
Among EVT results, the Generalized Pareto Distribution is
a powerful tool to model the behavior of claims over a
high threshold, and in particular, to establish how extreme
they can be. In close connection. the Pickands-Balkerna-De
Haan theorem, another important result from EVT, states
that the distribution function (df) of excesses over a high
threshold may be approximated by the GPD (Beirlant et
al. 1996; Katz and Nadarajah, 2000; Reiss and Thomas.
2001; Embrechts, Kluppelberq and Mikosch, 1997; and De
Haan and Ferreira, 2006).

Let x"" X2." .... X,." be a sequence of independent ran-
dom variables with a common continuous distribution, the
peaks over a threshold method allows us to infer the dis-
tribution of the observed values once they become higher
than a threshold u.

Setting up a certain high threshold u, and being Xo the
right endpoint of the distribution
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Then, the function of excesses larger than /I is defined as

F(,}-F(,,)F"(x)::oF"("+II)~P(X-II:'5Y/X>U\- fOI" 0:5)":'5.\"0-"
. F I-FH .

where x represents the observed value (i.e. gross claim
loss in our study) and y stands for the excess over the
threshold u, i.e. Y~X-li.

With the value of the threshold being optimized, it is possi-
ble to fit F"(x) to a Generalized Pareto Distribution (GPO)
when II reaches a sufficiently high value:

F"(x)= P(X -u~yl X >u)"'W,(y) for o s Y < Xo
The GPO is a two parameter distribution with df:

I

1-(I+~j3Y)' ir~*O
W,p(Y) =

1- ex{- ; ) if ~ = 0

where Y 2: ° if ~ 2: 0, and if ~ > 0, with ~ and fJ being the
shape and scale parameters. When ~ > 0, we have the
usual Pareto distribution and the GPO is heavy-tailed, and
the higher the parameter the longer the tail. If ~ < 0, we
have a type II Pareto distribution, whereas ~ = ° gives the
exponential distribution.

3. DATABASES AND MODELING HYPOTHESES

Our analysis focuses on two representative Spanish insu-
rers' motor liability portfolios along a ten year-period. The
first one counts on a long, renowned business trajectory.

INNOVAR

The second exhibits a more recent history, although signi-
ficantly improved over the last years of the interval. The
diverse comparative situation of both companies raises
the quality of the sample, since their relatively divergent
situation allows a better study of extreme values in two
quite differentiated, but at the same time representative,
positions of a growing insurance Industry like the Spanish.
Data of each company have been distorted in order to
maintain their respective corporate identities undisclosed.

Two different concepts are assumed as forming the loss
amount:

• The cost of settled claims, summing all net payments
already made out

The cost of non settled claims, comprising all net pa-
yments already made out, and/or the reserves for the
estimated and still pending future payments.

Data have been updated to 2006 values to avoid the
effect of inflation.

Tables 1 and 2 display, on an annual basis, each company's
number of claims, together with their total and average in-
dividual costs in nominal currency units.

Data in Tables 1 and 2 indicate that both insurers lacked
of a stable average cost evolution, due mainly to three rea-
sons: the fact that the final cost IS Integrated by diverse
covers, the different settlement periods, and the occurren-
ce of extreme events.

Other Indicators are shown in Table 3 and 4 to describe the
behavior of the claims. Dividing claims over policies we ob-
tain a measure of the annual claim's frequency

The insurer A (Table 3) shows a lower frequency, between
14 and 16 percent, and a weighted average frequency of

TABLE 1. Insurer A. Number of claims, Total Cost and Average Cost

YEAR NUMBER OF CLAIMS TOTAL COST ANNUAL VARIATION (%) AVERAGE COST ANNUAL VARIATION (%)

310,270 24,702.27 0.0796

2 352,993 30,702.49 24.290 0.0870 9.247

3 394,839 34,616.64 12.749 0.0877 0799

4 433,610 40,367.71 16614 0.0931 6.187

5 484,456 40.389.66 0.054 0.0834 -10.447

6 504,635 42,707.52 5.739 0.0846 1.511

7 561,777 48,359.70 13235 0.0861 1.717

8 589,369 52,649.06 8.870 0.0893 3.773

9 595,896 57,097.80 8.450 0.0958 7.262

10 602,477 61,580.81 7851 0.1022 6.673

Source: The authors

REV. INNOVAR VOL. 20, NOM. 36, ENERO·ABRIL OE 2010 37



TABLE 2. Insurer B. Number of claims, Total Cost and Average Cost

YEAR NUMBER OF CLAIMS TOTAL COST ANNUAL VARIATION (%) AVERAGE COST ANNUAL VARIATION (Ofo)

2,099 65,487 31.20

2 5,697 182,745 179 32.08 2.84

3 9,400 284,724 56 30.29 -5.58

4 11,569 375,414 32 32.45 7.13

5 13,717 444,348 18 32.39 -0.17

6 16,397 585,843 32 35.73 10.29

7 20,923 831,326 42 39.73 11.21

8 28,039 1,177,518 42 42.00 5.69

9 34,415 1,408,682 20 40.93 -2.53

10 39,501 1,774,348 26 44.92 9.74
SOUtC~:the avthots

TA8LE 3. Insurer A. Claims I Total policies

NUMBER ANNUAL VARIATION NUMBER ANNUAL VARIATION CLAIMS/POLICIES
YEAR

OF CLAIMS (Ofo) OF POLICIES (%) RATIO (%)

1 310,270

2 352.993 13.770 2.602,900 13.562

3 394,839 11.855 2,886,100 10.880 13.681

4 433,610 9.819 3,042,000 5.404 14.254

5 484,456 11.726 3,172,400 4.287 15.271

6 504,635 4.165 3,291,900 3.766 15.330

7 561,777 11.323 3,488,700 5.978 16.103

8 589,369 4.912 3,696,200 5.946 15.945

9 595,896 1.107 3.948,200 6.820 15.093

10 602,477 1.104 4,147,600 5.049 14.526

Source: The authors.

TABLE 4. Insurer B. Claims I Total policies

YEAR
NUMBER OF ANNUAL VARIATION NUMBER OF

CLAIMS (%) POLICIES

1 2,099 0

2 5,697 171.34 7,913

3 9,400 65.01 14,207

4 11,569 23.08 18,454

5 13,7 17 18.56 22,300

6 16,397 19.54 28,564

7 20,923 27.60 41,027

8 28,039 34.01 59,467

9 34,415 22.74 78,297

10 39,501 14.78 93,444

SOUfCe:The authors.

ANNUAL VARIATION
(%)

CLAIMS/POLICIES
RATIO (010)

12.00

79.54 66.16

29.90 62.69

20.84 61.51

28.09 57.40

43.63 51.00

44.95 47.15

31.67 43.95

19.35 42.27

14.93 percent in the last 9 years Its position Within the
Spanish market is solid and deviations from the average
are not strong. The history of the insurer B (Table 4), on the
other hand, is less consolidated, with a higher weighted
average loss frequency (45.13 percent) only over the last
four years of the interval. Nevertheless, the claims frequen-

cy over the portfolio is decreasing as the number of poli-
cies in portfolio grows'.

The decreasing trend in the claim frequency has several reasons:
better underwriting rules, more restricted products and the portfo-
lio cleansing
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These descriptions and the specific features of the samples
gave us some clues for the modeling of the extremes in
both companies.

4. GPO ADJUSTMENT TO A SAMPLE OF
EXTREME CLAIMS WITHIN THE SPANISH
MOTOR LIABILITY INSURANCE MARKET

We develop in this section the para metrical modeling of
extremes for the insurers under study. These will be the
main steps:

1. Choose the optimum threshold to fit the GPD, by means
of the empirical mean excess function.

2. Estimate the model parameters according to the heavy-
tailedness of the distribution, with those estimators
that minimize the Mean Squared Error (MSE).

3 Check the goodness-of-fit to the underlying distribu-
tion with the Quantile-Quantile plot (QQ plot) and
some error measures.

4. Infer future extreme events under the estimated condi-
tiona' model.

5. Calculate the marginal probabilities and determine the
unconditional distribution.

Choice of the optimal threshold
Assuming sample data are independent and stationary,
the optrrnal threshold to fit the GPD results from the mean
excess function, e~t)=£[x -II I X > uJ. which is estima-
ted in practice with the empirical mean excess function,

FIGURE1. Insurer A. Mean Excess plot (Total. and Above 75)
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~ ~ 40 ~ 60 10 80 ~ 100 110 l~ l~ 140 l~
Source: The autholS
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where e" (X K +1) IS the mean of the excesses over the
threshold II = X '+' minus the selected threshold, and k is
the ordinal position in the descendent ordered data.

As discussed in Beirlant et al. (1996). data over a certain
value of II may reasonably be considered as heavy-tailed
if the mean excess plot follows a growing trend. Since the
plot is linear with positive gradient, there exists a solid tra-
ce that our sample data will fit to a GPD with positive pa-
rameter.

At a sufficiently large sampling layer, say 25, the num-
ber of excesses of the insurer A is roughly 1,000, with the
mean-excess function plotted in figure 1 (left plot).

Figure 1 shows that the function is horizontal between 20
and 70, but straightens out at around 75, what Implies
that the value of 75 should be taken as the optimal thres-
hold (right plot) for the insurer A dataset, and hence that
excesses beyond (as many as 125) might fit to a GPD.

The mean excess function of the 1,000 largest claims cove-
red by insurer B over the ten year period analyzed is sket-
ched in the graphic below:

Figure 2 shows the plot of the pairs
(X,+,;£,.,,) for k = 1,... ,11-1

which have an Increasing trend from a quite low priori-
ty until 30,000 where unexpectedly become plain or even
decreasing for the highest thresholds. This means that va-
lues beyond 30,000 should not be chosen as the optimal
threshold to fit the insurer B dataset to a GPD. At a lower
threshold, for instance 10,000, the mean excess plot in Fi-
gure 3 exhibits a similar behavior to that observed in Figu-
re 2 (i.e., data describe an increasing trend right up to the
highest values).

However, the non growing-linearity of the function for the
upper observations, even when the priority is raised, calls
into question the suitability of the GPD to fit the insurer B

150

100

100 110 uo 130 140 ISO
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FIGURE2. Insurer B. Total Mean Excess plot

'000

10000

·'00

10000 ~oooo ;0000 .0000

Source: The authors,

dataset. It is worth then asking whether the sample extre-
me claims are heavy-tailed or not.

First of all, the QQ plot versus the exponential is useful to
address this question, as it permits us to establish both
the heavy-tailedness and the fit of the data to a medium-
sized distribution like the exponential distribution (McNeil,
1997).

The QQ plot should be expected to form a straight line if
the data fit to an exponential distribution. A concave cur-
vature will suggest a heavier-tailed distribution, whereas
a convex deviation would indicate, conversely, a shorter-
tailed distribution.

For the insurer A, the exponential QQ plot of excesses over
the optimum selected threshold (75) results to be:

FIGURE4. Insurer A. Exponential 00 plot
Exponential
QQ PLOT

6~----------------~

2

5 - - - - - - - - - - - - - - - - - - - - - - - - - -

4 ---------

3

1 -

oL---L------_--_----I
o 100 200 300 400

Empirical Quanliles

Source: 'he authors.

This QQ plot represents the pairs (X,.,,; ;::," (p)) , where
empirical Quantiles or rth order statistic X, " appear as es-
timates of the unknown theoretical Quantiles,
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FIGURE3. Insurer B. Mean Excess plot above 10.000
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Source- The authors

F,," (11: I) = F,,-' (p) = -In(1 ~. p) = X p' representing

the claim levels surpassed in _~ percent of the cases11+ I
Figure 4 shows that the sample data do not fit to the ex-
ponential distribution, since they describe a concave curve
rather than a straight line. Concavity, as already stated in
general terms, indicates in this specific context that the
data distribution is heavier-tailed,

As far as the insurer B is concerned, the exponential QQ
plot of the pairs (F,,-' (p), X,,,) for the percentiles

p = _( r ) and p = r - Yo IS plotted as follows:
n+l n+X

FIGURE5. Insurer B. Exponential 00 plot
Exponential QO PLOT

6 ~---------------,..--~: ..•..•..•..•..•..•
3·

2
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10.000 20.000 30.000 40000 50.000 60.000 70.000

Empirical Quantile

Source: The authors

500 The blue and red lines in Figure 5 represent the respective
cloud of points for each percentile, whereas the black line
contrasts whether regressions are linear or not.

The slight convex curvature of the adjusting lines with res-
pect to the bisector provides an evident indication that the
extreme values of the insurer B cannot properly be captu-
red by the exponential distribution. But the fact that tho-
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se lines are almost straight leads to think that the largest FIGURE6. Insurer A. GPD 00 plot
claims of the insurer S might not be as heavy as those of
the Insurer A. In such case. the GPD adjusting parameter,
although positive. would adopt a value very close to zero.

The outcomes of the QQ plot have been further verified
with the likelihood-ratio and the Hasofer-Wang tests, em-
ployed by the program XTREMES (Reiss et al, 2001) to
measure the data goodness-of-fit to the exponential dis-
tribution. Accordingly, the hypothesis of exponential tail
(null hypothesis) should be rejected if both tests yield va-
lues close to zero. whilst values near 1 shall determine the
non-rejection of the null hypothesis, and therefore, the as-
sumption that the tail distribution decreases exponentially.

After the verification was done, p-values of the insurer A
tests above the threshold 75 turned out to be 0.00000113
with the likelihood-ratio test, and 000000167 with the
Hasofer-Wang test. For the insurer S, p-values are 0.09
with the likelihood-ratio test, and 0.145 with the Hasofer-
Wang test.

Results of both companies lead to reject the null hypothe-
sis and consequently the exponential distribution as well
Nevertheless, for the insurer S, though p-values approach
to zero for observations above 10,000, the tests do not
result null, what requires deeper analysis when fitting the
parametric distribution.

Parameters estimation
Applying the program XTREME5 to fit the insurers A and S
sample claims to a GPD, and selecting the Drees-PlCkands
estimator for the insurer A, since it renders the lowest MSE,
we find that the adjustment of its 125 excesses over the
optimal threshold (75) yields ¢~0.488146, f3 ~ 13.0959
and I' ~75.1893 as parameter estimates.

The QQ plot reflects the goodness-of-fit between the empi-
rical Quantiles on the x-axis, and the theoretical Quantiles,

forp=r-K (1)
1I+}5

on the y-axis, in such a way that the closer the theoretical
value (blue line) approximates to the datasample (bisec-
tor), the more optimum the adjustment.

The QQ plot indicates an almost complete equivalence
between the empirical Quantiles and the GPD theoreti-
cal Ouantiles. The coefficient of determination (R-square),
0.9845, corroborates that the fitted distribution captu-
res 98.5 percent of all excesses beyond the threshold. The
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MSE value of 30.94 was the minimum compared to other
GPD fittings, thus indicating that the empirical values do
not significantly deviate from our theoretical projection,
Finally, the Relative Deviations Average (RDA) is virtually
null, reaching only 0,0168.

The linearity ofthe QQ plot, as well as the outcomes of the
diagnostic measures, reveal that, in the case of the insurer
A, the J25 most severe claims larger than 75 reliably fit to
a GPD with parameters ¢= 0.488146, f3 ~ 130959 and
1'= 75,1893.

As to the insurer S, conversely. we applied the XTREMES
algorithm to fix the optimal threshold, for although the
empirical mean excess function proves to be insufficient,
the QQ plot suggests that the extremes will likely fit to a
heavy-tailed distribution.

Maximum-likelihood was selected among a variety of esti-
mation methods since it minimizes both the MSE and the
RDA. Accordingly, the graphic below displays the estima-
ted parameter for the extremes under discussion:

FIGURE 7. Insurer B. ~ versus number of extremes

100 ~ 100 tOO ·00 ~ 30 ~o ~o l~O
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Source The authors.
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,
Figure 7 shows that a value around 0.4 is obtained for 500
observation, whereas the parameter becomes negative by
maximum-likelihood for less than 50 observations, what
implies a short-tailed distribution tendmg to a right endpo-
int, in strict coherence with the shift downwards displayed
by the mean excess plot, and leads to conclude that the
largest observations of the insurer B do not fit to a GPO.
And despite the fact that the dispersion of the major va-
lues reduces their goodness of fit, we apply the optimal fit
rendered by the software XTREMES, i.e. the 159 extreme
values over a threshold fixed at 11,908.

One may wonder if this non-increasing pattern atthe tail is
relevant enough to cast into doubt the adjustment of the
estimated GPO to the claims of the insurer Baver 11,908,
whose parameters are ;;~ 0.137872, fJ ~ 8,454.29 and
/1 ~ 11,908,

It is necessary, then, to check the GPO QQ plot, with the
estimated theoretical Quantiles resulting from:

. I fJ f( )--) 8.454.29 1.( j-O,1J7g7' )
1V!~II'!I(p):o..u+-Z~I-P "-I =11,908+ O.137872~I-p --1 =xp

I'
for, p~--

!1 + 1
(2)

As the next graphic reflects, the tail index c estimated by
maximum likelihood for those 159 observations remains FIGURE10. Insurer B. GPD00 plot
quite steady at around 0.1. 80000

FIGURE8. Insurer B. 4 for the largest 159 observations
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The mean excess plot of the insurer B at a threshold set at
11,908 shown in figure 9, exhibits a growing trend until
approximately 37,000, but stabilizes and even decreases
beyond.

FIGURE9. Insurer B. Mean Excess plot above 11.908
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For two similar series of claims (71,851 and 71,541; 54)92
and 54,420, respectively), the mean excess plot decreases
at the tail, what at the same time increases the goodness
measures (up to MSE ~ 1,274.388 and RDA ~ 0,0171)
and does not reduce effectiveness, for R'is still of an ac-
curate 99,32 percent. Moreover, disregarding the last ob-
servations, R' raises to 99.8 percent, while the goodness
measures significantly decrease (MSE ~ 194,556 and
RDA ~ 0.01469), as displayed in the next 00 plot.

FIGURE11. Insurer B. GPD OO-plot without the six
last observations
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Considenng the linearity of the QQ plot and the outcomes
of both MSE and ROA, the qcodness-of-fit of the esnma-
ted GPO to the extremes of the Insurer B seems entirely
reliable.

Goodness-of-fit

Based on the previous parameters estimation, the GPO
function of the insurer A is given by

I

W. (x\- 1-(1 + 0.488146 x x - 75.1893 J- 0.488146 (3)
,.p.p r 13.0959

where W stands for the truncated distribution function of
the exceedances over the threshold, while for the insurer B,
the GPO function is,

I

W, (X)=I_(1+0.137872XX
-
11,908J-O.I37872 (4)

--p.p 8 454 ;9, .-

Together with the previous test to check the GPO good-
ness-of-fit to the 125 adjusted values of the insurer A, we
compare the estimated GPO distnbution with the empirical
distribution function represented by the pairs

(c t (e)), where t (e) = .!.. x '\' I(v -: .)
, tJ 1/ n L.Ji~1I /li-(

FIGURE 12. Insurer A. GPD goodness-of-fit
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Source: The authors

The plot shows a virtual coincidence between both distri-
butions, what suggests an accurate capture of the claims
exceeding the optimal threshold (75). Nevertheless, it
seems that the theoretical distribution (black line) at the
tail shows values slightly lower than those of the empirical
ones (red line). Future claims will lead us to a more accu-
rate adjustment.
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With respect to the insurer B, the graph below reflects that
claims larger than the optimal threshold (11,908) perfectly
fit to the previously calculated GPO:

FIGURE13. Insurer B. GPD goodness-of-fit
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Source: The authors

Conditionol inference and prediction

Some relevant solvency-based probabilities are calculated
in this Section, on the baSISof both the estimated GP df
and the estimated GP survival function.

As far as the insurer A is concerned, we find that, say, 99
out of the next 100 claims over the threshold will cost less
than 350, whilst the other 1 will cost more:

TABLE 5. Insurer A. Some relevant probabilities

X /1.111. W'(\) (%j 1-W'(r)(%)

100 73.8536 26.1464

150 93.4693 6.5307

250 983950 1.6050

350 99.2967 0.7033

Our finding for the insurer B is that, say, 970 out of the
next 1,000 claims exceeding the layer fixed at 11,908 re-
main under 50,000.

TABLE 6. Insurer B. Some relevant probabilities

r III C.II. W"(\) (%) I-IV'(\)(%)

25,000 75428 24.572

50.000 96.994 3.006

100,000 99843 0.157

150.000 99.981 0.019

200,000 99.996 0.004
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The Inverse of the Insurer A probability function generates
the estimated theoretical Quantile function (equation (1))
that makes It possible to perform the following relevant
calculations in terms of solvency,

TABLE 7. Insurer A. Return frequency and
amortization levels

P [%J
RETURN fREQUENCY AMORTIZATION LEVEL

(l/l-P) [X,)

90 10 claims 130.914
95 20 claims 164.153

99 100 claims 302.387
99.9 1,000 claims 830.032

resulting that, for instance, an excess of 75 with probabili-
ty 99 percent will not cost more than 302.387, while lout
of 100 claims over the threshold will probably surpass the
reference value of 302.387.

Applying the equation (2) to the insurer B, we find that
excesses over a threshold set at 11,908 will cost less than
66,291, with a probability of 99 percent This means that
100 claims overthe threshold will have to occur to find one
larger than 66,291 c. u

TABLE 8. Insurer B. Return frequency and amortization
levels

P[%)
RETURN fREQUENCY AMORTIZATION

[1/1-P) LEVEL (X,)

90 10 claims 34,819
95 20 claims 43,266
99 100 claims 66,291

99.9 1,000 claims 109,522

FIGURE 14_ Insurer A_ Claim frequency per policy
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Solvency Unconditional inference and prediction
By properly approximating the conditional probabilities
and Quantiles as done before, insurers will be able to es-
timate the unconditional ones and take optimal decisions
on free funds, solvency margins and reinsurance cession.

The probability p' of an extreme over an amount (X) ha-
ppening results by multiplying the GPD-adJusted condi-
tional probability of claims over a certain threshold, but
can also be obtained as the ratio between the number of
events (insurer A: 125; insurer B: 159) over the threshold
(Insurer A: 75; insurer B: 11,908) and the total claims oc-
curred in the respective portfolios over the ten year period
(insurer A: 48,304; insurer B: 181,757):

Insurer A: pC' > 75)=~=0002588
48,304

( )
159Insurer B p .r > 11,908

181,757
At this stage, a key question to determine the capital re-
quirements lies in calculating the expected number of
claims over a certain threshold over the next year. This is-
sue may be solved by extrapolating onto the next year ei-
ther the historical number of claims or the historical loss
occurrence frequency per policies, or even by assuming a
Poisson distribution.

0.0000875

The claim frequency per policy was very stable in the case
of the insurer A: It remained within a short range of bet-
ween 13 and 16 percent over the last nine years, (shown
in y-axis right).

and has gradually decreased, in the case of the insurer B,
due to the strong growth of its portfolio over the last four
years, finally stabilized at levels around 40 percent (y-axis
right):

20%

19%

18%

17%

16%

15%

14%

13%

12%

11%

10%
6 7 8 9 10

@ 'Number of policies c::=::::J Total number of claims -- Claims by policy
Source The authors
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FIGURE 15. Insurer B. Claim frequency per policy
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Past tendencies of the insurer B, however, will not probably
be extrapalable to the close future and the recent behavior
will more likely be explicative of the following years.

If we take the historical claim's number of the insurer A (in-
surer B) to infer forthcoming frequencies, what was done
by means of a linear adjustment with R' = 95.93 percent
(R' ~ 99.55 percent for the last five years), we find that:

Between 6,250 and 6,680 (45,765) claims are expected
to occur as a global number and 16 or perhaps 17 (40)
out of them are expected to exceed the threshold u set at
75 (11,908). 50, being ii, the expected number of large
claims higher than u:

InsurerA: -A -~ 6J50~16J Ii ,I =~x6,680=17.3
11" - 48,304 x ,- - ,-, ~ 48.304

Insurer B: 1/ =~x45.765=40
, 181,'/57

Alternatively, if we extrapolate the portfolio and the claim
frequency per policy (red line in figures 16 and 17) of the
insurer A (insurer B), with linear adjustment R' = 98.9 per-
cent (R' ~ 99.67 percent, considertng only the last five
years), and apply it to the weighted mean claim frequency
("weighted" mean the loss frequency of the last five years),
the expected total number of claims reaches as much as
6,390 (51,071).

This number remains, as regards the insurer A, within the
interval previously established, even for the largest claims (
li,~~ 16.5), whilst the estimation is slightly more pessimistic
for the insurer B, since its expected claim frequency over
the next year will probably be lower than the average of
the last five years (,;,~= 44.7 - 45).

Finally, if the choice IS to assume a Poisson distribution,
its parameter turns out to be X·, = 12.5 for the insurer A.
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Selecting this value as the average number of claims is
feasible, as the number of claims above the threshold 75
remained stable over the time, and also due to the fact
that the mean and variance of the distribution are similar
It would not be valid to assume, by contrast, 15.9 as the
average number of claims for the insurer B, since its num-
ber of claims exceeding the threshold gradually increased
over the years, and the variance of the distribution stands
quite above the mean.

TABLE 9. Insurers A and B. Number of claims over the
threshold

INSURER A INSURER B

YEAR
NUM8ER OF

CLAIMS OVER 75
YEAR

NUMBER OF CLAIMS
OVER 11,908

11

2 12 2 9

3 10 3 8

4 15 4 15

5 13 5 11

6 16 6 17

7 14 7 17

8 8 8 21

9 7 9 25

10 19 10 35

Total 125 Total 159

Mean 12.5 Mean 15.9

Variance 13.6 Variance 92.54

With respect to the insurer A, and assuming a Poisson d.s-
tribution, one may expect as much as 18 claims excee-
ding the threshold (fixed at 75) over the next year, with a
95 percent level of confidence PIl)n=18) = 0.948. Such
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approximation renders a more slightly pessimistic projec-
tion. For this reason, and according to the principle of
prudence, 18 will be assumed as the expected number of
claims larger than 75.

Then, extremes larger than 75 expected to exceed a loss
amount of, say, 350, over the next year can be quantified
as follows:,

17;" pCr > 350 I x > 75)= 18·0.007033= 0.1266.

As far as the insurer B ISconcerned, a conservative appro-
ach suggests that the number of claims larger than 11,908
fits to a Poisson distribution if, and only if, ,i is taken as
the highest number of claims among those observed over
the ten year interval (that is, 35). Under such assumption,
the expected number of claims above 11,908 will equal 45,
with a notable 95.75 percent level of confidence.

Since this approximation yields very similar results to those
obtained by extrapolation based on the number of poli-
cies, the principle of prudence leads to assume the latter as
the expected number of claims larger than 11,908. Subject
to those conditions, extremes over 11,908 expected to ex-
ceed 50,000 over the next year will be

17:' pCr > 50,000 I x > I ],908)= 45· 0.03006 = 1.35

Conversely, and assuming the hypothesis Ii: = ] 8 and
,i,~= 45. it ISpossible to useequations (1 ) and (2) to calculate
the expected loss amount X, given a certain return period.

For the Insurer A (insurer B), Table 10 indicates that the
amount 1,509 (146,147) will not be exceeded with 0.5
percent (1 percent) probability over the next year, and
reflects a return period of 200 (100) years for such kind
of claims.

Thus, we find that the expected amount for the IOu-year
return period of the insurer A is 2.24 times the expected
claim for the insurer B for its corresponding 100~year re-
turn period. These are the explanatory reasons:

The threshold of the insurer A is almost twice as much
as that of the insurer B.

• The tail index of the insurer A (and therefore its extre-
me claims-linked probabilities) is larger than the one
fitted for the insurer B.

5, APPLICATION TO THE XL REINSURANCE:
PARAMETRIC ESTIMATION OF THE NET
REINSURANCE PREMIUM
Excess of Loss reinsurance - XL covers a primary insurer
against losses over a certain amount, referred to as layer
(P). On the basis of its own risk portfolio, the reinsurer
must know exactly both the kind of severe losses assumed
and their best fitting model, since both factors will deter-
mine the reinsurance risk premium, RP" ~ E.cS).

Whereas ER(S) has traditionally been estimated in a non
parametric way upon the historical total loss, we propose
In this Section the use of a parametrrc EVT model to more
accurately perform such calculation.

Under the classical risk theory hypotheses, the expec-
ted total loss over a period is given by ER(S) ~ E(N) x
ER(X). An unbiased estimator of this average is (Reiss et
al., 2001)

SH(T)
E(S),,-
R T

that is, the quotient between the total loss amount oc-
curred along T periods SfT) and the number T of periods
considered.

(5)

However the reinsurance risk premium can be estimated
parametrically:

00 00

RR XL = ne . fxdF(x) = n, . f(x - P)dF(x),
p 0

where the number of claims larger than the threshold can
be estimated through a Poisson distribution, and the ex-
pected loss amount above the layer P, which is covered
by the reinsurer, results from the adjusted GPD as follows:

00

eF(u)=E(XIX>u)= fxdF"(x)

"
with dF" (x) = w (r) being the density function of the ad-
justed GPD.

INSURER A

TABLE 10. Insurers A and B. Return period and expected loss amount

RETURN PERIOD (liP') x
INSURER B

P' (oro) RETURN PERIOD (l/P') X

p> 5.0 20 years 107,230

p' = 2.5 40 years 122,938

p = 1.0 100 years 146,147

p': 0.5 200 years 165,757

J) = 5.0 20 years 523.08

p': 2.5 40 years 714.22

J) = 1.0

p': 0.5

700 years 1,089.8

200 years 1,509.1
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Nevertheless, since the reinsurance layer does not have to
coincide with the threshold of the optimized GPO, e; (1/)
can be estimated, under the necessary condition P > 1/, by

~
[xdF" (x)

E(XIX>p)~-,---/'_-
I-F"(p)

•
f.n,~x)dx
f'

1- W(p)

It is well known that reinsurers only cover that part of the
final cost corresponding to the expected excess over the
layer, that is, E [(X I X> P)-P]. Assuming that both the
occurrence moments and the loss amounts fulfill the con-
ditions of a compound Poisson process (Ie. W), with" de-
noting the average claims number over a period, and W
the GPO df of excesses above the layer P, the risk premium
appropriate to the subsequent period is

RPXL(p) = ;\ .m(W"p.p )

where m(W,p) stands for the expected value of the GPO,
with parameters (, fl, and layer P, such that

RPXL(f.,=J1, ·1(X-P)1V(X)~11,.E[(XIX>P}-P] (6)
f'

For instance, with layers Pt~350 and PR=50,000 the esti-
mated number of exceeding claims over the next year are,
respectively,

).A =- {leA. p(Y > 350 I X > 75)= /;/. (1-1V~50 ))= 18 X 0.007033 = 0.1266

and

I:IJ = {;,H p(r> 50,000 Ix > I L90S)= /;,~ . ~ - W~O,OOO»=45xO.OJ006= I ,35

with the expected average cost higher than the layer being.
J.rdF75

(.\")

E'(XIX>350) ~"=<t=="
1- F"(3S0)

,
J-m{350 )dr

.150 636.22
1- W(3l0)

and J x",~oooofie
50.000 65.715

]xdF11.'J08(X)

EIJ (x I X > 50.000) ~5=O.""C"",;-;;;;;_-,---_
1- F1I.QOS(50.000)

Consequently, the estimated risk premiums of each insurer
result to be

RP':W=J50) ~ 0.1266x (636.22 - 350)~ 36.235

and RP,~L(I'=50.0001 ~ 1.35 x (65,715- 50,000)= 21,25 7

By contrast, a non parametric estimation of the risk pre-
mium to be paid by the insurer B (for instance, following
the simple equation 7) renders as result 6,675.6. what im-
plies an underestimation of the reinsurer's risk premium.

Even assuming the historical behavior as non significant
(since six claims larger than 50,000 took place over the
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last four years), and applying the average cost times the
number of expected excesses

66.756
Expected cost =--= 11.126 c> R/~rt. = 1L126x 1.35= 15,050

6
the net premium would be 29.2 percent lower than that
estimated with parametric methods.

This leads to the loqical conclusion that non-parametric
methods should not be applied when the historical back-
ground available is insufficient, which is precisely the case
of the insurer A, with only one historic claim larger than
350

The adjustment of data on severe losses with EVT not only
appears relevant for the reinsurer. Knowledge on its own
extremes allows the direct insurer to optimally decide two
key questions: (a) either reinsuring the risk of losses over a
certain layer in exchange of a premium, or retaming a suffi-
cient financial capacity to accept claims over a certain loss
layer, (b) choosing the suitable thresholds for both cession
and retention.

6. EVT AS A MANAGEMENT TOOL

In the light of the imminent implementation of Solvency II,
insurers are developing growing efforts to determine their
optimal capital level, considering that a higher cession to
reinsurance (i.e. low priorities) involves a lower level of free
funds (less remuneration of the net worth), but also a lar-
ger cost to cover severe risks, and vice versa.

Under Solvency II, capital requirements (Solvency Capital
Requirement. SCR) will be statistically-based and suitable
to be determined through measures relying on both cost
distributions and risk percentiles (Dowd and Blake, 2006),
such as VaR and TVaR, which can be approximated by the
GPO distribution fitted as well.

These are the conditioned VaR and the TVaR with the ad-
justment of the GPO for a threshold optimized, respecti-
vely, at 75 (insurer A) and 11,908 (insurer B)

7. CONCLUDING REMARKS

Insurers and remsurers share a deep concern in accurately
estimating the probability of claims over a certain thres-
hold. Expertise in handling extreme risks is decisive to
determine that level of financial capacity required to assu-
ming or ceding extreme losses.

Our analysis of sample data from insurers operating within
the Spanish motor liability insurance market illustrates that
fitting a GPO to claims above a high threshold is a power-
ful tool to model the tail of severe losses.
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TABLE 11. Insurers A and B. Values of risk measures

INSURER A INSURER B

VAR TVAR VAR TVAR
CONDITIONED CONDITIONED

PROBABILITY, P(%) - -I '(XIX>")= y,,(<!. PROBABILITY, P(%)
, -I

E(X I x > v)= y"{x)Wc.B.,,( p ) = V W;;.B.,,( p) = V

90 130.91 208.65 90 34,819 48,273

95 164.15 274.57 95 43,266 58,056

99 302.39 543.90 99 66,291 84,.655

99.9 830.03 1561.7 99.9 109,522 133,830

contabilidad y finanzas

Classical approaches are good at modeling mass risks, but
not so much at capturing rare or extreme risks escaping
from the domain of attraction of the traditional distribu-
tions. Conversely, EVT has nothing to do with mass risk,
but renders a good performance when it comes to mode-
ling rare or extreme losses.

Not intending to overestimate the predictive properties of
EVT, but rather complement the traditional methods, we
show that a sale cost distribution cannot suitably model a
portfolio as a whole. Extreme losses require independent
modeling with self-specific distributions, so that the ad-
justment of classical models to blunted losses is more effi-
cient and less biased, and the fitting of extreme values
to the peaks refine the ultimate Inference wished by any
Insurer.

Whereas the classical risk theory appropriately determines
capital level for a certain probability of ruin, EVT does the
same with regard to the volume of funds necessary to at-
tend peak claims.

Being familiar with the behavior of extreme events allows
the insurer to decide either assuming or ceding them and,
as required by Solvency II, determine risk measures (such
as VaR or TVaR). At the same time, it permits the reinsu-
rer to asses the expectation of losses over a certain layer,
and hence the risk premium to perceive in exchange. As
we have illustrated in this paper, insurers must choose the
best option available in terms of cost of capital. That is, ei-
ther keeping a financial capacity to cover VaR or TVaR, or
paying an XL reinsurance premium.
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