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Abstract

In this paper, the energy eigenvalues of the helium atom
and the helium-like ions up to Z=5 in dense plasma are
investigated with screened interaction potentials using
Debye-Hiickel model and exponential cosine screened
Coulomb potential using variational Monte Carlo method.
The calculations which are carried out in this paper
are based on using trial wave functions with different
asymptotic behaviors, classified as polynomial correlation,
exponential decreasing, and exponential increasing
functions. Furthermore, the low-lying excited states of
the helium atom were investigated under the same model
potentials using trial wave functions for the lowest four
excited states, corresponding to the configurations 1s2s and
1s2p. Interesting results are obtained in comparison with
results obtained by using other trial wave functions.

Keywords: helium atom, dense plasma, exponential cosine screened
Coulomb potential, variational Monte Carlo method.

Resumen

En este trabajo se investigan los valores propios de
energia del atomo de helio y de los iones helioides hasta
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7 = 5 inmersos en plasma denso, considerando potenciales
de interaccién apantallados descritos por el modelo de
Debye—Hiickel y por el potencial de Coulomb apantallado
exponencial-coseno. Los célculos se realizan mediante el
método de Monte Carlo variacional empleando funciones de
onda de prueba con distintos comportamientos asintoticos,
clasificadas como de correlaciéon polindmica, exponencial
decreciente y exponencial creciente. Ademads, se estudian
los estados excitados de baja energia del atomo de helio
bajo los mismos potenciales modelo, utilizando funciones
de onda de prueba para los cuatro estados excitados mas
bajos correspondientes a las configuraciones 1s2s y 1s2p.
Se obtienen resultados interesantes en comparaciéon con los
obtenidos mediante otras funciones de prueba.

Palabras clave: atomo de helio, plasma denso, potencial de Coulomb
apantallado exponencial-coseno, método de Monte Carlo variacional.

Introduction

The theoretical studies of atomic systems in dense plasmas at
different temperatures play very important role in some physical
situations and have gained considerable interest in recent years
[THIT]. To study the effect of the plasma environment on atoms, it
is recommended to investigate the screened interaction potentials
using Debye—Hiickel model (DHM) [12], which provides a suitable
treatment of non-ideality in plasma via the screening effect. This
model is used to simulate plasma screening effect of weakly coupled
plasmas. Furthermore, it was shown that the study of effective
screened potential in dense quantum plasmas can be represented by
using modified Debye—Hiickel model (MDHM) [13] or exponential
cosine screened Coulomb potential (ECSCP).

It should be noticed that extensive efforts have been focused on
the screened Coulomb potentials and exponential cosine screened
Coulomb potential in field theory, nuclear, and plasma physics
[14-19].  Within the framework of the B-spline configuration
interaction (BSCI) method, Yen-Chang Lin, Chih-Yuan Lin and
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Yew Kam Ho studied the spectral/structural data of helium
atom with exponential-cosine-screened Coulomb potentials [20].
Moreover, Amlan K. Roy discussed the critical parameter
in three screened potentials, namely Hulthen, Yukawa, and
exponential-cosine-screened Coulomb potentials and spherical
confinement of H Atom [21]. Also, Arijit Ghoshal and Y. K. Ho
[22] had made investigations on the two-electron system in the
field of generalization screened potential within the framework of
highly correlated and extensive wave functions in Ritz’s variational
principle, where they have been able to determine accurate ground
state energies and wave functions of the two-electron system for
different values of the screening parameter.

Furthermore, many studies have been attempted to construct trial
wave function for helium atom. V. V. Nasyrov [23] considered a
numerical method for constructing a model wave function for the
helium atom. Moreover, D. Bressanini and G. Morosi [24] studied
a compact boundary-condition determined wave function for the
two-electron atomic systems. In addition, K. V. Rodriguez, G.
Gasaneo and D. M. Mitnik [25] presented accurate and simple wave
functions for the helium isoelectronic sequence with correct cusp
conditions. Moreover, some attempts to study the ground state
of the helium atom in dense plasmas were carried out by S. Kar
and Y. K. Ho [4], who investigated the bound states of the helium
atom in dense plasmas. Also, A. Ghoshal and Y. K. Ho [5] studied
the ground state of the helium atom in exponential cosine screened
Coulomb potentials.

The variational Monte Carlo (VMC) method provides us with
an accurate technique for evaluating multidimensional integrals
by transforming them to the evaluation of expectation values of
operators over certain region of space, which can be handled well
by a suitably application of the Metropolis algorithm [26].

Accordingly, in this paper we apply the VMC method to study
the effect of the plasma environment by using the DHM and the
MDHM to determine the accurate ground state energy Eye(1515) Of
the helium atom, the helium-like ions up to Z = 5, and the low-lying
excited states of the helium atom by using trial wave functions with
different asymptotic behaviors.
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The Used Plasma Models

The collective effects of correlated many-particle interactions lead
to screened Coulomb interactions in hot and dense plasmas which
are represented by the DHM and it is given by

Von(r) = =2 exp(—pr), 0

where p = ﬁ represents the Debye screening parameter and
it determines the interaction between electron—electron in Debye
plasma. It depends on the temperature and the density of the

plasma in the following form [27]

1 4me2 N,
= = / ¢ 2
/’l’ )\D KTe ) ( )

where, Ap is called the Debye screening length, K is the Boltzmann
constant, T, is the electron temperature, e is the electronic charge,
and N, is the plasma—electron density.

Furthermore, it was shown that the study of effective screened

potential in dense quantum plasmas can be represented by using
MDHM [13] or ECSCP, which is given by

Vipu(r) = —2762 exp(—pur) cos(ur) (3)

Usually, in quantum plasmas, p is related to the quantum wave
number of the electron, which is related to the electron plasma
frequency. Furthermore, the definitions of p in the two model
potentials are different. In this work, we are dealing with u as
a parameter so that physical difference of u between these model
potentials [17), 2], 28] are not discussed.

Variational Monte Carlo Method

Quantum Monte Carlo methods have already been used for
quantum mechanical systems. There are several quantum Monte
Carlo techniques such as VMC, Diffusion Monte Carlo and Green’s
function Monte Carlo methods. We will concentrate in this paper
on the VMC method, which is used to approximate the ground
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state of the Hamiltonian H of quantum mechanical systems by some
trial wave function 1r(R) whose form is chosen from the analysis
of the quantum mechanical system under study. Therefore, the
expectation value of the Hamiltonian H is written as [29]

JUr(R H@/)T(R) dR

H)=F
W)= Boe = (R) o (R) R
J dRY7(R) EL(R) /
= = [ dRp(R) EL(R 4
where EL(R) = %g)%) is the local energy depending on the 3N
coordinates R of the N electrons, and p(R) = % is the
T

normalized probability density. The variational energy can be
calculated as the average value of Er(R) on a sample of M points,
Ry, sampled from the probability density p(R) as follows

Evmve = (Ep) = Z EL(Ry). (5)

In practice, the points Ry are sampled using the
Metropolis-Hastings algorithm [23]. When evaluating the
energy of the system it is important to calculate the standard
deviation of this energy, given by [29]

(E7) — (Er)?
N —1)

Since (Ep) will be exact when an exact trial wave function is used,
then the standard deviation of the local energy will be zero for this
case. Thus, in the Monte Carlo method, the minimum of (Ep)
should coincide with a minimum in the standard deviation.

Theoretical Details

The non-relativistic Hamiltonian in Hylleraas coordinates [30] for
the two-electron systems, under effective screened potential in dense
plasmas, is given, in atomic units, by
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2

1 ) 712
where r; = |ri| and ry = |r|, in which r; and ry, are the
radius vectors of the two electrons relative to the nucleus, and
ri2 = |rp — ry| is their relative distance. = Moreover, the

non-relativistic Hamiltonian in the effective ECSCP is given by

2
1 exp(—pr exp(—pur
H, = —3 EZ VZ-2 [% cos(ury) + % cos(,m‘g)]

+exp(—/u"12)

COS(urio
i (pri2)

(7)
Our calculations for the two electron systems depend on several
different types of trial wave functions with different asymptotic
behaviors classified as polynomial correlation, exponential
decreasing and exponential increasing functions where all the
considered wave functions satisfy Kato cusp conditions [24], [37].

Firstly, we consider a trial wave function with polynomial
correlation in the form [20]

wl(rl, T2, 7’12) = Cleiz(erw) (1 + %7’12 + CQT%Q) s (8)
where Z is the nuclear charge and C; and C5 are variational

parameters.

The second type of trial wave function with exponential increasing
behavior is written as [25]

— 2 —Zr r2 r
77/12(7’1, T2, Tl?) = (1 + P12> eXp<Z71nl+—+rflrl> eXp<Zli—t§22> eXP(lieﬁz) !
(9)
where Pj5 is the operator that permutes the two electrons, and

b1, by, d and e are variational parameters. The third type of trial
wave function with exponential decreasing is written as [32]
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A
Y3(ry, e, m12) = By e—Z(ri+ra) [cosh(ary) + cosh(ars)] (1 + %Tme—brm) :
(10)

with Z the atomic number of the system and A = 0.702534 is the
normalization constant of the wave function. Here a and b are
variational parameters. The case corresponding to g = 1 gives the
wave function of Le Sech [33], while for ¢ = 0 and a = 0 we get the
well-known separable two-electron wave function [34].

The Trial Wave Functions for the Low-Lying Excited
States of Helium Atom

The study of the low-lying excited states of the helium atom has
received considerable attention in the theoretical investigations.
Therefore, for the lowest four excited states, corresponding to the
configurations 1s2s and 1s2p, we used the following trial wave
functions:

a. For the lowest ortho (space-antisymmetric) state 23S,
corresponding to the configuration 1s2s, we consider the following
simple trial wave function

Woss(r1,12) = N [1h15(r1) thas(r2) — ¥1s(ra) as(r1)] f(ri2),  (11)

b. The state 215 is a para (space-symmetric) state corresponding
to the configuration 1s2s and its trial wave function is, then, taken
of the form

Wo15(r1,72) = N [th15(11) Yas(r2) + 15(r2) Yas(r1)] f(112).  (12)

For the 2! P state, which is the lowest para-state corresponding to
the configuration 1s2p, we consider the trial wave function

‘IleP(ﬁ, 7”2) =N wls(rl) prm(TZ) =+ ¢1s(7“2) w2pm(rl)] f(7"12) (13)

For the 23 P state, which is the lowest ortho state corresponding to
the configuration 1s2p, the trial wave function takes the form
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\Ij23P<7'177'2) = N[wls(rl) prm(TZ) - ¢13(7’2) prm(rl):| f(7’12), (14)

where
V15(r) = exp(—2zor),

i) (1 el ).
and
Yopm (1) = Texp(—%r) Yim(0,0), m=0,%1.

In the above equations, 2z, and z; are variational parameters, and N
is the normalization constant. The function f(ry2) is the Jastrow
correlation function given by [35].

f(ri2) = e T

For the relationship of the electron-electron interaction, one obtains
the cusp conditions

1 o0V 1

v Bres | riy=0 =5 for unlike spins
1 0V 1

U Bres | riy=0 e for like spins

The numerical method, which is used in the calculations, the
VMC method, is based on a combination of the well-known
variational method and the Monte Carlo technique of calculating
the multi-dimensional integrals. By a suitable choice of the trial
wave function, it is then possible to obtain minimum energy
eigenvalues in agreement with the exact values for the ground as
well as the excited states of the given atom. These minimum
energies are associated with the least values of the standard
deviation. In all our calculations, the resulting values of the
standard deviation for the ground-state and the four low-lying
excited states of helium are less than 0.0001.

In Table[I] we present the values of the parameters of the trial wave
functions which produced the best fit to the low-lying excited states
of helium.
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State | zg Zi al p
238 2 116201 2| 0.30
21S 1 2 10.865 | 4 | 0.65
2P | 2 11.000 | 4 | 1.00
25P | 2 11.200 | 2 | 0.40

TABLE 1. The variational parameters for low-lying excited states of helium
using the four trial wave functions.

Results and Discussions

It is impossible to find a complete analytical solution for the
wave functions of the interaction of a system of two electrons
because of the presence of the correlation of atomic electrons r1s.
Therefore, we tended to solve it in an approximate manner. We
used the well-known VMC method, to investigate the effect of
the plasma environment using DHM and MDHM to determine the
energy eigenvalues of the helium atom and helium-like ions up to
Z = 5. The calculations, which are carried out in our investigation,
are based on using the three trial wave functions with different
asymptotic behaviors, as explained above.

First, we considered the trial wave function v; which contains a
polynomial angular correlation, the variational parameters C; and
(5 are given the values 1.55134 and 0.03889, respectively [23]. In
Table [2, we present the calculated ground state energies of the
helium atom and the helium-like ions (H™,Li", Be*", B3) under
effective screened potential in dense quantum plasmas using the
trial wave function ;. Furthermore, in Table [3| we presented
the calculated ground state energies of helium and helium-like
ions (H™,Li*, Be*", B**) under ECSCP by using the same wave
function.

Secondly, we considered the trial wave function 5, which is
classified as exponentially growing increasing behavior as 7o
increases. The value of the variational parameter d is 0.5. It
was fixed in order to satisfy all the cusp conditions, and the other
parameters are given by the following relations: b; = —1.0778 x Z,
by = 0.4142 — 0.8287 x Z and e = 0.2247 x Z [25]. The results of
the calculations by using the trial wave function ¢, under effective
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Ap Z=1,...,5
—En —Ee — B —Eper — L+
1 o 0.6583782  3.384993  7.779964  14.20784
A 0.8793133  3.260577  7.045492  14.20680
¢y 01357037 0.678469  3.258693  T7.757832  13.91359
— 08170412 - - -
2 ¢y 0.1276934 1618487  5.085995 1045508  17.83788
Wy 0.1448210 1688010  5.051023 1050654  17.84351
Py 0.1078920 1.63016 5046806 10.45222  17.70252
0.15156 1.65504 - - -
0.15783501 - - - -
10 o 04253473 2.61339 6.793266  12.96514  21.13618
¢y 0.4323791 2616365  6.791333  12.96878  21.14311
Uy 0.4047339 2.62304 6.789536  12.96792  21.06163
0.431920 26145110 - — —
04320550 261471 - - -
20 o 04717589 2756179 7.033276  13.30552 2157625
Py 0.4783779 2756607  7.032549  13.30738 2158320
Py 04509977 2.75661 7.040529  13.30846 2150382
0477240 - - — -
0.47903501 - o _ o
40 ¢r 04958478 2.820343  7.155744 1347809  21.79875
¥ 05023600 2.820113  7.155327 1347950  21.80570
Wy 0.4750360 2.83896 7153632 13.48107  21.72686
70 o 05063561 2861069  7.208744  13.55254 21.8946
p 05128439 2.860601  7.208308  13.55385  21.90157
Py 04855415 2.87068 7206707 1355553 21.82285
100 o 05105907 2873823  7.230032  13.58241  21.93304
o 05170725 2873407  7.220702  13.58369 21.9400
Uy 04897735 2.88343 7.228013 13.5854 21.86131
00 o 05205414 2903724 7.279894  13.65228 22.0229
Uy 05270174 2903272 T.279582  13.65353  22.02087
Uy 0.4997217 2903761 7.277893  13.65527  21.95121
0.5264410  2.90337 7.27948
approx [E] 0527750074 2.903724311 7.279913341 13.65556617 22.03097151

Theoretical results of L. U. Ancarani et al.
Theoretical results of S. Kar et al.

TABLE 2. Ground state energies of helium and helium-like ions (H™, Li™, Be? ™,
B3*) under effective screened potential in dense quantum plasmas, given in
Eq. @, using the wave functions 1, ¥o and 3. Approximation energies are
taken from [38]. All energies are in atomic units.
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screened potential in dense quantum plasmas and effective ECSCP
is presented in Tables [2] and [3] respectively.

Finally, we considered the trial wave function 13, which is classified
as exponentially growing decreasing behavior as 715 increases. The
variational parameters a, g and b are given by 0.72, 1 and 0.20,
respectively. The calculations are carried out by using the trial wave
function 13 under effective screened potential in dense quantum
plasmas and effective ECSCP and are presented in Tables [2] and [3]
respectively.

It is worth mentioning that the evaluation of the ground state
energies for He-like configurations are not directly observable in
the plasma environment. Therefore, we studied the low-lying
excited states of helium atom under effective screened potential
in dense quantum plasmas and effective ECSCP using trial wave
functions for the lowest four excited states, corresponding to the
configurations 1s2s and 1s2p. In Table[I] we present the variational
parameters for the four trial wave functions, which are used.

In Figs{] [2] and [3] we presented the bound state energies of helium
and helium-like ions (H™, Li*, Be*", B>*) with increasing screening
effect. Moreover, in Figs. and [6], we presented the bound state
energies of helium and helium-like ions (H™,Li*, Be*™, B3*) with
decreasing screening effect.

We noticed from Figs. [1} [2 and [3] that the calculated ground
state energies take logarithmic function behavior when we use
the effective screened potential in dense quantum plasmas. In
addition, for small screening length A\p = 1,2, the calculated
ground state energies of helium and helium-like ions are low and
far from approximations energies values which have been obtained
in [38]. Furthermore, for large screening length Ap, we find that
the calculated ground state energies are close to the experimental
values and they are in very good agreement with the experimental
values when the screening length A\ tends to oco.

On the other hand, in Figs. [4] [fl and [6] the calculated ground state
energies take linear function behavior when we use the exponential
cosine screened Coulomb effective potential; this is because of
the oscillatory part (cosine). To be more precise, the calculated
ground state energies increase with decreasing A\p. Most accurate
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results of the calculated ground state energies are computed by
using the presented three wave functions, which are collected in
Table [dl  However, it has been found from the computations
presented that it is easy to deal with the trial wave function with
polynomial correlation v, rather than the trial wave function with
exponential increasing behavior ;.

We note here that the results shown in Tables [ and [f are carried
out by using the trial wave function for the lowest four excited
states under effective screened potential in dense quantum plasmas
and effective ECSCP, respectively.

H &
F
3

= =
%

* X

n p SS— -~ &
23
2 OH- OHe Li+ %Bet2 %B+3 E O-H- 1 He +<Li+ > Bet2 %B+3
FIcure 1. FIGURE 2.
p

0 10 20 30 40 50 60 70 80 90 100
0.

3 O—oD 0 o o
A
 —a A w A

X* X

*

<-H- {1He /<Li+ % Bet2 ¥B+3
FIGURE 3.
Figs. [1, [3 and [ Ground state energies of helium and helium-like
ions (H™, Li, Be?T, B3") under effective screened potential in
dense quantum plasmas, given in FEq. (@, using the wave

functions ¥y, ¥y and 3.
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m Z=1,...,5
—Eu — e —E.. —Epor —Egsr
0.0 ¢ 0.5205414 2003724 7.279804  13.65228 22.0229
G 0.5270174 2903272 7.279582  13.65353 2202087
Wy 0.4997217 29003761 7.277893  13.65527  21.95121
05264400 2.9033700 797948 - -
approx. B9 0527750074 2.903724311 7.279913341 13.65556617 22.03097151
0.01 o 05105417 2873724  7.220805 1358228  21.93291
G 0.5170177 2873273 7.220583 1358354 21.93087
by 04897221 2873762 7.227893  13.58527  21.86121
0.02 b1 0.5005434 2.843729 7.1799 13.51228 21.8429
Gs 0.5070199 2843281  7.179585  13.51354  21.84987
Yy 04797247 2.843766 7177896 13.51527 2177121
0.05 ¢ 04705732 2753802 7.020972  13.30233 2157295
¢ 04770572 2.753307 7.02870 13.30361 2157991
Gy 0.4497679 2753834 7.027954  13.30532  21.50123
0.4764317 § : . ;
0477725 . . . .
0.08 ¢ 0.4406728 2664038  6.880208  13.09248  21.30308
G 0.4471828 2663772 6.879820  13.00385  21.31006
Gy 0.4199104 2664053  6.87813%8  13.00548  21.23131
0.1 G 04207997 2604330 6780503 12.95267  21.12326
Gy 04273427 2604236 6.780061  12.95414  21.13024
¢y 0.4000804 2604325 6778368 12.95568  21.05140
0.42650 2604097 - - -
0.427682! 2.604445! . . -
0.15 ¢ 0.3714258 2455702 6531906 12.60360  20.67408
Gs 03781309 2456417 6531172 12.60553  20.68110
¢s 0.3500516 2455612 6.520469  12.60664  20.60184
_— . 6.53007 — —
0.25 G 0.2746979 2162305  6.038846  11.90822  19.77819
Gy 0.2822341 2.166879 6.03667 11.91242 19.7854
b5 0.2552527 2161887  6.034924  11.91141  19.70409
0.28049 L% - - - -
0.281601 i _ . .
0.50 ¢ 005296836 1462158 4844694  10.19662  17.56252

Uy 006705844 1495206  4.831208 1021832  17.57109
¢3 003875005 1460709  4.830085  10.20077  17.47341
0043490 1 4765310 _— . -

0.0828952) 1.47696 - - —

0.70 W — 0.8224184  3.943935  S8.867401  15.82618
T 09157847  3.911365 8918591  15.83673
T 00445192  3.008388  8.872678 1571030

1.00 o — 0.247953 2703626  6.961212  13.30194
Y — 04316978  2.623409  7.084514  13.31631

Yy — 0.255767  2.617936  6.967584  13.11581

- 0.40056 - - -

- 0.405262! — — .

Theoretical results of A. Ghoshal et al.
Theoretical results of L. U. Ancarani et al. [TJ]

TABLE 3. Ground state energies of helium and helium-like ions

(H-, Lit, Be**, B3t) under effective ECSCP, given in Eq. (@, by using

the wave functions V1, Vo and V3. Approximation energies are taken from Ref.
[38]. All energies are in atomic units.
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Energy —Ey- —FEe —FEy —Epgar —Eps+

Uy 0.5205414  2.903724 7.279894 13.65228 22.0229

[ 0.5270174  2.903272 7.279582 13.65353 22.02987

U3 0.4997217  2.903761 7.277893 13.65527 21.95121

approx. [38] 0.527750974  2.903724311 7.279913341 13.65556617 22.03097151
TABLE 4. Ground state energies of helium and helium-like ions

(H—, Li™, Be*T, B3t). All the quantities reported here are expressed in atomic
units.

Ap Bound-state energies
— Ele(152635) —Ehe(is2prp)  —EHe(1s2p3p)  —EHe(152515)

1 0.446934 0.455367 0.427100 0.524792
0.592580 — 0592554
0.57636 2 0.573832

2 1.097174 1.086767 1.071526 1.157865
1.163841 115788652 1.15856289  1.163745H]
1156297 1.15339

10 1.892765 1.851994 1.857288 1.880405
1.90104] 1.85270358  1.8600978™  1.875036H]
1.90082™% 1.87481001

20 2.025056 1.981269 1.988531 2.005345
2.032041 19814378 19902118 2.00368 ™

1.99020257

40 2095346 2.050633 2.058500 2.073310
2.101974] 20508028 205097655 2.072066 0

70 2126397 2.081453 2.089471 2.103776
2.13294H1 20816350 2.000006F  2.103778

100 2.138983 2.093977 2.102033 2.116204
2.14551H1 20041638 21034508 2116305

s 2168892 2.123652 2.131747 2.145788
217522000 212384308 21331640 21450744
2.175020 2.1457110

Theoretical results of S. Kar et al. [1]

Theoretical results of L. U. Ancarani et al.
Theoretical results of S. T. Dai et al. [39]

TABLE 5. FEzxcited states 152535, 1s2p* P, 1s2p3P and 152s'S of the helium
atom under effective screened potential in dense quantum plasmas.
quantities reported here are expressed in atomic units.

All the
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7 Bound-state energies
7EHe(15253S) 7EHe(132plP) 7EHe(132p3P) 7EH9(1525 1S)
0.0  2.168892 2.123652 2.131747 2.145788
2.17502H 2.14571 H
0.01  2.138791 2.093663 2.101756 2.115807
0.02  2.108828 2.063734 2.071805 2.085933
0.05  2.019466 1.974792 1.982598 1.997761
0.08  1.931473 1.887868 1.894943 1.912852
0.1  1.873670 1.831351 1.837650 1.858399
1880961 1.85374 1
0.15  1.733492 1.695194 1.699100 1.729997
0.25  1.473183 1.448405 1.443456 1.501125
0.5  0.931384 0.936718 0.909911 1.016984
1.03402H 1.03327H2
0.70  0.578183 0.593538 0.557661 0.675692
1.00  0.133539 0.153774 0.111808 0.226527
0.290921- 0.287721

Theoretical results of L. U. Ancarani et al. [TJ]

TABLE 6. FEzcited states 152535, 1s2p' P, 1s2p3P and 1525'S of the helium
atom under effective ECSCP. All the quantities reported here are expressed in
atomic units.

Conclusion

The present study is a potentially relevant contribution to the
understanding of the ground state of one of the smaller atoms in the
periodic table. The model used in this paper describes the screening
of charges in a plasma where both positive and negative charges
are present, and where their motion is thermal. Furthermore, we
have carried out an investigation to determine the effect of Debye
plasma and dense quantum plasmas on the low-lying excited states
of the helium atom using trial wave functions for the lowest four
excited states, corresponding to the configurations 1s2s and 1s2p.
The computations presented in the present paper were verified, to
high accuracy, by using the VMC method, which has been applied
successfully to the case of light atoms in dense plasma states, by
suitably chosen theoretical models and trial wave functions.
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Figs. [{} [J and [0 Ground state energies of helium and helium-like
ions (H™, Li*, Be*t, B3 ) under effective ECSCP, given in
Eq. (@, by using the wave functions 1y, ¥y and 5.

By analyzing the data presented in Tables and we see
that the most accurate results of the calculated ground state
energies are obtained by using the trial wave function with
polynomial correlation v, and with exponential increasing behavior
1o, rather than the trial wave function with exponential decreasing
behavior 3. Also, it has been found, from the computations
presented, that it is easy to deal with the trial wave function with
polynomial correlation, rather than the trial wave function with
exponential behavior.

In addition, the calculated low-lying excited states of the helium
atom using the chosen trial wave functions in the framework of the
VMC method are in very good agreement with the results used in
the already published papers.
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