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Abstract

In modern cosmology, the problem of large-scale structure
formation has been studied through various analytical and
computational methods and has become a cornerstone of
astrophysics. The complexity of the equations that describe
the evolution of small fluctuations in the matter field,
with respect to the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) universe, commonly known as the theory linearized
gravitational perturbations, makes it a valuable framework
for describing the problem. Specifically, the approximation
of sub-horizon scale allows us to explore scenarios where
semi-analytical tools play a significant role in gaining a
better understanding of how structures in our universe
have evolved and how the cosmic web structure is formed.
In this sense, these types of techniques have allowed for
comparisons with extensive simulations and have provied
a basis for contrasting with high-precision observations
in this context. Therefore, in this paper, we present a
semi-analytical description of the evolution of contrast
density in cold dark matter (CDM), including baryonic
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matter, in a linear regime in Fourier space. We achieve
this by using the Jeans filtering function (JFF), considering
only growing solutions, and then comparing them with the
numerical solutions calculated for the JFF equations to zero
and first order, with the aim of explaining why decaying
solutions must be included if one wishes to enhance precision
in higher-order perturbations while also considering small
scales. Finally, we discuss and extend some of the results
obtained by Shoji et al. for various initial conditions in
redshift.

Keywords: cosmology, growth factor, cold dark matter, baryonic

matter, Jeans filtering function.

Resumen

En la cosmoloǵıa moderna, el problema de la formación
de estructura a gran escala ha sido estudiado a través
de diferentes métodos anaĺıticos y computacionales, y se
ha convertido en una piedra angular en la astrof́ısica. La
complejidad de las ecuaciones que describen la evolución
de pequeñas fluctuaciones del campo de materia respecto
al universo de Friedmann - Lemâıtre - Robertson -
Walker (FLRW), lo que comúnmente se conoce como
teoŕıa de perturbaciones gravitacionales linealizadas, es una
buena idea para describir el problema. Espećıficamente,
la aproximación de escala sub-horizonte ha permitido
abrir escenarios donde las herramientas semi-anaĺıticas
juegan un papel importante para alcanzar una mejor
comprensión de cómo las estructuras significativas en
nuestro universo han evolucionado y cómo se forma la
estructura de la red cósmica. En este sentido, este tipo
de técnicas han permitido realizar comparaciones con
extensas simulaciones y han proporcionado una base para
contrastar con observaciones de alta precisión en este
contexto. Por lo tanto, en este trabajo, presentamos una
descripción semi-anaĺıtica de la evolución de la densidad
de contraste en la materia oscura fŕıa (CDM), incluyendo
la materia bariónica, en un régimen lineal en el espacio de
Fourier. Lo conseguimos utilizando la función de filtrado
de Jeans (JFF), considerando sólo soluciones crecientes,
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y comparándolas después con las soluciones numéricas
calculadas para las ecuaciones JFF a cero y primer
orden, con el objetivo de explicar por qué deben incluirse
soluciones decrecientes si se desea mejorar la precisión
en perturbaciones de orden superior considerando también
escalas pequeñas. Finalmente, discutimos y extendemos
algunos de los resultados obtenidos por Shoji et al. para
diferentes condiciones de valor inicial en redshift.

Palabras clave: cosmoloǵıa, factor de crecimiento, materia oscura fŕıa,

materia bariónica, función de filtrado de Jeans.

Introduction

If we accept the standard model of cosmology, ΛCDM, or the
concordance model, the gravitational inestability is identified as
responsible of the structure formation over this background. We can
consider primordial small perturbations that grow gently and are
influenced by two effects: the expansion of the universe and pressure
effects [1]. This latter effect can be explained by the presence of
baryonic matter and photons in regions of overdensity. Therefore,
the growth perturbations is described through a power law rather
than an exponential law [2].

We can describe structure formation in a smooth FLRW universe
without baryonic matter to any order, only by finding solutions
for CDM [3–5]. However, pressure plays a significance role, as it
defines the Jeans scale λ

J
[6, 7], or baryon bias [8]. Therefore, it is

essential for high-precision observations and extensive simulations
to understand how the pressure effect affects the growth, influenced
by baryonic matter, and the dynamics and evolution of density
field at any order. Including baryonic matter makes solving the
Einstein-Boltzmann equations much more complex [1, 8].

Hence, we aim to describe what happens when we use the Jeans
Filtering Function (JFF) or the baryon bias to first order, using
semi-analytical tools. The structure of this document is as follows:
First, Eulerian perturbation theory is employed, without baryonic
matter, and then including this species, in the next three sections.
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Afterward, we provide a discussion about the importance of
decaying modes in first-order structure formation usign the Jeans
Filtering Function, and finally, we present the conclusions.

Eulerian Perturbation Theory (EPT)

Following [9, 10], the starting point is an equation that describes
the evolution of matter and radiation in an expanding universe.
This relation is called the Boltzmann equation (1) and represents
changes in the distribution function, denoted as f ≡ f(t,x,p), in
phase space. The rate of change shows us how many particles enter
and leave an element of volume,

df

dt
=

∂f

∂t
+

∂f

∂xi

dxi

dt
+

∂f

∂pi
dpi

dt
= c[f ], (1)

where the term c[f ] represents interactions between species.
Initially, we can establish that structure formation is governed by
CDM, because it dominates the matter density, and secondly, CDM
decouples from radiation before baryons do. Therefore, the most
important equation for describing structure formation is the Vlasov
equation (2)

df

dt
=

∂f

∂t
+

dx

dt
· ∇xf +

dp

dt
· ∇pf = 0, (2)

where we have considered a system of particles with mass m
interacting only through the force of gravity. Covering the entire
manifold with the coordinates (t,x), and using the Eulerian
coordinates defined as r = R(t)x, the matter dynamics is described
with respect to a system of coordinates not comoving with the
matter. In an expanding universe, all physical separations scale
in proportion to the scale factor R(t) [5, 11, 12]. Therefore, the
physical velocity in the comoving coordinates x is

v(t,x) = Ṙ(t)x+R(t)
dx

dt
= Ṙ(t)x+R(t)u(t,x), (3)

with u(t,x) = ẋ as the velocity with respect to the comoving
grid. Now, the Lagrangian for a particle with mass m, of CDM is
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L = T − V =
1

2
m

[
Ṙx+Ru(t,x)

]2
−mΦ(x),

L′ =
1

2
m

[
Ṙx+Rẋ

]2
−mΦ− d

dt

[
1

2
mṘRx2

]
,

L′ =
1

2
mR2ẋ2 −m

[
Φ +

1

2
RR̈x2

]
=

1

2
mR2ẋ2 −mϕ. (4)

Where, in the last equation, we have defined the transformation
L′ = L − (dΨ/dt), with Ψ ≡ (1/2)mṘRx2. Finally, from the
expression (4), the scalar perturbations are described by the
generalized potential ϕ ≡ Φ+(1/2)RR̈x2. Using the Euler-Lagrange
equation, we find the momentum definition

p = mR2ẋ and
dp

dt
= −m∇xϕ(x). (5)

Then, with the help of the momentum equation (5), the Vlasov
equation is

∂f

∂t
+

p

mR2(t)
· ∇xf −m∇xϕ · ∇pf = 0. (6)

This equation does not have explicit solutions, but if we use the
moments of the distribution function, we can find very interesting
physical consequences for describing the dynamics of the CDM
fluid, including the baryonic component. Therefore, by taking the
moments of the distribution function [1, 9].

m

R3

∫
d3pf(t,x,p) = ρ(t,x) ≡ ρ(t)

[
1 + δ(t,x)

]
, (7)

1

R4

∫
d3pf(t,x,p)p ≡ ρ(t,x)u(t,x), (8)

1

mR5

∫
d3pf(t,x,p)pipj ≡ ρ(t,x)ui(t,x)uj(t,x). (9)

Remember that ρ(t) ∝ R−3 in the background, and in the last
moment, equation (9), we could add a term associated with
the stress tensor that, in the subhorizon approximation, may be
composed of pressure and viscosity coefficients, like in standard
fluid dynamics [13], and it can be defined as the equation of state
of the cosmological fluid, characterizing the deviation of particle
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motions from a single coherent flow [5, 13]. By integrating over the
momentum space, the Vlasov equation will be written as∫

d3p
∂f

∂t
+

∫
d3p

p

mR2(t)
· ∇xf −

∫
d3p

[
m∇xϕ · ∇pf

]
= 0.

By using integration by parts on the second term and Gauss’s
theorem on the last integral (since there isn’t flux on the momentum
surface) in the last equation,

∂

∂t

∫
d3pf +∇x ·

∫
d3p

mR2
fp = 0. (10)

If we use the relations (7) and (8), in the cosmic and conformal time,
respectively (remember that dτ = dt/R), we have the continuity
equation

∂δ(t,x)

∂t
+

1

R
∇x ·

[(
1 + δ(t,x)

)
u(t,x)

]
= 0, (11)

∂δ(τ,x)

∂τ
+∇x ·

[(
1 + δ(τ,x)

)
u(τ,x)

]
= 0. (12)

Now, we want to derive the Euler equation. Therefore, by
integrating over momentum space once again and multiplying by
pj (in components)

∂

∂t

∫
d3pfpj +

1

mR2

∂

∂xi

∫
d3pfpipj − ∂ϕ

∂xi
m

∫
d3p

∂f

∂pi
pj = 0.

Integrating the last term by parts

∂

∂t

∫
d3pfpj +

1

mR2

∂

∂xi

∫
d3pfpipj

− ∂ϕ

∂xi
m

∫
d3p

{
∂

∂pi
(fpj)− f

∂

∂pi
pj︸ ︷︷ ︸

δij

}
= 0.

With δij being the Kronecker delta. By applying Gauss’s theorem
once again in the last integral, and using the equation (7), we have

∂

∂t

∫
d3pfpj +

1

mR2

∂

∂xi

∫
d3pfpipj +R3ρ(t,x)

∂ϕ

∂xi
= 0.
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If we apply this result to the last term of the expression: (which
can be constructed from equation (10))

∂

∂t

[
R3ρ(t)

] ∂δ
∂t

+R3ρ(t)
∂2δ

∂t2
− 2R−3Ṙ

∂

∂xj

∫
d3pfpj

+R−2 ∂

∂xj

[
∂

∂t

∫
d3pfpj

]
= 0.

Rearranging some terms and using (7) again, we can write
(remember that ρ(t) ∝ R−3):

R3ρ(t)
∂2δ

∂t2
− 2

Ṙ

R3

[
−R3ρ(t)

∂δ

∂t
R2

]
=

1

mR4

∂

∂xi

∂

∂xj

∫
d3pfpipj +Rρ(t)∇x ·

[(
1 + δ(t,x)

)
∇xϕ

]
,

therefore,

∂2δ

∂t2
+ 2

Ṙ

R

∂δ

∂t
=

1

ρ(t)mR7

∂

∂xi

∂

∂xj

∫
d3pfpipj

+
1

R2
∇x ·

[(
1 + δ(t,x)

)
∇xϕ

]
, (13)

and using the mean value for the product of velocities from(9),
yields [9].

∂2δ

∂t2
+ 2

Ṙ

R

∂δ

∂t
=

1

R2
∇x ·

[(
1 + δ(t,x)

)
∇xϕ

]
+

1

R2

∂

∂xi

∂

∂xj

(
1 + δ(t,x)

)
ui(t,x)uj(t,x). (14)

It is convenient to make a comparison between the Vlasov equation
for the developments that we have been reproducing [9], and the
standard equations for an ideal fluid. The goal is to understand the
physics of the cosmological fluid composed of CDM and baryonic
matter. Therefore, we consider the equations of continuity and
Euler in physical coordinates (t, r)
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∂ρ

∂t
+∇r · (ρv) = 0, (15)

ρ

[
∂v

∂t
+

(
v · ∇r

)
v

]
= −∇rP − ρ∇rΦ. (16)

And using Eulerian coordinates, with ∇r = R−1∇x , we can rewrite
each term in the expressions (15) and (16). Therefore(

∂

∂t

)
r

=

(
∂

∂t

)
x

+ r
∂

∂t

(
1

R

)
· ∂

∂x
=

(
∂

∂t

)
x

− Ṙ

R
x · ∇x ,(

∂ρ

∂t

)
r

=

(
∂ρ

∂t

)
x

− Ṙ

R
(x · ∇x) ρ,

∇r · (ρv) =
1

R
∇x ·

[
ρṘx+ ρu

]
= 3

Ṙ

R
ρ+

Ṙ

R
x · ∇xρ+

1

R
∇x · (ρu) .

Thus, we get the continuity equation in Eulerian coordinates [9],

∂ρ

∂t
+ 3

Ṙ

R
ρ+

1

R
∇x · (ρu) = 0. (17)

Now, by substituting the density contrast (7), into the last
expression, we can observe that is the same equation as represented
in (11). Next, we will rewrite the Euler equation (16) in the same
manner as we did for the mass conservation equation

ρ

[
R̈x+

(
∂u

∂t

)
− Ṙ

R

(
x · ∇x

)(
Ṙx+ u

)]

+ρ

[(
Ṙx+ u

)
· ∇x

R

](
Ṙx+ u

)
= − 1

R
∇xP− ρ

R
∇x

[
ϕ− 1

2
RR̈x2

]
.

We can obtain the Euler equation in cosmic and conformal time,

respectively. Remember that H(τ) =
d

dτ
lnR =

dR

dt
= Ṙ,

∂u

∂t
+

Ṙ

R
u+

1

R

(
u · ∇x

)
u = − 1

ρR
∇xP − 1

R
∇xϕ, (18)

∂u

∂τ
+H(τ)u+

(
u · ∇x

)
u = −1

ρ
∇xP −∇xϕ. (19)
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This last equation (19), is comparable to the Vlasov equation when:
(i) integrating over momentum space and using the moments of f ,
(ii) using the equation of continuity 17, and (iii) performing several
lines of algebra. Therefore, we can write

Ṙ

R
uj(t,x) +

1

R
ui(t,x)

∂

∂xi
uj(t,x) +

∂ui

∂t
= − 1

R

∂ϕ

∂xi
. (20)

This expression represent the same equation as (18), with one
difference: the pressure term might be involved through the stress
tensor in equation (9) (adding this term on the right-hand side), in
the way described in [5]

σ
ij
(t,x) = −Pδij+η

(
∇

i
u

j
+∇

j
u

i
− 2

3
δ
ij
∇ · u

)
+ξδ

ij
∇·u. (21)

Considering the firts and second viscocity terms like a zero, we
can finally identify an equivalent equation to (14), using the
fundamental equations of hydrodynamics. If we write the Euler
equation in index notation, and multiply it by ρ(t,x), and then
rewrite the first term on the left side of (18).

∂

∂t
(uαρ)− uα∂ρ

∂t
+

Ṙ

R
uαρ+

1

R

[
uβ ∂

∂xα
uα

]
ρ = − 1

R

∂P

∂xα
− ρ

R

∂ϕ

∂xα
.

Using equation (17), on the second term of the last expression on the
left side, then taking the divergence, and finally using the contrast
density, we can obtain

1

R

∂

∂t

[
ρ(t)

∂

∂xα
uα (1 + δ)

]
+ 4ρ(t)

Ṙ

R2

∂

∂xα

[
uα (1 + δ)

]
= −

∇2
x
P

R2
− ρ(t)

R2
∇x ·

[
(1 + δ)∇xϕ

]
− ρ(t)

R2

∂2

∂xα∂xβ

[
(1 + δ)uαuβ

]
,

To obtain the same relation as (14).

∂2δ

∂t2
+ 2

Ṙ

R

∂δ

∂t
=

1

R2
∇2

x
P +

1

R2
∇x ·

[
(1 + δ)∇xϕ

]
+

1

R2

∂2

∂xα∂xβ

[
(1 + δ)uαuβ

]
. (22)
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These equations presented in this section are fundamental in
cosmological perturbation theory [5]. In the next section, we will
work considering equation (22) without the last term [13], and
we will describe solutions for the density contrast, in the linear
approximation, for a fluid composed of CDM and baryonic matter
[6, 8].

EPT to First Order

In order to find analytical and computational solutions to set of
hydrodynamical equations described in the preceding section can
be a very challenging task due to nonlinearity in the fields of
contrast density and peculiar velocities. Therefore, the objective
of this paper is to find perturbative solutions to first order for
contrast density, where the pressure gradient is neglected to study
the evolution of CDM fluctuations. On the other hand, the pressure
gradient is considered and accompanies the evolution of baryonic
matter. The aim is to gain a deeper understanding of baryonic
matter and its influence on the large scale structure [2, 6, 8]. To
describe this cosmological fluid, we need two continuity equations
(C for CDM and B for baryonic matter)

∂δC(τ,x)

∂τ
+∇x ·

[(
1 + δC(τ,x)

)
uC(τ,x)

]
= 0, (23)

∂δB(τ,x)

∂τ
+∇x ·

[(
1 + δB(τ,x)

)
uB(τ,x)

]
= 0. (24)

And two Euler’s equation, for CDM

∂uC(τ,x)

∂τ
+H(τ)uC(τ,x) +

(
uC(τ,x) · ∇x

)
uC(τ,x)

= −∇xϕ(τ,x). (25)

And baryonic matter

∂uB(τ,x)

∂τ
+H(τ)uB(τ,x) +

(
uB(τ,x) · ∇x

)
uB(τ,x)

+
1

ρB(τ,x)
∇xPB = −∇xϕ(τ,x). (26)
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It is important not to forget that these particles are interacting
via a non-relativistic gravitational potential ϕ, and, of course, we
have Poisson’s equation ∇2

r
Φ = 4πGρ(r). Remember that Φ is a

Newtonian potential induced by mass density and if we use the

definition ϕ ≡ Φ +
1

2
RR̈x2 [9], it yields

∇2
x
ϕ = 4πGR2ρ(t)δ(t,x) =

3

2
H2(τ)Ω(τ)δ(τ,x), (27)

with Ω(τ) ≡ Ωmatter(τ) = 8πGR2(τ)ρ(τ)/3H2(τ) [8]. Now, we want
to work exclusively with the CDM and baryonic components in
the linear regime. Thus, we can write the continuity and Euler’s
equations without second order terms, high order terms, or products
involving the contrast density and peculiar velocity. Initially, we
focus only with the CDM component and take the divergence of
the Euler equation for this species, recognizing that any fluid is
characterized by its divergence and curl according to the Helmholtz
theorem. Therefore, the CDM fluid is entirely described by its
divergence. (Note: If we calculate the curl of the Euler equation,
we could demostrate that any vorticity decays in an expanding
universe proportional to 1/R)

∂2δC(τ,x)

∂τ 2
+H(τ)

∂δC(τ,x)

∂τ
− 3

2
H2Ω(τ)δC(τ,x) = 0. (28)

This equation is a special case of equation (22) [5]. Introducing
the growth factor as δC(τ,x) = D(τ)δC(τi ,x), with τi denoting
some initial conformal time. Thus, we get the second-order ordinary
differential equation for the growth factor

d2D(τ)

dτ 2
+H(τ)

dD(τ)

dτ
− 3

2
H2(τ)Ω(τ)D(τ) = 0. (29)

We can obtain solutions to this equation in general for any arbitrary
cosmology. However, we will follow on a special case when we
consider Ωmatter = 1 (Einstein-de Sitter universe) [5, 6]. Therefore,
the general solution for the growth factor is D(τ) = C1τ

−3 + C2τ
2

with C1 and C2 as integration constants. For n = 2 or n = −3,
we will have growing and decreasing modes, respectively, thus
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D(τ) ∝ τn ∝ Rn/2. Then, the density fluctuations are described
by

δC(τ,x) =

[
R(τ)

R(τ
i
)

]n/2
δC(τi ,x). (30)

By using the Friedmann equations, we can express the equation (29)
in terms of cosmic time and find solutions for the growth factor for
each mode [14]. Additionally, we can derive solutions in terms of
redshift. After some algebraic steps, yields [15]

(z + 1)P (z)
d2D

dz2
+Q(z)

dD

dz
− 3

2
Ωm,0(z + 1)3D = 0. (31)

Where P (z) ≡ Ωm,0z
3+

[
3

2
Ωm,0 + q0 + 1

]
z2+2[1+ q0 ]z+1, Q(z) ≡

1

2
Ωm,0z

3+
3

2
Ωm,0z

2+
3

2
Ωm,0z+q0 , and q0 is the deceleration parameter

[15]. Now, we can find the general solution for the decaying mode
D−(z) ∝ P (z)1/2, and for the growing mode:

D+(z) = CP 1/2(z)

∫ ∞

z

s+ 1

P 3/2(s)
ds. (32)

Figure 1. Growth factor for different cosmologies [16]

With C as a constant of proportionality and P (z) definied by [15],
we can find numeric solutions for an arbitrary cosmology, as shown
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in Figure 1. Therefore, if we consider 0 < Ωm,0 ⩽ 1, assuming
Ωr,0 ≈ 0 and consequently, if Ωm,0 + ΩΛ,0 = 1, then the deceleration

parameter is q(t0) =
3

2
Ωm,0−1. As we can see in Figure 1, regardless

of the values of cosmological parameters, the growth factor always
increases. However, in relation to observations and according to
ΛCDM model, the best value for this factor is normalized to unit
[1]. In our numerical approximation, this value is 1.038, where we
have chosen 0.3175 for the dimensionless mass parameter [17]. For
instance, if we take an Einstein-De Sitter model, the growth factor
is 0.399.

Figure 2. Growth factor in the ΛCDM model. For the Einstein-De Sitter
universe [16]

Furthermore, if we are exclusively working with the Einstein-De
Sitter model, we can get an analytic solution to equation (32), as
shown in Figure 2, and compare it with numerical solution. For
instance, if Ωm,0 = 1, q(t0) = 0.5 [18], we have for P (z) = (z + 1)3,

and when we expand for the growth factor, we find D+(z) =
2/5

z + 1
.

We can observe in Figure 2, that the analytical solution is
well-matched with the numerical solution. Additionally, we can
appreciate the effect of the constant 2/5 on the proportional

relationship of the solution, where D+(z) ∝ 1

1 + z
, as shown by the

orange line in this same figure. Following the work of Heat [15], we



30 Diego F. Fonseca, Leonardo Castañeda

can assume that perturbations in the density matter field began to
grow during the epoch when matter and radiation decoupled, which
ocurred at redshift values between 1000 ⩽ z

b
⩽ 1500, and continued

until the redshift z
f
when the growth of perturbations concluded.

Additionally, based on the findings of Edwards and Heat [19], we
can determine the redshift value at which the density contrast
reaches unity, where the initial value will be strongly linked to
the cosmological model employed (for this work, we have employed
a redshift value near the radiation-matter decoupling epoch) [19].
This is

z
f
≥ 1

Ωm,0

− 1. (33)

Therefore, for the concordance model, the contrast density must
reach unity by z ≥ 2.2 (This value falls within the range proposed
by Edwards and Sunyaver [19] 2 ⩽ z

f
⩽ 4). Finally, we can calculate

the amplification factor of a perturbation that begins to grow in the
ΛCDM model after decoupling

A =
D+(zf )

D+(zb)
=

D+(2)

D+(1000)
=

0.4235

0.001293
= 327.5. (34)

The values of the growth factor were obtained from the numerical
solution to equation (32). This value allows us to calculate the

decoupling fluctuation, given by δ =
1

A
= 0.003053. This

determines the fluctuation in the density field that must have
originated at the decoupling epoch in order for the cosntrast density
to reach unity [1, 15, 19]. In the next section, we are going to
describe the evolution of contrast density, including the baryonic
matter in a regime to first order.

EPT with CDM and Baryonic Matter

Now, we follow the work of Shoji and Komatsu [6] in this section.
We aim to introduce baryonic matter into this theory to first order.
Therefore, we consider the equations (23) to (26). The pressure
effects are included through the stress tensor (21), considering the
first and second viscosities to be zero; therefore, we can write this
term as ∇xσij

(t,x) = ∇
i
(−Pδ

ij
). Additionally, if we assume the
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barotropic relation P (ρ), we obtain the pressure term in (26)

∇
i
(P

B
δ
ij
)

ρB(τ,x)
= − 1

ρB(τ,x)

∂

∂xi

[
P (ρB)δij

]
,

= − 1

ρB(τ,x)

[
P (ρB)

∂

∂xi
δ
ij
+ δ

ij

∂

∂xi
P (ρB)

]
,

= − 1

ρB(τ,x)

∂P

∂ρB

∂ρB

∂xi
= − 1

ρB(τ,x)
C2

s
(τ,x)

∂ρB

∂xi
.

Here, we have used the speed of sound, Cs , and incorporated the
baryonic contrast density ρB(τ,x) = ρB(τ) [1 + δB(τ,x)],

∇
i
(P

B
δ
ij
)

ρB(τ,x)
= −

C2
s
(τ,x)

[1 + δB(τ,x)]
∇xδB(τ,x). (35)

And let’s not forget Poisson’s equation (27).

∇xϕ(τ,x) = 4πGR2(τ)

[
ρC(τ)δC(τ,x) + ρB(τ)δB(τ,x)

]
.

With δ(τ,x) = fCδC(τ,x) + fBδB(τ,x) and [8]

fC ≡ ΩC

Ωm

=
ρC

ρC + ρB

fB ≡ ΩB

Ωm

=
ρB

ρC + ρB

. (36)

It is a good idea to assume that we have an universe of the
Einstein-de Sitter type, as this allows us to find analytic solutions.

Thus, considering ρm(τ) =
3H2(τ)Ωm(τ)

8πGR2(τ)
, into Poisson’s equation,

yields ∇2
x
ϕ(τ,x) =

6

τ 2
δ(τ,x). Now, when calculating the divergence

of Euler’s equation (25) and (26) for each component, we have the
following relations (with ρm as the total density):

∂2δC
∂τ 2

+
2

τ

∂δC
∂τ

− 6

τ 2

[
ρC

ρm

δC +
ρB

ρm

δB

]
= 0, (37)

∂2δB
∂τ 2

+
2

τ

∂δB
∂τ

− 6

τ 2

[
ρC

ρm

δC +
ρB

ρm

δB

]
= −C2

s
∇2

x
δB. (38)
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These equations could describe the behavior and evolution of the
contrast density for that mixed fluid. However, finding analytic
solutions in real space may be a complex task. Therefore, it is
necessary to transform this set of equations into Fourier space [1]
(τ,k). Using

F
{
δ̃(τ,x)

}
= δ(τ,x) =

∫
d3keik·xδ̃(τ,k), (39)

F
{
δ(τ,x)

}
= δ̃(τ,x) =

∫
d3x

(2π)3
e−ik·xδ(τ,k). (40)

Therefore, in Fourier space, these equations are

∂2δ̃C(τ,k)

∂τ 2
+

2

τ

∂δ̃C(τ,k)

∂τ
− 6

τ 2
δ̃(τ,k) = 0. (41)

∂2δ̃B(τ,k)

∂τ 2
+

2

τ

∂δ̃B(τ,k)

∂τ
− 6

τ 2
δ̃(τ,k) = −C2

s
(τ)k2δ̃B(τ,k). (42)

Additionally, by using the definition of Jeans wave number [6]

kJ(τ) =

√
6

Cs(τ)
τ , we can rewrite the last equation

∂2δ̃B(τ,k)

∂τ 2
+

2

τ

∂δ̃B(τ,k)

∂τ
− 6

τ 2

[
δ̃(τ,k)− k2

k2
J

δ̃B(τ,k)

]
= 0. (43)

Here, we have considered that kJ is independent of conformal time.
In general, the Jeans wave number depends on time, kJ(τ), and
the temperature of the species as well. However, we could simplify
the problem and focus on the physical insights into the effects of
pressure on the linear growth of structure under this assumption,
knowing it is not completely realistic, especially if we aim to
describe this effect at small scales [6]. In acording to Jeans wave
number, the solutions for baryonic matter are divided into two
categories: on one side, we have a growing solution for k ≪ kJ,
and on the other hand, an oscillatory solution for k ≫ kJ, provided
that fC = 0 and fB = 1. Initially, if we assume that CDM is the
dominant source of gravity (δ ≈ δC), we can find solutions at each
order of the set equations of (41) and (42). To find solutions of the
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contrast density of baryonic matter, we may use the definition of
Jeans filtering function (JFF) [6, 8]

g(τ,k) ≡ δ̃B(τ,k)

δ̃C(τ,k)
. (44)

With this function, we will be able to describe how perturbations in
the density field for the baryonic matter evolve as a function of the
perturbation behavior of the contrast density for CDM, knowing
the form of the Jeans filtering function at each order. At the zeroth
order of iteration for the contrast density, CDM provides us with a
solution from (41), if δ̃(τ,k) → δ̃C(τ,k)

∂2δ̃C(τ,k)

∂τ 2
+

2

τ

∂δ̃C(τ,k)

∂τ
− 6

τ 2
δ̃C(τ,k) = 0. (45)

This Cauchy-Euler equation has a solution for the growing mode as
δ̃C(τ,k) ∝ τ 2 at zeroth order. Then, the Jeans filtering function is

δ̃
(0)
B (τ,k) = g(0)(τ,k)δ̃

(0)
C (τ,k) = g(0)(τ,k)τ 2. Therefore, using this

last result in (43), yields

τ 2g̈(0)(τ,k) + 6τ ġ(0)(τ,k) + 6

[
1 +

k2

k2
J

]
g(0)(τ,k) = 6. (46)

Remember the notation for derivatives, where · ≡ ∂/∂τ and
·· ≡ ∂2/∂τ 2. For the linearly independent solutions written as
g(0)(τ,k) = τn for the homogeneous equation, where n satisfies the

quadratic expression n2 + 5n+

[
1 +

k2

k2
J

]
= 0, and it has a solution

n(0)
± (k) = −5

2

[
1±

√
1− 24

25

[
1 +

k2

k2
J

]]
. (47)

Therefore, g(0)(τ, k) = C1τ
n
(0)
+ (k) + C2τ

n
(0)
− (k), where C1 and C2 are

integration constants. In general, we can express g(τ, k) ∝ τn(k).
To find the particular solution of (46), we use the method of
undetermined coefficients, obtaining for this solution g(0)par(τ, k) = A
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with A as, A =

(
1 +

k2

k2
J

)−1

. Therefore, the general solution will

be

g(0)(τ, k) = C1τ
n
(0)
+ (k) + C2τ

n
(0)
− (k)︸ ︷︷ ︸

O(τn(k))

+

[
1 +

k2

k2
J

]−1

. (48)

With O(τn(k)) representing decaying mode [6], if we neglect this

mode, we have the filtering function g(0)(k) =

(
1 +

k2

k2
J

)−1

. At

zeroth order, the evolution of the contrast density of baryonic
matter, approximately, is

δ
(0)
B (τ, k) = τ 2

[
1 +

k2

k2
J

]−1

. (49)

Figure 3. Jeans filtering function to zeroth order

Upon simple inspection of the equation (49), we can observe that

if k ≫ kJ then δ
(0)
B (τ, k) → 0 and if k ≪ kJ then δ

(0)
B (τ, k) → τ 2.

In general, if we consider k is larger than kJ, then perturbations
of baryonic matter are negligible and are dominated by CDM.
Conversily, if k is much smaller than kJ, the fluctuations of baryonic
matter follow the evolution of the CDM, proportional to the square
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of conformal time. We can observe in the Figure 3 that the baryonic
perturbations in the case k ≪ kJ are entirely described by the
behavior of CDM for all scales. Conversely, if we consider scales
where k ≫ kJ, we find that perturbations of baryonic matter are
negligible and the CDM is the dominant source of gravity.

Figure 4. Contrast density of baryonic matter to zeroth order for several values
in τ

It is important to point out that when considering scales near
the Jeans wave number, baryonic perturbations could significantly
contribute to structure formation. Additionally, in Figure 4, we can
observe that for scales where k ≫ kJ, the fluctuations in baryonic
matter tend to zero, while for other sclaes k ≪ kJ, they take on
a constant value, which holds true when we fix several values of
conformal time. Now, moving to first order of iteration, we can
rewrite the contribution of CDM as fC = 1 − fB. Then we can
express equation (41) as

∂2δ̃C(τ,k)

∂τ 2
+

2

τ

∂δ̃C(τ,k)

∂τ
− 6

τ 2

[
1− fB

(
1− g(τ,k)

)]
δ̃C(τ,k) = 0.

Now, we need substitute the JFF to zeroth order, g(0)(k), into this
last equation, just as we did with some equations before. This leads
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to a characteristic equation

τn
[
n2 + n− 6

(
1− fB

(
1− g(0)(k)

))]
= 0,

if τn ̸= 0, then

n(1)
± (k) =

1

2

[
−1± 5

√
1− 24

25
fB

[
1− g(0)(k)

]]
. (50)

We can see that if the contribution of baryonic matter is zero,
then we return to a solution proportional to τ−3 and τ 2 for
CDM. Therefore, the general solution to first order for CDM is

a combination: δ̃C(τ, k) = C1τ
n
(1)
+ (k) + C2τ

n
(1)
− (k), where C1 and C2

are integration constants once again. Approximating the function,
square root in (50), through Taylor’s expansion as,√

1− 24

25
fB

[
1− g(0)(k)

]
≈ 1− 12

25
fB

[
1− g(0)(k)

]
,

we can describe the growing (+) and decaying (−) modes,
respectively, as [6]

n(1)
+
(k) = 2− 6

5
fB

[
1− g(0)(k)

]
,

n(1)
− (k) = −3− 6

5
fB

[
1− g(0)(k)

]
.

(52)

In general δ̃C(τ, k) ∝ τn
(1)
± (k). Therefore: (1) if k → 0(k ≪ kJ)

then g(0)(k) → 1 and consequently, δ̃C(τ, k) ∝ τ 2 so the structure
formation is governed by CDM. (2) if k → ∞(k ≫ kJ) then
g(0)(k) → 0, and consequently δ̃C(τ, k) ∝ τ 2−(6/5)fB , and we have
a contribution of baryonic matter to describe the evolution of the
contrast density of CDM [6]. Now, calculating the JFF to first order,
g(1)(k), only for growing mode:

g(1)(τ,k) =
δ̃B(τ,k)

δ̃C(τ,k)
−→ δ̃B(τ,k) = g(1)(τ,k)τn

(1)
+ (k), (53)
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using this result in (42)

g̈(1)(τ,k)τn
(1)
+ (k) + 2ġ(1)(τ,k)n(1)

+
(k)τn

(1)
+ (k)−1

+ g(1)(τ,k)n(1)
+
(k)

[
n(1)

+
(k)− 1

]
τn

(1)
+ (k)−2

+
2

τ

[
ġ(1)(τ,k)τn

(1)
+ (k) + g(1)(τ,k)n(1)

+
(k)τn

(1)
+ (k)−1

]
− 6

τ 2

[
(1− fB)δ̃

(1)
C (τ,k) + fBδ̃

(1)
B (τ,k)− k2

k2
J

g(1)(τ,k)τn
(1)
+ (k)

]
= 0,

and after some algebric manipulations

g̈(1)(τ,k) +
2

τ

[
n(1)

+
(k) + 1

]
ġ(1)(τ,k)

+
1

τ 2

[
n(1)

+
(k)

[
n(1)

+
(k)− 1

]
+ 2n(1)

+
(k)− 6

(
fB − k2

k2
J

)]
g(1)(τ,k)

=
6

τ 2
(1− fB) .

By exploring the coefficients of ġ(1)(τ,k) and g(1)(τ,k), respectively,

we find: 2n(1)
+
(k) + 2 = 5

√
1− 24

25
fB

[
1− g(0)(k)

]
+ 1,

and n(1)
+
(k)

[
n(1)

+
(k)− 1

]
+ 2n(1)

+
(k) − 6

(
fB − k2

k2
J

)
is equal to

6

[
1 +

k2

k2
J

− fB

(
2− g(0)(k)

)]
.

Therefore, the equation that describes the evolution of the JFF to
first order is [6]

g̈(1)(τ,k) +
1

τ

[
1 + 5

√
1− 24

25
fB

(
1− g(0)(k)

)]
ġ(1)(τ,k)

+
6

τ 2

[
1 +

k2

k2
J

− fB

(
2− g(0)(k)

)]
g(1)(τ,k) =

6

τ 2
(1− fB) . (54)
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Solving the homogeneous equation (Cauchy-Euler equation), we
obtain a general solution for the JFF

g(1)(τ, k) = C1τ

−
5

2

√√√√
1−

24

25
fB

[
1−g(0)(k)

]
+
1

2

√√√√√1−24

k2

k2
J

−fB



+ C2τ

−
5

2

√√√√
1−

24

25
fB

[
1−g(0)(k)

]
−
1

2

√√√√√1−24

k2

k2
J

−fB


, (55)

and with a particular solution: g(1)(k) =
1− fB

1 +
k2

k2
J

− fB

[
2− g(0)(k)

] .
That is to say, the solution for the growing mode is

g(1)(k) =
1− fB

1− fB +
k2

k2
J

[
1− fB

1 + k2/k2
J

] . (56)

Figure 5. Jeans filtering function to first order for several contributions of
baryonic matter fB
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Then, the behavior of fluctuations of baryonic matter δ̃B(τ, k) are
described with the function:

δ̃
(1)
B (τ, k)

δ̃
(1)
C (τ, k)

=
1− fB

1− fB +
k2

k2
J

[
1− fB

1 + k2/k2
J

] ,

δ̃
(1)
B (τ, k) =

1− fB

1− fB +
k2

k2
J

[
1− fB

1 + k2/k2
J

]τ 2−65fB[1−g(0)(k)]
.

(57)

In this last expression, we can see that if the contribution of fB is
zero, then we can revert to equation (49) (zeroth order iteration).
Furthermore, if we consider fB = 1, we lose the fluctuations of
baryonic matter. As shown in Figure 5, for different values of fB,
when k ≫ kJ or k ≪ kJ, the evolution of baryonic contrast density
follows the same path as that of CDM contrast density. However,
when we consider that k ≈ kJ, the evolution in these fields are very
different.

Figure 6. Contrast density of baryonic matter to first order with a baryonic
contribution of f

B
= 0.17 [3]

Additionally, in Figures 6 and 7, we can observe the behavior of
baryonic contrast density for various conformal times or different
values of fB. If we consider the ratio of the two Jeans Filtering
Function at zeroth and first order of iteration, equations for g(0)(k)
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and g(1)(k), we can say that as k/kJ → ∞(k ≫ kJ) [6], there is a
signifiicant difference between these functions, as depicted in Figure
8. Therefore, we could say for large scales (k → 0), it is sufficient
to use the JFF to zeroth order to describe the evolution of a fluid
composed of baryonic and CDM matter, as shown in Figure 8 once
again.

Figure 7. Contrast density of baryonic matter to first order with the condition
τ = 1

Figure 8. Comparison of the Jeans Filtering Function to zeroth and first order
for different values of f

B
. The continuous line shows f

B
= 0.2

Furthermore, we can observe that, when aiming for greater
precision in cosmology to explain structure formation at small scales
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(when k ≫ kJ), the difference between the JFF at zeroth and first
orders must be considered. And, at the end of the day, for high
orders (when k ≪ kJ) we can choose the JFF at zeroth order as
shown in Figure 8. In this graph, the continuous line shows the
behavior of the ratio between the zeroth and first order for the JFF
of the baryonic component according to the current observations.

Figure 9. General solution of the Jeans Filtering Function for initial value
problem z = 0

Finally, we can determine the general structure of the JFF using
the initial conditions g(0)(τ, k) = 1 and ġ(0)(τ, k) = 0 for 0, 4, 8
and 10 in redshift [6]. In Figures 9 to 12, we can observe the
general behaivor of the Jeans Filtering Functions at zeroth order as
a function of conformal time. In each of these cases, we find that
if you want to improve the precision of the baryonic fluctuations,
the decaying modes cannot be neglected for small scales, and this
modes introduce the oscillatory behaivor in the solutions in early
times. Furthermore, if we plot g(τ, k) as a function of k scale, for
the condition z = 0, 4, and 8, we can find the behaivor as shown in
Figure 13.
In the left panel of Figure 13, we calculate the function of JFF,

∆g(0)(τ, k) = g(0)(τ, k)−
[
1 +

k2

k2
J

]−1

, (1)
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Figure 10. General solution of the Jeans Filtering Function for initial value
problem z = 4

Figure 11. General solution of the Jeans Filtering Function for initial value
problem z = 8

for different values of redshift [6]. This analysis aims to show that,
when considering low scales, it is not sufficient to consider only
growing modes because oscillations play a crucial role in describing
the evolution of baryonic matter fluctuations. In the right panel, we
can observe that the red line (an approximation to the growth mode
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Figure 12. General solution of the Jeans Filtering Function for initial value
problem z = 10

Figure 13. General solution of the Jeans Filtering Function

shown in Figure 3) for k ≫ kJ exhibits a high level of imprecision.
However, as k → 0, its approximation for only growing modes,
provies a much better description of the evolution of fluctuations.
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Discussion and Conclusions

In this paper, we have determined that for a universe under
the ΛCDM model, the level of fluctuation with respect to the
FLRW metric results in a particular order of magnitude growth
for galaxies, approximately on the order of ∼ 10−3 [19]. That is to
say, the structures in the universe, such as galaxies, evolve due to
a fluctuation near ∼ 3× 10−3 with respect to unity [1, 15].

However, it is important to note that this situation strongly depends
on the cosmological model. Additionally, we have obtained that the
growth factor for the ΛCDMmodel, could be normalized to unity as
shown in Figure 1. If we only consider growing modes in the linear
regime at zeroth order, when we introduce baryonic matter, we can
obtain the predictions of ΛCDM. In this scenario, the effects of
fluctuations in baryonic matter follow the fluctuations of cold dark
matter for large scales, and are suppressed at small scales. However,
when the scale is comparable to the Jeans scale, the contribution
of baryonic matter becomes significant, as shown in Figures 3 and
4.

Similar results are obtained, for first-order effects and different
values of conformal time or the contribution of baryonic matter, as
depicted in Figures 5, 6 and 7. When we use this approximation, we
can employ the Jeans filtering function at zeroth order to describe
high-order terms [6], as demonstrated in the last section, supported
by Figure 8. It was very important to demostrate that, when we
find numerical solutions to the Jeans filtering function at zeroth
order, we can not neglect the decaying modes if we aim to increase
the precision in this type of tools, as shown through the graphs
9 to 13. At this point, as shown in Figure 13, it is significant to
observe that if we want to work on small scales, we cannot neglect
the decaying modes. Therefore, we consider that including this type
of modes could be important in the development of high-precision
theories, including those involving baryonic matter.

Finally, we believe that this work expands upon the research
conducted by Shoji and Komatsu [6] at first order in delta (δ),
and for this order, we reproduce the zeroth and first iterations of
the Jeans Filtering Functions, g(0)(τ, k) and g(1)(τ, k). We aim for
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this work to assits us in understanding the baryonic physics in the
large scale structure and, why not, employ it in various simulations
to comprehend different asthrophysical processes [20].
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