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Abstract

In this paper, the energy eigenvalues of the helium atom
and the helium-like ions up to Z=5 in dense plasma are
investigated with screened interaction potentials using
Debye-Hückel model and exponential cosine screened
Coulomb potential using variational Monte Carlo method.
The calculations which are carried out in this paper
are based on using trial wave functions with different
asymptotic behaviors, classified as polynomial correlation,
exponential decreasing, and exponential increasing
functions. Furthermore, the low-lying excited states of
the helium atom were investigated under the same model
potentials using trial wave functions for the lowest four
excited states, corresponding to the configurations 1s2s and
1s2p. Interesting results are obtained in comparison with
results obtained by using other trial wave functions.

Keywords: helium atom, dense plasma, exponential cosine screened

Coulomb potential, variational Monte Carlo method.

Resumen

En este trabajo se investigan los valores propios de
enerǵıa del átomo de helio y de los iones helioides hasta
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Z = 5 inmersos en plasma denso, considerando potenciales
de interacción apantallados descritos por el modelo de
Debye–Hückel y por el potencial de Coulomb apantallado
exponencial-coseno. Los cálculos se realizan mediante el
método de Monte Carlo variacional empleando funciones de
onda de prueba con distintos comportamientos asintóticos,
clasificadas como de correlación polinómica, exponencial
decreciente y exponencial creciente. Además, se estudian
los estados excitados de baja enerǵıa del átomo de helio
bajo los mismos potenciales modelo, utilizando funciones
de onda de prueba para los cuatro estados excitados más
bajos correspondientes a las configuraciones 1s2s y 1s2p.
Se obtienen resultados interesantes en comparación con los
obtenidos mediante otras funciones de prueba.

Palabras clave: átomo de helio, plasma denso, potencial de Coulomb

apantallado exponencial-coseno, método de Monte Carlo variacional.

Introduction

The theoretical studies of atomic systems in dense plasmas at
different temperatures play very important role in some physical
situations and have gained considerable interest in recent years
[1–11]. To study the effect of the plasma environment on atoms, it
is recommended to investigate the screened interaction potentials
using Debye–Hückel model (DHM) [12], which provides a suitable
treatment of non-ideality in plasma via the screening effect. This
model is used to simulate plasma screening effect of weakly coupled
plasmas. Furthermore, it was shown that the study of effective
screened potential in dense quantum plasmas can be represented by
using modified Debye–Hückel model (MDHM) [13] or exponential
cosine screened Coulomb potential (ECSCP).
It should be noticed that extensive efforts have been focused on
the screened Coulomb potentials and exponential cosine screened
Coulomb potential in field theory, nuclear, and plasma physics
[14–19]. Within the framework of the B-spline configuration
interaction (BSCI) method, Yen-Chang Lin, Chih-Yuan Lin and
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Yew Kam Ho studied the spectral/structural data of helium
atom with exponential-cosine-screened Coulomb potentials [20].
Moreover, Amlan K. Roy discussed the critical parameter
in three screened potentials, namely Hulthen, Yukawa, and
exponential-cosine-screened Coulomb potentials and spherical
confinement of H Atom [21]. Also, Arijit Ghoshal and Y. K. Ho
[22] had made investigations on the two-electron system in the
field of generalization screened potential within the framework of
highly correlated and extensive wave functions in Ritz’s variational
principle, where they have been able to determine accurate ground
state energies and wave functions of the two-electron system for
different values of the screening parameter.

Furthermore, many studies have been attempted to construct trial
wave function for helium atom. V. V. Nasyrov [23] considered a
numerical method for constructing a model wave function for the
helium atom. Moreover, D. Bressanini and G. Morosi [24] studied
a compact boundary-condition determined wave function for the
two-electron atomic systems. In addition, K. V. Rodriguez, G.
Gasaneo and D. M. Mitnik [25] presented accurate and simple wave
functions for the helium isoelectronic sequence with correct cusp
conditions. Moreover, some attempts to study the ground state
of the helium atom in dense plasmas were carried out by S. Kar
and Y. K. Ho [4], who investigated the bound states of the helium
atom in dense plasmas. Also, A. Ghoshal and Y. K. Ho [5] studied
the ground state of the helium atom in exponential cosine screened
Coulomb potentials.

The variational Monte Carlo (VMC) method provides us with
an accurate technique for evaluating multidimensional integrals
by transforming them to the evaluation of expectation values of
operators over certain region of space, which can be handled well
by a suitably application of the Metropolis algorithm [26].

Accordingly, in this paper we apply the VMC method to study
the effect of the plasma environment by using the DHM and the
MDHM to determine the accurate ground state energy EHe(1s1s) of
the helium atom, the helium-like ions up to Z = 5, and the low-lying
excited states of the helium atom by using trial wave functions with
different asymptotic behaviors.
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The Used Plasma Models

The collective effects of correlated many-particle interactions lead
to screened Coulomb interactions in hot and dense plasmas which
are represented by the DHM and it is given by

VDH(r) = −Ze
2

r
exp(−µr), (1)

where µ = 1
λD

represents the Debye screening parameter and
it determines the interaction between electron–electron in Debye
plasma. It depends on the temperature and the density of the
plasma in the following form [27]

µ =
1

λD
=

√
4πe2Ne

KTe
, (2)

where, λD is called the Debye screening length, K is the Boltzmann
constant, Te is the electron temperature, e is the electronic charge,
and Ne is the plasma–electron density.
Furthermore, it was shown that the study of effective screened
potential in dense quantum plasmas can be represented by using
MDHM [13] or ECSCP, which is given by

VMDH(r) = −Ze
2

r
exp(−µr) cos(µr) (3)

Usually, in quantum plasmas, µ is related to the quantum wave
number of the electron, which is related to the electron plasma
frequency. Furthermore, the definitions of µ in the two model
potentials are different. In this work, we are dealing with µ as
a parameter so that physical difference of µ between these model
potentials [17, 21, 28] are not discussed.

Variational Monte Carlo Method

Quantum Monte Carlo methods have already been used for
quantum mechanical systems. There are several quantum Monte
Carlo techniques such as VMC, Diffusion Monte Carlo and Green’s
function Monte Carlo methods. We will concentrate in this paper
on the VMC method, which is used to approximate the ground
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state of the Hamiltonian Ĥ of quantum mechanical systems by some
trial wave function ψT (R) whose form is chosen from the analysis
of the quantum mechanical system under study. Therefore, the
expectation value of the Hamiltonian Ĥ is written as [29]

⟨Ĥ⟩ = EVMC =

∫
ψ∗
T (R) Ĥ ψT (R) dR∫
ψ∗
T (R)ψT (R) dR

=

∫
dRψ2

T (R)EL(R)∫
dRψ2

T (R)
=

∫
dR ρ(R)EL(R), (4)

where EL(R) = H ψ(R)
ψ(R)

is the local energy depending on the 3N

coordinates R of the N electrons, and ρ(R) =
ψ2
T (R)∫

dRψ2
T (R)

is the

normalized probability density. The variational energy can be
calculated as the average value of EL(R) on a sample of M points,
Rk, sampled from the probability density ρ(R) as follows

EVMC ≈ ⟨EL⟩ =
1

M

M∑
k=1

EL(Rk). (5)

In practice, the points Rk are sampled using the
Metropolis–Hastings algorithm [23]. When evaluating the
energy of the system it is important to calculate the standard
deviation of this energy, given by [29]

σ =

√
⟨E2

L⟩ − ⟨EL⟩2
N (M − 1)

Since ⟨EL⟩ will be exact when an exact trial wave function is used,
then the standard deviation of the local energy will be zero for this
case. Thus, in the Monte Carlo method, the minimum of ⟨EL⟩
should coincide with a minimum in the standard deviation.

Theoretical Details

The non-relativistic Hamiltonian in Hylleraas coordinates [30] for
the two-electron systems, under effective screened potential in dense
plasmas, is given, in atomic units, by
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H1 = −1
2

2∑
i

∇2
i−2

[
exp(−µr1)

r1
+
exp(−µr2)

r2

]
+
exp(−µr12)

r12
, (6)

where r1 = |r1| and r2 = |r2|, in which r1 and r2 are the
radius vectors of the two electrons relative to the nucleus, and
r12 = |r1 − r2| is their relative distance. Moreover, the
non-relativistic Hamiltonian in the effective ECSCP is given by

H2 = −1

2

2∑
i

∇2
i − 2

[
exp(−µr1)

r1
cos(µr1) +

exp(−µr2)
r2

cos(µr2)

]

+
exp(−µr12)

r12
cos(µr12)

(7)

Our calculations for the two electron systems depend on several
different types of trial wave functions with different asymptotic
behaviors classified as polynomial correlation, exponential
decreasing and exponential increasing functions where all the
considered wave functions satisfy Kato cusp conditions [24, 31].
Firstly, we consider a trial wave function with polynomial
correlation in the form [20]

ψ1(r1, r2, r12) = C1e
−Z(r1+r2)

(
1 + 1

2
r12 + C2r

2
12

)
, (8)

where Z is the nuclear charge and C1 and C2 are variational
parameters.

The second type of trial wave function with exponential increasing
behavior is written as [25]

ψ2(r1, r2, r12) = (1 + P12) exp
(

−Zr1+b1r21
1+r1

)
exp

(
−Zr2+b2r22

1+r2

)
exp

(
dr12

1+er12

)
,

(9)

where P12 is the operator that permutes the two electrons, and
b1, b2, d and e are variational parameters. The third type of trial
wave function with exponential decreasing is written as [32]
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ψ3(r1, r2, r12) =
A

2
e−Z(r1+r2) [cosh(ar1) + cosh(ar2)]

(
1 + g

2
r12e

−br12
)
,

(10)

with Z the atomic number of the system and A = 0.702534 is the
normalization constant of the wave function. Here a and b are
variational parameters. The case corresponding to g = 1 gives the
wave function of Le Sech [33], while for g = 0 and a = 0 we get the
well-known separable two-electron wave function [34].

The Trial Wave Functions for the Low-Lying Excited
States of Helium Atom

The study of the low-lying excited states of the helium atom has
received considerable attention in the theoretical investigations.
Therefore, for the lowest four excited states, corresponding to the
configurations 1s2s and 1s2p, we used the following trial wave
functions:

a. For the lowest ortho (space-antisymmetric) state 2 3S,
corresponding to the configuration 1s2s, we consider the following
simple trial wave function

Ψ23S(r1, r2) = N [ψ1s(r1)ψ2s(r2)− ψ1s(r2)ψ2s(r1)] f(r12), (11)

b. The state 2 1S is a para (space-symmetric) state corresponding
to the configuration 1s2s and its trial wave function is, then, taken
of the form

Ψ21S(r1, r2) = N [ψ1s(r1)ψ2s(r2) + ψ1s(r2)ψ2s(r1)] f(r12). (12)

For the 21P state, which is the lowest para-state corresponding to
the configuration 1s2p, we consider the trial wave function

Ψ21P (r1, r2) = N
[
ψ1s(r1)ψ2pm(r2) + ψ1s(r2)ψ2pm(r1)

]
f(r12) (13)

For the 23P state, which is the lowest ortho state corresponding to
the configuration 1s2p, the trial wave function takes the form
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Ψ23P (r1, r2) = N
[
ψ1s(r1)ψ2pm(r2)− ψ1s(r2)ψ2pm(r1)

]
f(r12), (14)

where
ψ1s(r) = exp(−z0r),

ψ2s(r) =
(
1− zir

2

)
exp

(
−zir

2

)
,

and
ψ2pm(r) = r exp

(
−zir

2

)
Y1,m(θ, ϕ), m = 0,±1.

In the above equations, z0 and zi are variational parameters, and N
is the normalization constant. The function f(r12) is the Jastrow
correlation function given by [35].

f(r12) = e
r12

α(1+βr12)

For the relationship of the electron-electron interaction, one obtains
the cusp conditions

1

Ψ

∂Ψ

∂rij

∣∣∣
rij=0

=
1

2
, for unlike spins

1

Ψ

∂Ψ

∂rij

∣∣∣
rij=0

=
1

4
, for like spins


The numerical method, which is used in the calculations, the
VMC method, is based on a combination of the well-known
variational method and the Monte Carlo technique of calculating
the multi-dimensional integrals. By a suitable choice of the trial
wave function, it is then possible to obtain minimum energy
eigenvalues in agreement with the exact values for the ground as
well as the excited states of the given atom. These minimum
energies are associated with the least values of the standard
deviation. In all our calculations, the resulting values of the
standard deviation for the ground-state and the four low-lying
excited states of helium are less than 0.0001.
In Table 1, we present the values of the parameters of the trial wave
functions which produced the best fit to the low-lying excited states
of helium.
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State z0 zi α β
23S 2 1.620 2 0.30
21S 2 0.865 4 0.65
21P 2 1.000 4 1.00
23P 2 1.200 2 0.40

Table 1. The variational parameters for low-lying excited states of helium
using the four trial wave functions.

Results and Discussions

It is impossible to find a complete analytical solution for the
wave functions of the interaction of a system of two electrons
because of the presence of the correlation of atomic electrons r12.
Therefore, we tended to solve it in an approximate manner. We
used the well-known VMC method, to investigate the effect of
the plasma environment using DHM and MDHM to determine the
energy eigenvalues of the helium atom and helium-like ions up to
Z = 5. The calculations, which are carried out in our investigation,
are based on using the three trial wave functions with different
asymptotic behaviors, as explained above.
First, we considered the trial wave function ψ1 which contains a
polynomial angular correlation, the variational parameters C1 and
C2 are given the values 1.55134 and 0.03889, respectively [23]. In
Table 2, we present the calculated ground state energies of the
helium atom and the helium-like ions (H−,Li+,Be2+,B3+) under
effective screened potential in dense quantum plasmas using the
trial wave function ψ1. Furthermore, in Table 3 we presented
the calculated ground state energies of helium and helium-like
ions (H−,Li+,Be2+,B3+) under ECSCP by using the same wave
function.
Secondly, we considered the trial wave function ψ2, which is
classified as exponentially growing increasing behavior as r12
increases. The value of the variational parameter d is 0.5. It
was fixed in order to satisfy all the cusp conditions, and the other
parameters are given by the following relations: b1 = −1.0778×Z,
b2 = 0.4142 − 0.8287 × Z and e = 0.2247 × Z [25]. The results of
the calculations by using the trial wave function ψ2 under effective
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λD Z = 1, . . . , 5

−EH− −EHe −ELi+ −EBe2+ −EB3+

1 ψ1 —– 0.6583782 3.384993 7.779964 14.20784
ψ2 —– 0.8793133 3.269577 7.945492 14.20680
ψ3 0.1357037 0.678469 3.258693 7.757832 13.91359

—– 0.81704[19] —– —– —–

2 ψ1 0.1276934 1.618487 5.085995 10.45508 17.83788
ψ2 0.1448210 1.688010 5.051023 10.50654 17.84351
ψ3 0.1078920 1.63016 5.046806 10.45222 17.70252

0.15156 [19] 1.65504 [19] —– —– —–

0.15783[36] —– —– —– —–

10 ψ1 0.4253473 2.61339 6.793266 12.96514 21.13618
ψ2 0.4323791 2.616365 6.791333 12.96878 21.14311
ψ3 0.4047339 2.62304 6.789536 12.96792 21.06163

0.43192[19] 2.61451[19] —– —– —–

0.43295[36] 2.61471 [36] —– —– —–

20 ψ1 0.4717589 2.756179 7.033276 13.30552 21.57625
ψ2 0.4783779 2.756607 7.032549 13.30738 21.58320
ψ3 0.4509977 2.75661 7.040529 13.30846 21.50382

0.47724[19] —– —– —– —–

0.47903[36] —– —– —– —–

40 ψ1 0.4958478 2.829343 7.155744 13.47809 21.79875
ψ2 0.5023600 2.829113 7.155327 13.47950 21.80570
ψ3 0.4750360 2.83896 7.153632 13.48107 21.72686

70 ψ1 0.5063561 2.861069 7.208744 13.55254 21.8946
ψ2 0.5128439 2.860691 7.208398 13.55385 21.90157
ψ3 0.4855415 2.87068 7.206707 13.55553 21.82285

100 ψ1 0.5105907 2.873823 7.230032 13.58241 21.93304
ψ2 0.5170725 2.873407 7.229702 13.58369 21.9400
ψ3 0.4897735 2.88343 7.228013 13.5854 21.86131

∞ ψ1 0.5205414 2.903724 7.279894 13.65228 22.0229
ψ2 0.5270174 2.903272 7.279582 13.65353 22.02987
ψ3 0.4997217 2.903761 7.277893 13.65527 21.95121

0.52644[16] 2.90337 [16] 7.27948 [16] —– —–
approx [37] 0.527750974 2.903724311 7.279913341 13.65556617 22.03097151

Theoretical results of L. U. Ancarani et al. [19]
Theoretical results of S. Kar et al. [36]

Table 2. Ground state energies of helium and helium-like ions (H−, Li+, Be2+,
B3+) under effective screened potential in dense quantum plasmas, given in
Eq. (6), using the wave functions ψ1, ψ2 and ψ3. Approximation energies are

taken from [38]. All energies are in atomic units.
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screened potential in dense quantum plasmas and effective ECSCP
is presented in Tables 2 and 3, respectively.

Finally, we considered the trial wave function ψ3, which is classified
as exponentially growing decreasing behavior as r12 increases. The
variational parameters a, g and b are given by 0.72, 1 and 0.20,
respectively. The calculations are carried out by using the trial wave
function ψ3 under effective screened potential in dense quantum
plasmas and effective ECSCP and are presented in Tables 2 and 3,
respectively.

It is worth mentioning that the evaluation of the ground state
energies for He-like configurations are not directly observable in
the plasma environment. Therefore, we studied the low-lying
excited states of helium atom under effective screened potential
in dense quantum plasmas and effective ECSCP using trial wave
functions for the lowest four excited states, corresponding to the
configurations 1s2s and 1s2p. In Table 1, we present the variational
parameters for the four trial wave functions, which are used.

In Figs.1, 2 and 3, we presented the bound state energies of helium
and helium-like ions (H−,Li+,Be2+,B3+) with increasing screening
effect. Moreover, in Figs. 4, 5 and 6, we presented the bound state
energies of helium and helium-like ions (H−,Li+,Be2+,B3+) with
decreasing screening effect.

We noticed from Figs. 1, 2 and 3 that the calculated ground
state energies take logarithmic function behavior when we use
the effective screened potential in dense quantum plasmas. In
addition, for small screening length λD = 1, 2, the calculated
ground state energies of helium and helium-like ions are low and
far from approximations energies values which have been obtained
in [38]. Furthermore, for large screening length λD, we find that
the calculated ground state energies are close to the experimental
values and they are in very good agreement with the experimental
values when the screening length λ tends to ∞.

On the other hand, in Figs. 4, 5 and 6, the calculated ground state
energies take linear function behavior when we use the exponential
cosine screened Coulomb effective potential; this is because of
the oscillatory part (cosine). To be more precise, the calculated
ground state energies increase with decreasing λD. Most accurate
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results of the calculated ground state energies are computed by
using the presented three wave functions, which are collected in
Table 4. However, it has been found from the computations
presented that it is easy to deal with the trial wave function with
polynomial correlation ψ1, rather than the trial wave function with
exponential increasing behavior ψ2.

We note here that the results shown in Tables 5 and 6 are carried
out by using the trial wave function for the lowest four excited
states under effective screened potential in dense quantum plasmas
and effective ECSCP, respectively.

Figure 1. Figure 2.

Figure 3.

Figs. 1, 2 and 3 Ground state energies of helium and helium-like
ions (H−, Li+, Be2+, B3+) under effective screened potential in

dense quantum plasmas, given in Eq. (6), using the wave
functions ψ1, ψ2 and ψ3.
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µ Z = 1, . . . , 5

−EH− −EHe −ELi+ −EBe2+ −EB3+

0.0 ψ1 0.5205414 2.903724 7.279894 13.65228 22.0229
ψ2 0.5270174 2.903272 7.279582 13.65353 22.02987
ψ3 0.4997217 2.903761 7.277893 13.65527 21.95121

0.52644[19] 2.90337[19] 7.27948[19] —– —–
approx.[38] 0.527750974 2.903724311 7.279913341 13.65556617 22.03097151

0.01 ψ1 0.5105417 2.873724 7.229895 13.58228 21.93291
ψ2 0.5170177 2.873273 7.229583 13.58354 21.93987
ψ3 0.4897221 2.873762 7.227893 13.58527 21.86121

0.02 ψ1 0.5005434 2.843729 7.1799 13.51228 21.8429
ψ2 0.5070199 2.843281 7.179585 13.51354 21.84987
ψ3 0.4797247 2.843766 7.177896 13.51527 21.77121

0.05 ψ1 0.4705732 2.753802 7.029972 13.30233 21.57295
ψ2 0.4770572 2.753397 7.02870 13.30361 21.57991
ψ3 0.4497679 2.753834 7.027954 13.30532 21.50123

0.47643[19] —- —- —- —-

0.47772[5] —- —- —- —-

0.08 ψ1 0.4406728 2.664038 6.880208 13.09248 21.30308
ψ2 0.4471828 2.663772 6.879829 13.09385 21.31006
ψ3 0.4199104 2.664053 6.878138 13.09548 21.23131

0.1 ψ1 0.4207997 2.604330 6.780503 12.95267 21.12326
ψ2 0.4273427 2.604236 6.780061 12.95414 21.13024
ψ3 0.4000894 2.604325 6.778368 12.95568 21.05140

0.42650 [19] 2.60409[19] —- —- —-

0.42768[5] 2.60444[5] —- —- —-

0.15 ψ1 0.3714258 2.455702 6.531906 12.60360 20.67408
ψ2 0.3781309 2.456417 6.531172 12.60553 20.68110
ψ3 0.3509516 2.455612 6.529469 12.60664 20.60184

—- —- 6.53007[19] —- —-

0.25 ψ1 0.2746979 2.162305 6.038846 11.90822 19.77819
ψ2 0.2822341 2.166879 6.03667 11.91242 19.7854
ψ3 0.2552527 2.161887 6.034924 11.91141 19.70409

0.28049[19] —- —- —- —-

0.28160[5] —- —- —- —-

0.50 ψ1 0.05296836 1.462158 4.844694 10.19662 17.56252
ψ2 0.06705844 1.495206 4.831298 10.21832 17.57109
ψ3 0.03875005 1.460709 4.839085 10.20077 17.47341

0.04349[19] 1.47653[19] —- —- —-

0.08289[5] 1.47696[5] —- —- —-

0.70 ψ1 —- 0.8224184 3.943935 8.867401 15.82618
ψ2 —- 0.9157847 3.911365 8.918591 15.83673
ψ3 —- 0.9445192 3.908388 8.872678 15.71030

1.00 ψ1 —- 0.247953 2.703626 6.961212 13.30194
ψ2 —- 0.4316978 2.623409 7.084514 13.31631
ψ3 —- 0.255767 2.617936 6.967584 13.11581

—- 0.40056[19] —- —- —-

—- 0.40526[5] —- —- —-

Theoretical results of A. Ghoshal et al. [5]
Theoretical results of L. U. Ancarani et al. [19]

Table 3. Ground state energies of helium and helium-like ions

(H−, Li+, Be2+, B3+) under effective ECSCP, given in Eq. (7), by using
the wave functions ψ1, ψ2 and ψ3. Approximation energies are taken from Ref.

[38]. All energies are in atomic units.
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Energy −EH− −EHe −ELi+ −EBe2+ −EB3+

ψ1 0.5205414 2.903724 7.279894 13.65228 22.0229

ψ2 0.5270174 2.903272 7.279582 13.65353 22.02987

ψ3 0.4997217 2.903761 7.277893 13.65527 21.95121

approx. [38] 0.527750974 2.903724311 7.279913341 13.65556617 22.03097151

Table 4. Ground state energies of helium and helium-like ions

(H−, Li+, Be2+, B3+). All the quantities reported here are expressed in atomic
units.

λD Bound-state energies

−EHe(1s2s3S) −EHe(1s2p1P ) −EHe(1s2p3P ) −EHe(1s2s1S)

1 0.446934 0.455367 0.427100 0.524792

0.59258[4] ——- ——- 0.59255[4]

0.57636[19] 0.57388[19]

2 1.097174 1.086767 1.071526 1.157865

1.16384[4] 1.157886[39] 1.158562[39] 1.163745[4]

1.15629[19] ——- ——- 1.15339

10 1.892765 1.851994 1.857288 1.880405

1.9010[4] 1.8527035[4] 1.8600978[4] 1.875036[4]

1.90082[19] 1.87481[19]

20 2.025056 1.981269 1.988531 2.005345

2.0320[4] 1.981437[4] 1.990211[4] 2.00368[4]

1.990202[39]

40 2.095346 2.050633 2.058500 2.073310

2.10197[4] 2.050802[4] 2.0599765[4] 2.072966[4]

70 2.126397 2.081453 2.089471 2.103776

2.13294[4] 2.081635[4] 2.090906[4] 2.103778[4]

100 2.138983 2.093977 2.102033 2.116204

2.14551[4] 2.094163[4] 2.1034598[4] 2.11630[4]

∞ 2.168892 2.123652 2.131747 2.145788

2.175229[4] 2.1238430[4] 2.133164[4] 2.145974[4]

2.17502[19] 2.14571[19]

Theoretical results of S. Kar et al. [4]
Theoretical results of L. U. Ancarani et al. [19]
Theoretical results of S. T. Dai et al. [39]

Table 5. Excited states 1s2s3S, 1s2p1P , 1s2p3P and 1s2s1S of the helium
atom under effective screened potential in dense quantum plasmas. All the

quantities reported here are expressed in atomic units.
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µ Bound-state energies

−EHe(1s2s 3S) −EHe(1s2p 1P ) −EHe(1s2p 3P ) −EHe(1s2s 1S)

0.0 2.168892 2.123652 2.131747 2.145788

2.17502[19] 2.14571 [19]

0.01 2.138791 2.093663 2.101756 2.115807

0.02 2.108828 2.063734 2.071805 2.085933

0.05 2.019466 1.974792 1.982598 1.997761

0.08 1.931473 1.887868 1.894943 1.912852

0.1 1.873670 1.831351 1.837650 1.858399

1.88096[19] 1.85374[19]

0.15 1.733492 1.695194 1.699100 1.729997

0.25 1.473183 1.448405 1.443456 1.501125

0.5 0.931384 0.936718 0.909911 1.016984

1.03402[19] 1.03327[19]

0.70 0.578183 0.593538 0.557661 0.675692

1.00 0.133539 0.153774 0.111808 0.226527

0.29092[19] 0.28772[19]

Theoretical results of L. U. Ancarani et al. [19]

Table 6. Excited states 1s2s3S, 1s2p1P , 1s2p3P and 1s2s1S of the helium
atom under effective ECSCP. All the quantities reported here are expressed in

atomic units.

Conclusion

The present study is a potentially relevant contribution to the
understanding of the ground state of one of the smaller atoms in the
periodic table. The model used in this paper describes the screening
of charges in a plasma where both positive and negative charges
are present, and where their motion is thermal. Furthermore, we
have carried out an investigation to determine the effect of Debye
plasma and dense quantum plasmas on the low-lying excited states
of the helium atom using trial wave functions for the lowest four
excited states, corresponding to the configurations 1s2s and 1s2p.
The computations presented in the present paper were verified, to
high accuracy, by using the VMC method, which has been applied
successfully to the case of light atoms in dense plasma states, by
suitably chosen theoretical models and trial wave functions.
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Figure 4. Figure 5.

Figure 6.

Figs. 4, 5 and 6 Ground state energies of helium and helium-like
ions (H−, Li+, Be2+, B3+) under effective ECSCP, given in

Eq. (7), by using the wave functions ψ1, ψ2 and ψ3.

By analyzing the data presented in Tables 2 and 3, we see
that the most accurate results of the calculated ground state
energies are obtained by using the trial wave function with
polynomial correlation ψ1 and with exponential increasing behavior
ψ2, rather than the trial wave function with exponential decreasing
behavior ψ3. Also, it has been found, from the computations
presented, that it is easy to deal with the trial wave function with
polynomial correlation, rather than the trial wave function with
exponential behavior.
In addition, the calculated low-lying excited states of the helium
atom using the chosen trial wave functions in the framework of the
VMC method are in very good agreement with the results used in
the already published papers.
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