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Abstract

The objective was to model the survival of Bacillus cereus
LSPQ 2872 and Escherichia coli O157:H7 exposed to
gamma radiation, using Tsallis entropy and the Monte
Carlo simulation method. Monte Carlo simulations were
performed with a noise level of 0.05 to assess the sensitivity
of the Tsallis entropy-based models (dose-proportional
effect, linear-quadratic dose-effect relationship, and
Sotolongo et al.). Random values were generated for the
parameters (α, β, γ, D0, and D10) of the gamma irradiation
effect. The dose-proportional effect, linear-quadratic
dose-effect relationship, and Sotolongo et al. models
showed a good fit to the survival data of Bacillus cereus
and Escherichia coli exposed to radiation. For Bacillus
cereus, the dose-proportional effect and linear-quadratic
dose-effect models showed similar lethal doses (0.935 and
0.844 kGy), while the Sotolongo et al. model showed a
lower lethal dose (0.406 kGy), indicating greater radiation
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efficacy. In Escherichia coli, the dose-proportional effect
and linear-quadratic dose-effect models also showed similar
lethal doses (0.716 and 0.745 kGy), and the Sotolongo et al.
model showed a lower lethal dose (0.319 kGy), indicating
greater efficacy. Tsallis entropy-based models are suitable
for describing membrane behavior and biochemical changes
in bacteria exposed to gamma radiation.

Keywords: pathogen bacteria, survival fraction curve, Tsallis entropy,

gamma radiation.

Resumen

El objetivo fue modelar la supervivencia de Bacillus
cereus LSPQ 2872 y Escherichia coli O157:H7 expuestas
a radiación gamma, empleando la entroṕıa de Tsallis
y el método de simulación Monte Carlo. Se realizaron
simulaciones de Monte Carlo con un nivel de ruido de 0,05
para evaluar la sensibilidad de los modelos basados en la
entroṕıa de Tsallis (efecto proporcional a la dosis, relación
efecto-dosis de tipo lineal-cuadrático y Sotolongo et al.). Se
generaron valores aleatorios para los parámetros (α, β, γ,
D0 y D10) del efecto de la irradiación gamma. Los modelos
de efecto proporcional a la dosis, relación efecto-dosis de
tipo lineal-cuadrático y de Sotolongo et al. mostraron un
buen ajuste a los datos de supervivencia de Bacillus cereus
y Escherichia coli expuestos a radiación. Para Bacillus
cereus, los modelos de efecto proporcional a la dosis y
de relación dosis-efecto lineal-cuadrático mostraron dosis
letales similares (0,935 y 0,844 kGy), mientras que el modelo
de Sotolongo et al. mostró una dosis letal menor (0,406
kGy), lo que indica una mayor eficacia de la radiación. En
Escherichia coli, los modelos de efecto proporcional a la
dosis y de relación dosis-efecto lineal-cuadrático mostraron
dosis letales también similares (0,716 y 0,745 kGy), y el
modelo de Sotolongo et al. refleja una dosis letal menor
(0,319 kGy), lo que indica una mayor eficacia. Los modelos
basados en la entroṕıa de Tsallis son adecuados para
describir el comportamiento de la membrana y los cambios
bioqúımicos en bacterias expuestas a la radiación gamma.
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Introduction

Pathogenic bacteria, such as Staphylococcus aureus, Bacillus cereus,
Salmonella typhimurium, and Escherichia coli, pose a risk to human
health. These microorganisms are frequently found in food and
various environments [1]. Contamination with these pathogens
causes physiological disorders, hospitalization, and even death [2].

Escherichia coli O157:H7 is an enterohemorrhagic strain of the
Escherichia coli bacterium that causes food poisoning due to the
production of verotoxin [3–6]. Infection usually results in bloody
diarrhea and, in some cases, kidney failure, mainly affecting young
children and older adults [7].

Bacillus cereus LSPQ 2872 is a bacterium that produces toxins
and heat-stable spores [8, 9]. This bacterium can be found in
food, and its ingestion can cause food poisoning, manifesting in
vomiting, diarrhea, and localized infections [10–12]. This pathogen
constitutes a significant risk to human health [13].

Gamma radiation (Co-60) is an effective method for controlling
pathogenic bacteria in food [4]. This irradiation breaks the
DNA chains of microorganisms, generating their elimination or
inhibition [10, 14]. The doses of gamma radiation required to
eliminate pathogenic microorganisms present in food depend on
the irradiation conditions and type of food [4, 15]. The dose to
eliminate Escherichia coli O157:H7 is between 0.5 kGy and 5 kGy
[2], and for Bacillus cereus LSPQ 2872 is between 4 kGy and 8 kGy
[16, 17].

Computational and mathematical methods, such as Tsallis
entropy, evaluate bacterial cell survival in response to
gamma radiation (Co-60). This entropy, which generalizes
the Boltzmann-Gibbs Entropy, describes complex biological
phenomena with non-Gaussian distributions and nonlinear
relationships, common in cellular responses to irradiation [18].
According to Tsallis (1988), this approach is useful for systems out
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of thermal equilibrium, such as DNA damage and repair in bacteria
exposed to radiation. Mathematical models do not replicate exact
reality. However, they are important for understanding cellular
mechanisms [19]. Construction of a model based on this entropy
involves identifying key variables, such as radiation dose and the
rate of cellular repair, and interrelating them through equations
adjusted to experimental data. Additionally, this approach models
cell survival curves more accurately by considering nonlinear
interactions and bacterial heterogeneity [18].

The Monte Carlo method is a simulation technique that uses
random numbers to solve complex problems, especially those
involving uncertainty or variability. Through multiple simulations,
it approximates numerical solutions to nondeterministic problems
by calculating averages of the results [20]. This method simulates
the variability of parameters such as α, β, γ, D0, and D10,
generating simulations with probability distributions, allowing
precise estimates of the effects and their confidence intervals for
models based on Tsallis entropy such as the dose-proportional
effect, the linear quadratic (LQ) model, and the one proposed by
Sotolongo et al. [21].

Knowledge gap in the application of Tsallis entropy to model the
nonlinear survival behavior of foodborne pathogens under gamma
radiation. Existing models do not fully account for the complexity
and variability of the responses of Bacillus cereus LSPQ 2872
and Escherichia coli O157:H7 [18]. This study addresses this
limitation by integrating a non-extensive statistical framework with
simulation techniques.

This work modeled the survival of Bacillus cereus LSPQ 2872 and
Escherichia coli O157:H7 exposed to different doses of gamma
radiation. These microorganisms represent complex biological
systems whose response to ionizing radiation varies. Modeling these
systems is challenging, requiring simplifications and assumptions
to obtain a precise and manageable model [19, 22]. Tsallis
entropy is ideal for modeling the survival of these pathogenic
bacteria in response to irradiation, as it captures nonlinear and
non-extensive behaviors in complex biological systems. Unlike
Shannon or Boltzmann-Gibbs entropy, it describes systems where
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the dose-effect relationship is not direct, as in DNA repair and
bacterial resistance [23, 24].

Materials and Methods

Mathematical models based on Tsallis entropy

The system is described using a random variable, where the tissue
effect E(D) indicates the loss of bacterial vitality associated with
a probability function p(E) that calculates the probability of cell
death within a range of effects E and E + dE. The fraction of
bacteria killed at a dose that generates effects E is the cumulative
probability, given by equation (1):

P (E) =

∫ E

Ωmin

p(E) dE, (1)

Where Ωmin is the lower bound of the range of the random variable
E, and ΩE = (Ωmin,Ωmax). The survival fraction will be denoted
by σ and is expressed as:

σ(E) = 1−
∫ E

Ωmin

p(E) dE =

∫ Ωmax

E

p(E) dE. (2)

This survival fraction is not a probability density function, as it is
not normalized; it simply indicates the probability of survival in
response to a specific tissue effect. To validate this approach, a
classical approximation using Boltzmann-Gibbs entropy is used to
recover the linear and quadratic formulations [25].

Classical Approximation

The classical approximation of bacterial survival begins with the
Boltzmann-Gibbs entropy model:

S = −
∫
Ω

p(E) ln p(E) dE, (3)

In this equation, the normalization conditions of the probability
density function (PDF) are imposed, and the mean variable has a
given value of ⟨E⟩.



24 Arnold J. Quispe et al.∫
Ω

p(E) dE = 1, (4)

∫
Ω

E p(E) dE = ⟨E⟩, (5)

These conditions characterize the probability distribution of E
through the following probability density function:

P (E) =
1

⟨E⟩
e−

E
⟨E⟩ , (6)

The probability that an irradiated bacterial cell dies after receiving
a dose causing an effect in the interval (E,E + dE) follows an
exponential distribution. The survival fraction as a function of
tissue effect will be calculated using equations (3) and (4), assuming
Ω = (0,∞).

σ(E) =

∫ Ωmax

E

1

⟨E⟩
e−

E
⟨E⟩ dE = e−

E
⟨E⟩ . (7)

Dose-Proportional Effect Model

Assuming that the tissue effect is proportional to the absorbed
dose, the dose causes first-order lesions in a single event, as occurs
with high linear energy transfer (LET) radiations, being E = αD
the proportionality constant. The PDF of the random variable
depending on the dose is described according to equation 8.

p(E)dE = p(D)
dD

dE
dE = p(D)

(
dE

dD

)−1

dE =
1

α
p(D)dE ⇒

p(D) =
1

⟨D⟩
e−

D
⟨D⟩ ,

(8)

The mean of this random variable is ⟨D⟩ = 1/α, and by integrating,
the survival fraction is obtained as follows:

σ(D) =

∫ Ωmax

D

1

⟨D⟩
e−

D
⟨D⟩ dD = e−αD, (9)
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Thus, the simple exponential model of cell survival is obtained
under simple binding conditions and the assumption that the effect
is proportional to the dose. By fitting the bacterial survival fraction

log
(

N
N0

)
with equation (9), the logarithm is applied, resulting in

the following expression:

log σ(D) = −αD. (10)

The parameter α represents the decay rate or the effect of the dose
(D) on survival, being a positive value. Parameter D is the dose
applied to bacteria cells [22].

Linear-Quadratic Dose-Effect Relationship Model

The linear-quadratic relationship is common between tissue effect
and absorbed dose, as in the LQ model, E = α̃D + β̃D2.
The parameter α̃ represents the proportionality to first-order
lesions, and β̃ represents second-order lesions. Substituting
this relationship (LQ) into equation (7) and considering that
⟨E⟩ = α̃⟨D⟩+ β̃⟨D⟩2 is constant, we obtain the following equation:

σ(D) = e−
α̃D+β̃D2

⟨E⟩ = e−(αD+βD2), (11)

With α = α̃
⟨E⟩ and β = β̃

⟨E⟩ , this model is the linear-quadratic

model. When fitting it to the bacterial survival fraction log( N
N0

),
equation (11) is transformed by applying the logarithm, resulting
in the following expression:

log σ(D) = −αD − βD2. (12)

The parameter α represents the linear decay rate of survival for the
dose (D), being a positive value. The parameter β represents the
quadratic decay rate of survival for D, also a positive value [22].
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Generalized Approximation

Sotolongo et al. propose a generalized approach using non-extensive
statistical physics and applying Tsallis entropy to the maximum
entropy principle. The Tsallis entropy for a continuous random
variable is expressed as follows:

Sq(E) =
1

q − 1

[
1−

∫
Ω

pq(E) dE

]
, (13)

The approach is generalized when q = 1; Tsallis entropy
reduces to the Boltzmann-Gibbs entropy, recovering the classical
approximation. Furthermore, Sotolongo et al. suggest that there is
a maximum dose (D0) beyond which the survival fraction is zero;
this dose corresponds to a maximum tissue effect, E0 = E(D0),
related to Ωmax. Therefore, there is Ω = (0, E0), with normalization
conditions for the probability space, and specification of the mean
value for the effect is given by the following equations:∫ E0

0

p(E) dE = 1, (14)

∫ E0

0

E p(E) dE = ⟨E⟩q, (15)

To maximize the entropy, the effect E0 and the Lagrange multipliers
must have the following values:

E0 =
2− q

1− q

(
⟨E⟩q
2− q

) 1
2−q

, (16)

λ0 = − q

1− q

(
⟨E⟩q
2− q

) 1−q
2−q

, (17)

λ1 = − q

2− q

(
⟨E⟩q
2− q

)− 1
2−q

, (18)
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The probability that a dying bacterial cell received a dose causing
an effect (E,E + dE) is given by:

p(E) =

(
2− q

⟨E⟩q

) 1
2−q

[
1− 1− q

2− q

(
2− q

⟨E⟩q

) 1
2−q

E

] 1
1−q

, (19)

Deriving the survival fraction from equations (2) and (19), the
following equation is obtained:

σ(E) =

[
1− 1− q

2− q
(⟨E⟩q)

1
2−q E

] 1
1−q

, (20)

Taking into account the value of the effect E0 in equation (16) and
defining γ = 2−q

1−q
, it can be expressed as follows:

σ(E) =


(
1− E

E0

)γ

for E ∈ Ω

0 for E /∈ Ω
, (21)

In compact notation, we have:

σ(E) =

(
1− E

E0

)γ

[H(E)−H(E − E0)], (22)

Given that H(x − x0) is a function associated with the Heaviside
distribution or step function. When q → 1, Tsallis entropy will
converge to the Boltzmann-Gibbs entropy, and thus equation (7) is
recovered. The general form of the survival curve for any value of
parameter q is given by the expression:

σ(E) =

{
(1− E

E0
)γ [H(E)−H(E − E0)] if q ̸= 1 ⇒ γ < ∞

e
− E

⟨E⟩q if q = 1 ⇒ γ → ∞
. (23)

To complete the model, it is only necessary to assume a formal
relationship between the tissue effect and the absorbed dose [22].
In this study, values q = 1.6 for Bacillus cereus LSPQ 2872
and q = 1.5 for Escherichia coli O157:H7 were used, generated
from a Gaussian distribution N(qi, 0.1), where 0.1 corresponds to
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the standard deviation. Since q > 1, non-extensive behavior is
assumed according to the Tsallis statistic, which allows us to move
away from the classical Boltzmann-Gibbs model and better fit the
experimentally observed survival.

Sotolongo et al. Model

If the tissue effect is directly proportional to the dose, then the
Sotolongo et al. model is obtained by taking E = αD. It follows
that E0 = αD0, and equation (23) will take the form:

σ(D) =


(
1− D

D0

)γ

[H(D)−H(D −D0)] if γ < ∞

e−
D

⟨D⟩ if γ → ∞
, (24)

When γ → ∞, the upper dose tends to infinity (D0 → ∞), and the
convergence is absolute to the linear model. For γ → ∞, that is,
γ ≫ 1, and at low absorbed doses, the previous expression can be
approximated by a Taylor expansion:

− lnσ(D) ≈ α0

(
2− q

⟨E⟩q

) 1
2−q

D +
α2
0

2

1− q

2− q

(
2− q

⟨E⟩q

) 1
2−q

D2 + ϑ(D3), (25)

This equation of Sotolongo et al. approximates the LQ model with
parameters as follows:

αLQ =

(
2− q

⟨E⟩q

) 1
2−q

, (26)

βLQ =
α2

2

1− q

2− q

(
2− q

⟨E⟩q

) 1
2−q

. (27)

The Sotolongo et al. model is a potential type, formally simple,
and depends only on two parameters, D0 and γ [22, 25].



Survival of Bacillus cereus LSPQ 2872 and... 29

Construction of mathematical models for lethal dose (D10)

The lethal dose (D10) measures the dose necessary to kill 90% of the
microbial population. D10 for the dose-proportional effect model
can be expressed from equation (9), and its associated calculation
can be presented as follows:

D10 =
log(10)

α
. (28)

The D10 for the linear-quadratic dose-effect relationship model,
applying the logarithm to both sides and substituting the value
σ(D10) = 0.1 in equation (11), we obtain:

log σ(D) = −αD − βD2, (29)

log σ(D10) = log(0.1), (30)

Since log(0.1) = − log(10), the equation becomes:

−αD10 − βD2
10 = − log(10), (31)

The expression is simplified to consider only the linear term:

D10 =
log(10)

α
. (32)

To obtain the D10 for the Sotolongo et al. model, substitute the
value of σ(D10) = 0.1 in equation (24), and we have:

log(0.1) = γ log

(
1− D10

D0

)
, (33)

Solving, we have:

D10 = D0

(
1− e(

log(0.1)
γ )

)
. (34)
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Type and Design of the Research

This study is analytical, as it does not manipulate biological
systems directly but rather analyzes and interprets existing data
through mathematical modeling and simulation. The survival
behavior of Bacillus cereus LSPQ 2872 [26] and Escherichia coli
O157:H7 [5] under gamma radiation was examined by comparing
different models based on Tsallis entropy. Parameters were
estimated, hypotheses tested, and variability analyzed using Monte
Carlo simulations to generate robust comparisons and conclusions.

Monte Carlo Method

The Monte Carlo method approximates solutions using random
samples, making it useful for problems with probability
distributions and event simulation [20]. This approach enables
the estimation of the mean, standard deviation, confidence
intervals, and the evaluation of uncertainty in predictions [21].
Mathematically, calculated as:

I =
1

N

N∑
i=1

f(xi). (35)

where xi represents random points from a known distribution
and N is the number of simulations. In this study, 1000 Monte
Carlo iterations were performed using a Gaussian (ϵ(i) ∼ N(0, σ2))
distribution for each parameter (α, β, γ,D0, and D10) with a noise
level of 0.05, to assess the sensitivity and robustness of the Tsallis
entropy-based models (dose-proportional effect, linear-quadratic
dose-effect relationship, and Sotolongo et al.). Doses ranging from
0.00 to 2.50 kGy were simulated for Bacillus cereus LSPQ 2872 and
from 0.00 to 1.00 kGy for Escherichia coli O157:H7. The simulation
calculations were performed using MATLAB R2022a on a laptop
with Windows 10 Pro 64-bit (AMD Ryzen 7, 2.60 GHz, 16 GB of
RAM).
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Data Analysis

Simulation data for the bacterial survival curve in each model
(dose-proportional effect, linear-quadratic dose-effect relationship,
and Sotolongo et al.) were analyzed using R2 to evaluate model
fit. Lethal dose (D10) values were compared across models using
Tukey’s Honest Significant Difference (HSD) test with a significance
level of 0.05, using the MATLAB R2022a program.

Results and Discussion

Figure 1a shows a good fit of the dose-proportional effect model
with Tsallis entropy (Eq. 9) for the inactivation of Bacillus cereus
LSPQ 2872 under gamma irradiation with an alpha coefficient (α)
of 2.463 and an R2 of 0.997, as shown in Table 1. The model
indicates a high sensitivity of bacterial cells, where small irradiation
doses are sufficient to reduce their viability. Furthermore, the R2

indicates a good fit for the model.

Models Sensitivity Coefficients R2

Alpha (α) Beta (β) Gamma (γ) D0 (Gy)

Dose-proportional effect model 2.463 - - - 0.997

Linear-quadratic dose-effect relationship model 2.728 0.129 - - 0.999

Sotolongo et al. model - - 2281.322 927.154 0.997

Table 1. Sensitivity coefficients of the models with Tsallis entropy in the

survival fraction log( N
N0

) of Bacillus cereus LSPQ 2872 exposed to gamma

radiation (Co-60) and the coefficient of determination R2.

Figure 1b shows the fit of the linear-quadratic dose-effect
relationship model with Tsallis entropy (Eq. 11) for the inactivation
of Bacillus cereus LSPQ 2872 with an alpha coefficient (α) of
2.728 and a beta (β) of 0.129, as shown in Table 1. The model
combines linear sensitivity and quadratic effects, showing rapid
bacterial reduction at higher doses. The model presents the value
of R2 = 0.999, which indicates its accuracy and usefulness for
optimizing irradiation treatments in food applications.
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Figure 1c shows the fit of the Sotolongo et al. model with
Tsallis entropy (Eq. 24) for the inactivation of Bacillus cereus
LSPQ 2872 with a gamma coefficient (γ) of 2281.322 and a D0

of 927.154 Gy, as shown in Table 1. The model indicates a complex
relationship between dose and bacterial inactivation, including
possible saturation effects. The high γ value indicates a high
sensitivity of the bacteria, while the D0 describes the dose required
to reduce the bacterial population by 90%. Furthermore, the model
presents an excellent fit (R2 = 0.997) and is highly reliable for
optimizing gamma irradiation in foods.

Figure 1. Survival fraction (Log( N
N0

)) of Bacillus cereus LSPQ
2872 exposed to gamma irradiation doses (Co-60) ranging from 0.00 to
2.50 kGy, fitted using dose-proportional effect (a), linear-quadratic dose-effect
relationship (b), and Sotolongo et al. (c) models based on Tsallis entropy.
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Figure 2a shows the fit of the dose-proportional effect model with
Tsallis entropy (Eq. 9) for the inactivation of Escherichia coli
O157:H7 with an alpha coefficient (α) of 3.215, as shown in Table 2.
The model indicates high bacterial sensitivity to irradiation, with
the inactivation rate increasing exponentially with dose. The R2

value of 0.994 shows an excellent model fit. This model effectively
predicts bacterial inactivation, although more complex models may
be needed to capture potential nonlinear effects.

Figure 2b shows the fit of the linear-quadratic dose-effect
relationship model with Tsallis entropy (Eq. 11) for the inactivation
of Escherichia coli O157:H7 with an alpha coefficient (α) of 3.103
and beta (β) of 0.137, as seen in Table 2. The alpha value indicates
the high sensitivity of the bacteria, and the beta captures the
non-linear effects, showing an accelerated increase in inactivation
at higher doses. The R2 value of 0.995 indicates that the model fits
the data very well, similar to the dose-proportional effect model.

Models Sensitivity Coefficients R2

Alpha (α) Beta (β) Gamma (γ) D0 (Gy)

Dose-proportional effect model 3.215 - - - 0.994

Linear-quadratic dose-effect relationship model 3.103 0.137 - - 0.995

Sotolongo et al. model - - 172.165 53.981 0.995

Table 2. Sensitivity coefficients of the models with Tsallis entropy in

the survival fraction log
(

N
N0

)
of Escherichia coli O157:H7 exposed to gamma

radiation (Co-60) and the coefficient of determination R2.

Figure 2c shows the fit of the Sotolongo et al. model with Tsallis
entropy (Eq. 24) for the inactivation of Escherichia coli O157:H7
with a gamma coefficient (γ) of 172.165 and a D0 coefficient of
53.981 Gy, as shown in Table 2. The high value of γ indicates a
nonlinear and highly sensitive relationship between irradiation dose
and bacterial inactivation, characteristic of non-extensive entropy.
In turn, the high value of D0 suggests that a considerable dose is
required to reduce the Escherichia coli population by 90%. The
excellent fit of the model (R2 = 0.995) reinforces its usefulness as
a tool for optimizing irradiation doses.
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Figure 2. Survival fraction (Log( N
N0

)) of Escherichia coli O157:H7 exposed to
gamma irradiation doses (Co-60) ranging from 0.00 to 1.00 kGy, fitted using
dose-proportional effect (a), linear-quadratic dose-effect relationship (b), and

Sotolongo et al. (c) models based on Tsallis entropy.

Table 3 shows values of the lethal dose (D10) for each model
and bacteria evaluated, obtained through Monte Carlo simulation,
and analyzed with Tukey’s HSD test (α = 0.05). For Bacillus
cereus LSPQ 2872, the dose-proportional effect model and the
linear-quadratic dose-effect relationship model present similar
lethal doses (0.935 and 0.844 kGy, respectively), with no significant
differences between them, while the Sotolongo et al. model
predicts a lower lethal dose (0.406 kGy), significantly different
from the other two models, indicating greater radiation efficacy.
For Escherichia coli O157:H7, the dose-proportional effect and
the linear-quadratic dose-effect relationship model present similar
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lethal doses (0.716 kGy and 0.745 kGy, respectively); however,
Sotolongo et al. predict a low dose (0.319 kGy), with a statistically
significant difference from the other two models.

Models Lethal dose (D10) (kGy)

Bacillus cereus LSPQ 2872 Escherichia coli O157:H7

Dose-proportional effect 0.935a 0.716a

Linear-quadratic dose-effect relationship model 0.844a 0.745a

modelSotolongo et al. model 0.406b 0.319b

Table 3. Lethal dose (D10) values obtained by Monte Carlo simulations
for the survival fraction of Bacillus cereus LSPQ 2872 and Escherichia coli

O157:H7 exposed to gamma radiation (Co-60).

The dose-proportional effect model (Eq. 9) fit the survival curve
of bacteria well. This model is widely used in bacterial survival
fraction studies [14, 22, 27]. However, it cannot capture nonlinear
effects at high doses, so more complex models, such as the
linear-quadratic dose-effect relationship or Sotolongo et al. models,
are preferred [28, 29]. The linear-quadratic dose-effect relationship
model (Eq. 11) showed a better fit in the survival curve of
Bacillus cereus LSPQ 2872 and Escherichia coli O157:H7 against
gamma radiation (Co-60), since this model is widely accepted
to predict responses to ionizing radiation [22, 25]. However,
despite its acceptance, doubts persist about its general applicability,
although several studies have shown that the linear-quadratic
dose-effect relationship model is complete enough to predict
dose-time relationships [30, 31]. Moreover, the model of Sotolongo
et al. (Eq. 24) showed a good fit in the bacterial survival
curve, presenting a minimum annihilation dose (D0). This model
is appropriate for describing bacterial survival under radiation in
various bacterial [22].
The lethal dose (D10) results are comparable with those of
Jo et al. (2004), who reported that the lethal dose (D10) for
Bacillus cereus was 0.663 kGy, and for Escherichia coli was
0.538 kGy, after exposure to different doses of gamma irradiation
[2]. Similarly, Fernandes & Prakash (2020) determined D10 values
between 0.303 and 0.370 kGy for Escherichia coli O157:H7 under
gamma irradiation [5]. For their part, Ayari et al. (2012) reported
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that the lethal dose for Bacillus cereus LSPQ 2872 was 0.420 kGy
after applying different doses of gamma irradiation [26]. They also
observed biochemical and structural changes in these irradiated
bacteria, such as the generation of free radicals, damage to cell
membranes, and the lethal dose, which affect bacterial viability.

Among the models, the linear-quadratic model best captures
the non-linear effects of gamma irradiation, followed by the
Sotolongo and dose-proportional models. Both account for complex
bacterial responses and predict lower D10 values, indicating greater
effectiveness at reducing the bacterial population by 90% [22, 29].
Although all three models show high coefficients of determination
(R2 > 0.99), the linear-quadratic model provides the best overall
fit while maintaining biological interpretability through its α and
β parameters. The Sotolongo model also shows a good fit
but predicts significantly lower D10 values, which may reflect an
overestimation of sensitivity. Thus, while both models capture
non-linear behavior, their use depends on the balance between
simplicity, interpretability, and predictive robustness.

Conclusions

The linear-quadratic dose-effect relationship and the Sotolongo
et al. model showed a good fit to experimental data on
survival fractions of Bacillus cereus and Escherichia coli irradiated
with gamma radiation. However, the dose-proportional effect
model, although a good fit (R2 > 0.99), was less suitable for
nonlinear responses. For Bacillus cereus, the proportional and
linear-quadratic models yielded similar D10 (0.935 and 0.844 kGy),
whereas the Sotolongo et al. model estimated a much lower value
(0.406 kGy); in Escherichia coli, a similar trend was observed
(0.716, 0.745, and 0.319 kGy, respectively). The incorporation
of Tsallis entropy into the Sotolongo model captures complex
nonlinear behaviors, offering an advantage over classical models
and contributing to better estimation of microbiological risk. These
findings have direct applications in the food industry, facilitating
the design of more effective and safer irradiation treatments to
ensure product safety.
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