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Abstract

An electron has a binary intrinsic property (spin “up” and
“down”) and can have binary shifts (move to the right
or left). Its spin can be combination of these two, and
can have moves that can be combinations of those two. It
can also be formed four pairs (intrinsic property, motion):
up-left, up-right, down-left, down right. Even combinations
of these four possibilities, which is an example of quantum
entanglement. Similarly, photons have a binary intrinsic
property, polarization.
John Clauser and Alain Aspect experimentally observed
that photon pairs can be in quantum entangled states
formed with their polarization states. The third 2022 Nobel
laureate in physics, along with the above researchers, Anton
Zeilinger, experimentally demonstrated that quantum
entanglement is applicable in information and quantum
communication. Such applications, along with the quantum
computing, quantum metrology, quantum microscopy, and
others technologies, are called the “second quantum
revolution”.
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Resumen

Un electrón tiene una propiedad intrínseca binaria
(espín “hacia arriba” y “hacia abajo”) y puede tener
desplazamientos binarios (moverse hacia la derecha o hacia
la izquierda). Su espín puede ser combinación de los dos
mencionados, y puede tener movimientos que pueden ser
combinaciones de dichos dos. También se pueden formar
cuatro pares (propiedad intrínseca, desplazamiento): arriba
hacia la izquierda, arriba hacia la derecha, abajo hacia la
izquierda, abajo hacia la derecha. Incluso combinaciones
de estas cuatro posibilidades, que es un ejemplo del
entrelazamiento cuántico. De manera similar, los fotones
tienen una propiedad intrínseca binaria, la polarización.
John Clauser y Alain Aspect observaron experimentalmente
que un par de fotones puede estar en estados cuánticos
entrelazados formados con sus estados de polarización.
El tercer premio Nobel de física 2022, junto con los
investigadores mencionados anteriormente, Anton Zeilinger,
demostró experimentalmente que el entrelazamiento
cuántico es aplicable en información y comunicación
cuántica. Tales aplicaciones, junto con la computación
cuántica, metrología cuántica, microscopía cuántica, y otras
tecnologías, se denominan “segunda revolución cuántica”.

Palabras clave: mecánica cuántica, entrelazamiento cuántico,
teleportación, pruebas de Bell, Premio Nobel.

Introduction

A theory of the periodic table of the chemical elements is not
possible without assuming the quantization of the energy of the
electrons in atoms and their orbital angular momentum. In
addition, it is required to attribute to the electrons a new type
of angular momentum, the spin. With these ideas, a model was
achieved that describes the main attributes of said table. It assigns
to each electron of a given atom a unique set of quantum numbers
(n, l, ml, ms). This is the shell model of the atom from which
the Mendeleev chemical periodicity can be obtained.
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The idea of probability is not foreign to classical mechanics. In
1838 Joseph Liouville presented a probabilistic version of it. In Les
Méthodes Nouvelles de la Mécanique Céleste by Henri Poincaré,
published 1892 - 1899, it is argued that most mechanical models
are intrinsically random. Therefore it is possible to replace the
description in terms of the trajectories of the individual particles
by one based on probability distributions.

What is new in quantum mechanics at this point consists
in the introduction of the complex probability amplitude
distribution whose modulus squared is the probability density
distribution. This a union of complex numbers, superposition
and probability, a concept strange in conventional mathematical
statistics.

Before the invention of quantum mechanics was known that
probability amplitudes provide models suitable for describing
interference and diffraction phenomena (colloquially called
“wave”).

A new definition of quantum mechanics is possible: “The
set of mathematical models that are deduced from the idea
of complex amplitude of probability and that are used to
interpret phenomena of microscopic scales”.

This represents a large separation from the models of the classical
mechanics.

The angular momentum in quantum mechanics

In three-dimensional motion, consider the quantization of the
orbital angular momentum and its projection on Z direction.
The result is,

L̂2 → ℏ2L(L+ 1), L = 0, 1, 2, ...

L̂z → MLℏ, ML = 0,±1,±2, ...± L
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The spin is an intrinsic angular momentum, not associated
with spatial motions, whose “L” takes value 1/2. Its quantization
is described by,

Ŝ2 → ℏ2S(S + 1), S = 1/2

Ŝz → MSℏ, MS = ±1/2.

The total angular momentum Ĵ = L̂ + Ŝ, the sum of one
orbital angular momentum and one of spin, according to quantum
mechanics, it is described with similar expressions,

Ĵ2 → ℏ2J(J + 1)

Ĵz → MJℏ, MJ = −J,−J + 1, ...J.

The quantum number J of the total angular momentum can
take values J = 1/2 if L = 0 and J = L± 1/2 if L ̸= 0.

Angular momentum quantum states

Two components of an angular momentum vector “do not
commute,” that means that they cannot be measured
simultaneously with high precision, they are subject to the
“uncertainty principle” (∆Lx∆Ly ≥ (ℏℏℏ2/2)|ML|). In this way,
the reality, so appreciated by Einstein, Podolski and Rosen [1],
in the case of this vector, is questioned, because the constancy
of angular momentum vector, expressed by [Ĥ, L̂] = 0, does not
translate into the simultaneous existence of its components. Using
the arguments of the EPR paper, we could say: “when the Z
projection and the magnitude of the angular momentum vector
are known, its X and Y projections have no physical reality.”

In fact, the square, L̂2, and an one of the components, for example
L̂z, commute, so they have simultaneous eigenstates. Such states
are vectors of a 2L + 1 dimensional Hilbert space which
can be labeled with the eigenvalues of those commuting operators,
|L,ML⟩.

For the case of orbital angular momentum:

L̂2|L,ML⟩ = ℏ2L(L+ 1)|L,ML⟩, L̂z|L,ML⟩ =MLℏ|L,ML⟩.
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For a spin 1/2, |1/2,MS⟩, with MS = ±1/2, the Hilbert space
is two dimensional:

Ŝ2|1/2,MS⟩ =
3

4
ℏ2|1/2,MS⟩, Ŝz|1/2,MS⟩ =MSℏ|1/2,MS⟩.

The Nobel prize 2022

The Nobel Prize in Physics 2022 was awarded jointly to Alain
Aspect (Institut d’Optique Graduate School - Université Paris-
Saclay and École Polytechnique, Palaiseau, France), John F.
Clauser (J.F. Clauser & Assoc., Walnut Creek, California,
USA) and Anton Zeilinger (University of Vienna, Austria) “for
experiments with entangled photons, establishing the violation of
Bell inequalities and pioneering quantum information science.”

In 1935, A. Einstein, B. Podolsky and N. Rosen argued that
quantum mechanics considers physical quantities which have not
reality, and therefore is an incomplete theory [1]. In 1964, J. S.
Bell proposed one experiment to decide if the EPR’s objection is
valid or not [2]. The purpose of the experiment was to prove if
some inequalities found by Bell, in order to test the existence of
hidden-variables, are violated, indicating that the EPR’s objection
is not valid.

In 1969, Clauser presented ideas about a possible experiment to test
local hidden-variable theories [3], which was performed, jointly with
S. J. Freedman, in 1972 [4]. Experiment “provides strong evidence
against local hidden-variable theories,” they say.

In 1975, Aspect proposed an experimental scheme to test
hidden-variable theories that satisfy the principle of separability
of Einstein [5]. Experiment was performed jointly with J. Dalibard
and G. Roger in 1982 [6]. They claimed that their results “are in
good agreement with quantum mechanical predictions and violate
Bell’s inequalities by 5 standard deviations.”

In 1992 C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.
Peres, and W. K. Wootters presented a theoretical proposal about
“teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels” [7]. With their proposal, “Bob
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can convert the state of his EPR particle into an exact replica of
the unknown state |ϕ⟩ which Alice destroyed,” they concluded.

Zeilinger, jointly with D. Bouwmeester, J.W. Pan, K. Mattle, M.
Eibl, H. Weinfurter, reported in 1997 one experimental realization
of quantum teleportation [8]. They concluded that “During
teleportation, an initial photon which carries the polarization that
is to be transferred and one of a pair of entangled photons are
subjected to a measurement such that the second photon of the
entangled pair acquires the polarization of the initial photon. This
latter photon can be arbitrarily far away from the initial one.
Quantum teleportation will be a critical ingredient for quantum
computation networks.”

Qubits

According to quantum mechanics, the state of a quantum system is
given by a vector of certain linear space, in general complex. The
simplest case is a system whose state space is a two-dimensional
Hilbert space, denoted by H. Two-dimensional means that any
vector, in Dirac notation, can be expanded into a pair of basis
vectors conventionally denoted |0⟩ and |1⟩. Complex means that
any vector |ψ⟩ of H can be expanded as a linear combination of
basis vectors with complex coefficients α and β,

|ψ⟩ = α|0⟩+ β|1⟩.

The norm of any vector |ψ⟩ in H is defined by

||ψ|| = ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1.

where
⟨ψ| = α∗⟨0|+ β∗⟨1|.

In the jargon of quantum mechanics ⟨ψ| is called “bra” and |ψ⟩ “ket”.
The scalar product of |ψ⟩ with other vector |ϕ⟩ = γ|0⟩+ δ|1⟩ is

⟨ψ|ϕ⟩ = α∗γ + β∗δ = ⟨ϕ|ψ⟩∗.

The scalar products of pairs of basis vectors are ⟨0|0⟩ = ⟨1|1⟩ = 1,
⟨0|1⟩ = ⟨1|0⟩ = 0.
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Linear operators, denoted like Â, transform the vectors of H,

|ψ⟩′ = Â|ψ⟩ = αÂ|0⟩+ βÂ|1⟩.

We can write Â|0⟩ = a00|0⟩+ a10|1⟩ and Â|1⟩ = a01|0⟩+ a11|1⟩.

Then,
|ψ⟩′ = (αa00 + βa01)|0⟩+ (αa10 + βa11)|1⟩ = α′|0⟩+ β′|1⟩.

This suggest associate to vector |ψ⟩ a 2-dimensional vector, and to
operator Â a 2×2 matrix, with complex components,

|ψ⟩ →
(
α
β

)
, Â→

(
a00 a10
a01 a11

)
,

(
α′

β′

)
=

(
a00 a01
a10 a11

)(
α
β

)
.

Bloch sphere

The expansion coefficients α, β of an arbitrary one-qubit state

|ψ⟩ = α|0⟩+ β|1⟩,

satisfy |α|2 + |β|2 = 1. Then, there exist θ and ϕ angles such that
α = cos θ

2 , β = eiϕ sin θ
2 , and a general state can be expresed by

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩.

Due to the action of Pauli matrices on the basis states is,

σx|0⟩ = |1⟩, σx|1⟩ = |0⟩,
σy|0⟩ = i|1⟩, σy|1⟩ = −i|0⟩,
σz|0⟩ = |0⟩, σz|1⟩ = −|1⟩,

then the average of Pauli matrix σx in this state is

σx = ⟨ψ|σx|ψ⟩ = (eiϕ + e−iϕ) cos
θ

2
sin

θ

2
= sin θ cosϕ,

and σy = sin θ sinϕ, σz = cos θ. This means that {σx, σy, σz} are the
cartesian coordinates of a point on the surface of one sphere of radius
one. See Figure 1.
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Figure 1. Bloch sphere. Points on the surface represent one-qubit states |ψ⟩.
Blue arc represents a one-qubit gate. Google Image.

Physical implementation of qubit gates

Let be a single-particle system formed by one 1/2 spin. In quantum
mechanics, it can be described by the spin commuting operators ŝ2, ŝz
and the correspondig eigenstates |1/2,ms⟩, for ms = ±1/2.

Components of vector spin operator ŝ are related to Pauli matrices

ŝx =
ℏ
2
σx, ŝy =

ℏ
2
σy, ŝz =

ℏ
2
σz.

Action of Pauli σx matrix on the spin states |s,ms⟩,

|0⟩ ≡ |1/2,1/2⟩ =
(

1
0

)
, |1⟩ ≡ |1/2,−1/2⟩ =

(
0
1

)
,

is

σx|0⟩ =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩.

σx|1⟩ =
(

0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0⟩.

σx produces the logical operation NOT.

Similarly,

σy|0⟩ = i|1⟩, σy|1⟩ = −i|0⟩, σz|0⟩ = |0⟩, σz|1⟩ = −|1⟩.
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If are defined ŝ± = ŝx ± iŝy, it is noticed that

ŝ+ =
ℏ
2

[(
0 1
1 0

)
+ i

(
0 −i
i 0

)]
= ℏ

(
0 1
0 0

)
,

ŝ− =
ℏ
2

[(
0 1
1 0

)
− i

(
0 −i
i 0

)]
= ℏ

(
0 0
1 0

)
.

Then
ŝ+|0⟩ = 0, ŝ+|1⟩ = ℏ|0⟩, ŝ−|0⟩ = ℏ|1⟩, ŝ−|1⟩ = 0.

In terms of Pauli matrices, defining σ± = σx ± iσy,

σ+|0⟩ = 0, σ+|1⟩ = 2|0⟩, σ−|0⟩ = 2|1⟩, σ−|1⟩ = 0.

Any transformation of points of the Bloch sphere can be used as a
one-qubit quantum gate. See Figure 1. Phase and Hadamard gates
are examples.

Several Qubits Systems: Quantum Entanglement

Two-qubit states

Let be two single-qubit systems, A and B. Each of them has an associated
Bloch sphere whose points represent states |ψ⟩A = α|0⟩A + β|1⟩A and
|ϕ⟩B = λ|0⟩B + µ|1⟩B, respectively. States of the composite quantum
system “A+B” can be defined, they are linear combinations of the
orthogonal basis formed by direct product of the basis vectors of the
individual single-qubit systems, {|0⟩A, |1⟩A} and {|0⟩B, |1⟩B}

|Θ⟩AB = c00|0⟩A⊗|0⟩B + c01|0⟩A⊗|1⟩B + c10|1⟩A⊗|0⟩B + c11|1⟩A⊗|1⟩B.

Direct product of |ψ⟩A and |ϕ⟩B gives,

|ψ⟩A⊗|ϕ⟩B = αλ|0⟩A⊗|0⟩B+αµ|0⟩A⊗|1⟩B+βλ|1⟩A⊗|0⟩B+βµ|1⟩A⊗|1⟩B.

Then, |Θ⟩AB can be written as a direct product if

c00c11 = c01c10,

or (αλ)(βµ) = (αµ)(βλ).

The following two-qubit states, called Bell states, can not be “factorized,”
are called “entangled” states,
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|Φ+⟩ = 1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

|Φ−⟩ = 1√
2
(|0⟩A ⊗ |0⟩B − |1⟩A ⊗ |1⟩B)

|Ψ+⟩ = 1√
2
(|0⟩A ⊗ |1⟩B + |1⟩A ⊗ |0⟩B)

|Ψ−⟩ = 1√
2
(|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B)

In |Ψ+⟩, for example, c00 = c11 = 0 and c01 = c10 = 1/
√
2, gives

c00c11 ̸= c01c10.

Entanglement

Examples of two-qubit entangled states are the Bell states, which can be
written with a simplified notation as,

√
2|ϕ±⟩ = |00⟩ ± |11⟩,

√
2|ψ±⟩ =

|01⟩ ± |10⟩. The four binary pairs of symbols (ψ,+), (ψ,-), (ϕ,+),
(ϕ,-), can be expressed by using two bits (x, y) as follows, (ψ,+) =
(1,0), (ψ,-) = (1,1), (ϕ,+) = (0,0), (ϕ,-) = (0,1). These four quantum
states can be produced by using the 1-qubit Hadamard gate and 2-qubit
CNOT gate [9],

|xy⟩ = ĈNOTĤ1|x, y⟩.

A general 2-qubit entangled state is

|E⟩ = cos θ|0x⟩+ sin θ|1x⟩,

which give Bell states when θ = ±π/4, and separable states if θ = 0 or
θ = π/2.
Many-qubit pure quantum states can be clasified according to their
degree of entanglement. In the two-qubit case, an index whose value is 0
for unentangled states and 1 for the maximally entangled states can be
defined. The entropy of entanglement, the concurrence, the quantum
discord, the entanglement of formation, the entanglement cost, the
distillable entanglement, the squashed entanglement, the log-negativity,
the robustness monotones, the greatest crossnorm, are some of those
entanglement measures [9]. For example, the von Neumann entropy of
state |E⟩ is 1 for θ = ±π/4, and 0 for θ = 0 or θ = π/2, and between 0
and 1 for some other values of θ.
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Bell inequalities

For brevity we write the Bell state |Ψ−⟩ as
√
2|Ψ⟩ = |01⟩ − |10⟩.

Originally, Bohm and other who were analyzing the EPR problem,
thinked in a source emitting a pair of spin 1/2 particles in this entangled
state. Then, we could write the state in this form,

|Ψ⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩),

in order to represent the spin states with projection parallel or
antiparallel to Z axis.

It is evident that there is nothing that intrinsically favours the Z axis.
If we had chosen another direction, n̂, instead of the south-north line of
Bloch sphere to project the spins, we could write the pair of entangled
spins in this form,

1√
2
(| ↑n̂↓n̂⟩ − | ↓n̂↑n̂⟩).

The polar angles of vector n̂ in the Bloch sphere can be used to expand
the new pairs in terms of spins aligned or antialigned along Z axis,

| ↑n̂⟩ = cos
θ

2
| ↑⟩+ eiϕ sin

θ

2
| ↓⟩, | ↓n̂⟩ = − sin

θ

2
| ↑⟩+ eiϕ cos

θ

2
| ↓⟩.

Except for a global phase factor eiϕ, it is found that

|Ψ⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩),= 1√

2
(| ↑n̂↓n̂⟩ − | ↓n̂↑n̂⟩).

Measurements of the spin projection of A and B can be performed by
using sets of measurement operators of the form (| ↑⟩⟨↑ |, | ↓⟩⟨↓ |) or
(| ↑n̂⟩⟨↑n̂ |, | ↓n̂⟩⟨↓n̂ |). For example,

| ↓A⟩⟨↓A |Ψ⟩ = | ↓A⟩⟨↓A | 1√
2
(| ↑A⟩| ↓B⟩ − | ↓A⟩| ↑B⟩) = − 1√

2
| ↓A⟩| ↑B⟩.

If now is performed a measurement of spin B, it is found that it is
in state | ↑B⟩ with probability 1. If spin A is measured with result
down, that measurement projects |Ψ⟩ on a state where spin B is up.
Analogous results are obtained if measurements of spin projection, along
any axis, are performed: in all cases, the results of measurements of spin
projections along any axis are anticorrelated.
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It is easily proven that measurements | ↓⟩⟨↓ | and | ↓n̂⟩⟨↓n̂ |, for A or B,
do not commute, for any direction n̂ different from Z. Then, according
to the objection raised by EPR, individual spins cannot be assigned
a definite direction, that is, such a direction has no physical meaning
for any of them. In order to recover that meaning, they consider that
quantum mechanics needs some “hidden-variables” in order to deal with
physical realities independent of the choise of measurement operators.

The ambiguity of the entangled state regarding the choice that A can
make of a measurement operator within infinite possibilities and thereby
affect the alignment of spin B, is what leads EPR to question the reality
of said alignment.

In 1964 Bell found an inequality that must hold if the spin alignments
are physical realities independent of the measurements. That is, if there
are hidden-variables.

He considered three directions for measuring such alignments,
corresponding to spin A and spin B. If measured along the n̂-axis and
obtained upward, the result is said to be n̂+, and similarly for the other
measurements. As there are 3 axes and two possible results for each one,
there are 23 = 8 possible observations, which are shown in the table.
The axes are called m̂, n̂, ô.

Bell proposed an experiment which consists in measuring all the 8
possible alignements and results.

Measurements A B

N1 (m̂+, n̂+, ô+) (m̂−, n̂−, ô−)
N2 (m̂+, n̂+, ô−) (m̂−, n̂−, ô+)
N3 (m̂+, n̂−, ô+) (m̂−, n̂+, ô−)
N4 (m̂+, n̂−, ô−) (m̂−, n̂+, ô+)
N5 (m̂−, n̂+, ô+) (m̂+, n̂−, ô−)
N6 (m̂−, n̂+, ô−) (m̂+, n̂−, ô+)
N7 (m̂−, n̂−, ô+) (m̂+, n̂+, ô−)
N8 (m̂−, n̂−, ô−) (m̂+, n̂+, ô+)

Due to measurements of spin projections of A and B are anticorrelated,
if A particle belongs to the group (m̂−, n̂+, ô+), then necessarily
measurements of B must to be into the group (m̂+, n̂−, ô−).

If p(m̂+, n̂+) is the probability of measuring projection of spin A
along m̂ axis obtaining up and measuring projection of spin B along
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n̂ obtaining up, and if the total number of measurements is NT =
N1 + ...N8, then

p(m̂+, n̂+) =
N3 +N4

NT
.

Similarly,

p(m̂+, ô+) =
N2 +N4

NT
, p(ô+, n̂+) =

N3 +N7

NT
.

Then, we note that N3 +N4 ≤ (N3 +N7)+ (N4 +N2). Dividing by NT ,
one gets the Bell inequality,

p(m̂+, n̂+) ≤ p(m̂+, ô+) + p(ô+, n̂+).

The corresponding quantum calculations require considering probability
amplitudes.

Quantum evaluation of probabilities of Bell inequality

If measurement of projection of spin A along m̂ axis gives +, then spin
state of B along that axis will be −. Now, the probability amplitude of
a measurement of projection of spin B along n̂ with result + will be

⟨↑n̂ | ↓m̂⟩.

The involved states are

| ↑n̂⟩ = cos
θ

2
| ↑⟩+ eiϕ sin

θ

2
| ↓⟩, | ↓m̂⟩ = − sin

θ′

2
| ↑⟩+ eiϕ

′
cos

θ′

2
| ↓⟩,

where the angles of vector m̂ are θ, ϕ, and those of vector n̂ are θ′, ϕ′.
An straightforward calculation gives

|⟨↑n̂ | ↓m̂⟩|2 = sin2
θm̂n̂

2
,

where θm̂n̂ is the angle between axes m̂ and n̂.
Measurement of alignment along any direction has probability 1/2 of
resulting + and probability 1/2 of resulting −. This means that

p(m̂+, n̂+) =
1

2
sin2

θm̂n̂

2
.

Similarly can be evaluated the other probabilities involved in the Bell’s
inequality, which in the quantum case takes the form

sin2
θm̂n̂

2
≤ sin2

θm̂ô

2
+ sin2

θôn̂
2
.
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We can choose the axes m̂, n̂, ô in such a way that that they are in the
same plane and

θm̂n̂ = 2θ, θm̂ô = θôn̂ = θ.

Then

sin2 θ ≤ sin2
θ

2
+ sin2

θ

2
, or sin2 θ ≤ 2 sin2

θ

2
, or 2 cos2

θ

2
≤ 1.

Clearly the inequality is violated for 0 < θ < π/2.

Quantum Teleportation

Let’s suppose that Alice and Bob share a pair of entangled states,
which we suppose is the |ψ+⟩. Each store its qubit, by using a device
to protect it from decoherence, and without measuring it to know if it is
in the state |0⟩ or |1⟩.

Alice owns another qubit, |η⟩a = α|0⟩+β|1⟩ and needs to send it,
but not through a quantum channel but by sending a few ordinary bits
through conventional communication networks. Note that she cannot
send α and β, because she does not know them, and also because they are,
in general, irrational numbers, their encoding would require an enormous
number of bits.

Quantum teleportation is a means to do this task which uses the
entangled state shared with Bob.

There are 3 qubits, |η⟩a and the Bell pair |ψ+⟩AB. We use “a” and “A”
to designate the qubits that Alice has and “B” that of Bob. Then, the 3
qubit system is

|η⟩a ⊗ |ψ+⟩AB = (α|0⟩a + β|1⟩a)⊗
1√
2
(|0⟩A ⊗ |1⟩B + |1⟩A ⊗ |0⟩B).

It can also be written as follows,

1√
2
α(|0⟩a|0⟩A|1⟩B + |0⟩a|1⟩A|0⟩B) +

1√
2
β(|1⟩a|0⟩A|1⟩B + |1⟩a|1⟩A|0⟩B).

Alice owns a device to create a Bell state with her two qubits [9],

|xy⟩aA = ĈNOTĤa|x⟩a|y⟩A.

Of course, she can obtain 4 possible Bell, because she don’t know if her
qubits are |0⟩a|0⟩A, |0⟩a|1⟩A, |1⟩a|0⟩A, or |1⟩a|1⟩A.
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Due to |0⟩a|0⟩A =
1√
2
(|ϕ+|aA + |ϕ−|aA),

|1⟩a|1⟩A =
1√
2
(|ϕ+|aA − |ϕ−|aA),

|0⟩a|1⟩A =
1√
2
(|ψ+|aA + |ψ−|aA),

|1⟩a|0⟩A =
1√
2
(|ψ+|aA − |ψ−|aA),

the 3-qubit state can be written in the form
1

2
|ψ+⟩aA(α|0⟩B + β|1⟩B)+

1

2
|ψ−⟩aA(α|0⟩B − β|1⟩B)+

1

2
|ϕ+⟩aA(α|1⟩B + β|0⟩B)+

1

2
|ϕ−⟩aA(α|1⟩B − β|0⟩B).

Now, Alice can determine the Bell state of her two qubits. By applying

ĤaĈNOT |xy⟩aA = |x⟩a|y⟩A,

she obtains the two qubits |x⟩, |y⟩ which specify the Bell state. From
each pair are obtained the bits (0, 0), (0, 1), (1, 0), (1, 1), with equal
probabiliy, 1/4.

Those measurements performed by Alice “collapse” the 3-qubit state in
one of the four components. If she measures |ψ+⟩aA, |ψ−⟩aA, |ϕ+⟩aA, or
|ϕ−⟩aA, the qubit of Bob will be prepared into the state α|0⟩B + β|1⟩B,
α|0⟩B − β|1⟩B, α|1⟩B + β|0⟩B, or α|1⟩B − β|0⟩B, respectively, but he
ignores the precise qubit.

If Alice send the two bits (x, y) through a conventional communication
network, Bob can determine the precise qubit. If he receives (0, 0), his
qubit is α|1⟩B + β|0⟩B, which is converted in a qubit identical to the
|η⟩a, that is α|0⟩B + β|1⟩B, by appliyng σx to his qubit. Analogously, if
he receives (0, 1), he must to do nothing, if (1, 0), he must to apply iσy,
and if (1, 1), he must to apply σz. See Figure 2.

Grover’s Search Algorithm

The theory of quantum information physics has reached a great level of
maturity [10]. Here we will review a quantum algorithm which shows
some of these ideas.
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Figure 2. Quantum circuit to perform the quantum teleportation scheme.

If you want to find the position occupied by a number y in a list made
up of N numbers, a conventional algorithm requires making the order of
N/2 queries to the list of data. Grover’s algorithm allows to find y with
only order of

√
N operations.

The database consists of a list of n-bit numbers, with a maximum size
of N = 2n numbers x ∈ {0, 1, 2, ...2n − 1}. One of those numbers is the
searched y. Then, one can define a binary function which evaluates f(x)
as 0 if x ̸= y and 1 if x = y,

f(x) = δxy.

The quantum algorithm requires to store one x, given in binary basis by
one string of n zeros and ones x0x1...xn−1, into a quantum state of n
qubits,

|x⟩ = |x0⟩ ⊗ |x1⟩ ⊗ ...|xn−1⟩ ≡ |x0x1...xn−1⟩. xi = 0 or 1.

We define the oracle operator Ô as follows,

Ô|x⟩ = (−1)f(x)|x⟩,
and one operator with eigenvalue 1 when acts on the state |0⟩ and −1
when acts on the n-qubit state |x⟩ for x ̸= 0,

F̂c|x⟩ = −(−1)δx0 |x⟩ = (2|0⟩⟨0| − Î)|x⟩.
The Grover’s operator is defined by

Ĝ = Ĥ⊗nF̂cĤ
⊗nÔ.

Let be the initial state |Ψ⟩ an equal weigth superposition of all the states
|x⟩,

|Ψ⟩ = 1√
N

N−1∑
x=0

|x⟩ = 1√
N

1∑
x0=0

1∑
x1=0

...
1∑

xn−1=0

|x0⟩|x1⟩...|xn−1⟩ = Ĥ⊗n|0⟩⊗n,
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where it was used that N = 2n and Ĥ|0⟩ = (1/
√
2)(|0⟩ + |1⟩). That

superposition is the core of the called “quantum parallelism”.

We define the oracle operator Ô as follows,

Ô|x⟩ = (−1)f(x)|x⟩,

and one operator with eigenvalue 1 when acts on the state |0⟩ and −1
when acts on the n-qubit state |x⟩ for x ̸= 0,

F̂c|x⟩ = −(−1)δx0 |x⟩ = (2|0⟩⟨0| − Î)|x⟩.

The Grover’s operator is defined by

Ĝ = Ĥ⊗nF̂cĤ
⊗nÔ.

Let be the initial state |Ψ⟩ an equal weigth superposition of all the states
|x⟩,

|Ψ⟩ = 1√
N

N−1∑
x=0

|x⟩ = 1√
N

1∑
x0=0

1∑
x1=0

...
1∑

xn−1=0

|x0⟩|x1⟩...|xn−1⟩ = Ĥ⊗n|0⟩⊗n,

where it was used that N = 2n and Ĥ|0⟩ = (1/
√
2)(|0⟩+ |1⟩).

Taking into account that Ĥ2 = Î, the Grover’s operator can be written
as
Ĝ = Ĥ⊗n(2|0⟩⟨0|−Î)Ĥ⊗nÔ = (2Ĥ⊗n|0⟩⟨0|Ĥ⊗n−Î)Ô = (2|Ψ⟩⟨Ψ|−Î)Ô.

The reason of defining operator Ĝ is that it allows to perform a series of
rotations which can project the state |Ψ⟩ on the desired state |y⟩.

We can decompose |Ψ⟩ into two orthogonal components, one the state
|y⟩, and other formed by the set of states |x⟩ which do not includes |y⟩.
Let be the normalised state

|α⟩ = 1√
N − 1

∑
x ̸=y

|x⟩.

Then,

|Ψ⟩ =
√

1− 1

N
|α⟩+ 1√

N
|y⟩.

Next, we define angle θ such as

cos θ =

√
1− 1

N
, sin θ =

1√
N
, tan θ =

1√
N − 1

.

Then,
|Ψ⟩ = cos θ|α⟩+ sin θ|y⟩.
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If we apply operator Ô, we obtain

Ô|Ψ⟩ = cos θ|α⟩ − sin θ|y⟩.

This can be interpreted as a reflection in the plane of vectors |α⟩-|y⟩
with respect to |α⟩. A vector orthogonal to |Ψ⟩ is

|Ψ⊥⟩ = sin θ|α⟩ − cos θ|y⟩.
We notice that

Ô|Ψ⊥⟩ = sin θ|α⟩+ cos θ|y⟩.

Next, we define angle θ such as

cos θ =

√
1− 1

N
, sin θ =

1√
N
, tan θ =

1√
N − 1

.

Then,
|Ψ⟩ = cos θ|α⟩+ sin θ|y⟩.

If we apply operator Ô, we obtain

Ô|Ψ⟩ = cos θ|α⟩ − sin θ|y⟩.

This can be interpreted as a reflection in the plane of vectors |α⟩-|y⟩
with respect to |α⟩. A vector orthogonal to |Ψ⟩ is

|Ψ⊥⟩ = sin θ|α⟩ − cos θ|y⟩.
We notice that

Ô|Ψ⊥⟩ = sin θ|α⟩+ cos θ|y⟩.

Now, let’s consider the plane of vectors |Ψ⟩-|Ψ⊥⟩ and apply the operator
2|Ψ⟩⟨Ψ| − Î to a vector of this plane,

(2|Ψ⟩⟨Ψ| − Î)(λ|Ψ⟩+ µ|Ψ⊥⟩) = λ|Ψ⟩ − µ|Ψ⊥⟩,

it gives a reflection with respect to vector |Ψ⟩, it leaves |Ψ⟩ unchanged.
Then, the action of operator Ĝ = (2|Ψ⟩⟨Ψ| − Î)Ô consists on two
succesive reflections: around the vector |α⟩ and around the vector |Ψ⟩.

Ĝ|Ψ⟩ = (2|Ψ⟩⟨Ψ| − Î)Ô|Ψ⟩.

Let’s write Ô|Ψ⟩ = cos θ|α⟩ − sin θ|y⟩ as a combination of |Ψ⟩ and |Ψ⊥⟩,

cos θ|α⟩ − sin θ|y⟩ = A(cos θ|α⟩+ sin θ|y⟩) +B(sin θ|α⟩ − cos θ|y⟩).
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It has the solution A = cos(2θ), B = sin(2θ). Then,

Ĝ|Ψ⟩ = (2|Ψ⟩⟨Ψ|−Î)[cos(2θ)|Ψ⟩+sin(2θ)|Ψ⊥⟩] = cos(2θ)|Ψ⟩−sin(2θ)|Ψ⊥⟩,

Ĝ|Ψ⟩ = cos(3θ)|α⟩+ sin(3θ)|y⟩.

After j succesive applications of Ĝ the n-qubit state is transformed as
follows,

Ĝk|Ψ⟩ = cos[(2j + 1)θ]|α⟩+ sin[(2j + 1)θ]| y⟩.

The goal is obtaining a result which is the closest to the marked state |y⟩.
This is achieved when j is such that cos[(2j +1)θ] attains the minimum
possible value and sin[(2j + 1)θ] is very near to 1. The smallest j which
satisfies the condition is certain k such that

(2k + 1)θ ≈ π

2
, or k =

[
π

4θ
− 1

2

]
,

where [...] denotes the nearest integer.

Since |Ψ⟩ is an initial state where all the |x⟩ are in superposition with
amplitude 1/

√
N ,

sin θ = ⟨y|Ψ⟩ = 1√
N
.

Therefore, for N large, θ ≈ 1/
√
N , and the number of applications of

the Grover operator is of the order k = O(
√
N).

In the two-qubit case, problem consists in finding one item out of N =
22 = 4 items. [π

√
N/4 − 1/2] = 1, just one iteration is sufficient. See

Figure 3.
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Figure 3. Grover’s iterations for N = 50. Optimal number is [π
√
N/4−1/2].

Vertical blue line represents the kmax.
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Concluding Remarks

EPR’s objections to quantum mechanics can be explained considering
two systems, A and B, that do not interact and whose vector of joint
state, |J,MJ⟩AB, possessing quantum correlations, can be written in
two different ways. To be specific, we can assume that it deals with
two rotating molecules, where the states of molecule A are |K,MK⟩A
and those for B are |L,ML⟩B. By simplicity, which does not detract
from the generality of the arguments, can assume that the system has
zero total angular momentum, |0, 0⟩AB, which requires that K = L and
MK = −ML, the above assuming that MK and ML are projections of
the angular momentum vector along the axis Z. But nothing prevents
considering states with projection along the X axis, which we call
|L,NL⟩A to the states of A and |L,−NL⟩B to those of B. Then

√
2L+ 1|0, 0⟩AB =

L∑
M=−L

(−1)M |L,−M⟩B |L,M⟩A =

L∑
N=−L

(−1)N |L,−N⟩B |L,N⟩A.

Applying the “collapse” of the wave function when making measurements, EPR
would conclude that if the observable L̂Z is measured in the subsystem A and
a certain value M is obtained, then B will be in the state |L,−M⟩B , but if L̂X

is measured in the subsystem A and a certain N is obtained, then B will be in
the state |L,−N⟩B . It is concluded that the measure in A of the incompatible
observables L̂Z and L̂X have the ability to leave B in eigenstates of incompatible
operators a despite the fact that at the time of measurement A and B do not
interact.

This objection assumes that, even though L̂Z and L̂X do not commute,
“intrinsically” the molecules, because they have constant angular momentum,
must have definite values of all projections. The experiments performed by
Clauser, Aspect and collaborators demonstrated that the objection is not valid.
In 1931, María Göppert-Mayer considerated the simultaneous emission of two
photons by one atom. The work was entitled “Elementary processes with
two quantum transitions” [11]. It remains clear that the photons are in a
polarization entangled state. This calculation gives the theoretical support
of the experiments of Clauser, Aspect and collaborators, based on radiative
cascade emitting pairs of photons correlated in polarization. Also Göppert
calculated the second order susceptibility, χ(2), relevant for the current way
to produce entangled photons based on the spontaneous parametric down
conversion using nonlinear crystals, used in the Zeilinger’s experiments [12].
See Figure 4.
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In July 2015, several institutions organized the International Conference
Colombia in the International Year of Light [13]. In the list of speakers were
the 2012 Nobel laureates in physics David Wineland and Serge Haroche, and
Alain Aspect who won the 2022 Nobel prize in physics. See Figure 5.

Figure 4. Nonlinear crystal to produce polarization entangled photons by
means of the SPDC mechanism. Google Image.

Figure 5. Some participants at the International Conference Colombia in
the International Year of Light 2015.

References

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
[2] J. Bell, Physics 1 (1964).
[3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett.

23, 880 (1969).

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.23.880


22 Letter to the editor

[4] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).
[5] A. Aspect, Physics Letters A 54, 117 (1975).
[6] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).
[7] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.

Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[8] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and

A. Zeilinger, Nature 390 (1997), 10.1038/37539.
[9] J. Preskill, California Institute of Technology 16, 1 (1998).

[10] J. Preskill, arXiv (2022), 10.48550/arxiv.2208.08064.
[11] M. Göpert-Mayer, Annalen der Physik 18 (1931),

10.1002/andp.200910358.
[12] A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, Nature 433,

230 (2005).
[13] E. Forero, Revista de la Academia Colombiana de Ciencias Exactas,

Físicas y Naturales 39, 98 (2015).

http://dx.doi.org/10.1103/PhysRevLett.28.938
http://dx.doi.org/https://doi.org/10.1016/0375-9601(75)90831-2
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/ 10.1103/PhysRevLett.70.1895
http://dx.doi.org/ 10.1038/37539
http://theory.caltech.edu/~preskill/ph229/
http://dx.doi.org/10.48550/arxiv.2208.08064
http://dx.doi.org/10.1002/andp.200910358
http://dx.doi.org/10.1002/andp.200910358
http://dx.doi.org/10.1038/nature03280
http://dx.doi.org/10.1038/nature03280
http://dx.doi.org/10.18257/raccefyn.305
http://dx.doi.org/10.18257/raccefyn.305

