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ABSTRACT

A pair of ladder operators are introduced and use for solving
the radial equation for the hydrogen atom. The energy
eigenvalues as well explicit analytic expressions for the
eigenfunctions of this particular Kepler problem are obtained
after some algebraic manipulation of the operators.

X. INTRODUCTION

Algebraic techniques for solving quantum mechanics problems
have been known for a 1long timef1-3]1 and are now standard
texbook faref3-61_ The importance of the operator algebra is
often illustrated 1in the literature and textbooks on gquantum
mechanics by treating the cases of the linear simple harmonic
oscillator and angular momentum problemsC3-101_ Another
example of an exactly solvable exercise in quantum mechanics
is the eigenvalue problem corresponding to the radial equation
for the Coulomb potential. Its solution employing ladder
operators has received some attentionf11-181_ The reported
work on this problem concentrates mainly on the energy
eigenvalue computation; even though formal solutions of the
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eigenfunctions are found in the literaturef11.14-181  their
identification with the eigensolutions expressed 1in terms of
Laguerre polynomials is not wusually explicitly shown. The
purpose of this article is to employ Schrddinger”s method of
factorizationf17-181 {0 develop an alternate wpair of ladder
operators which are particularly useful for computing the
explicit form of the eigenfunctions of the hydrogen atom. The
layout of this paper is as follows. In Section II the ladder
operators for the radial differential equation corresponding
to the hydrogen atom are introduced. The formal properties of
these operators are also examined in thes section. Section III
is devoted to the calculation of the eigenvalues and the
explicit form of the eigenfunctions, and finally in Section IV
some concluding remarks are made.

s LADDER OPERATORS FOR THE RADIAL WAVE EQUATION

The radial differential equation for the nonrelativistic
hydrogen atom is[4]

> 2 d 24 ;02 _ 1(1+1)W _2uE
i e U L

where the symbols have their usual meaning; in particular 1
designates +the orbital angular momentum quantum number and

it denotes the reduced mass of the electron-proton system.

In atomic units, where p =1, e =1, and b =1, Eq.(1) becomes

o
dr? r dr I r?

W W 2_11+1) yp . wr (2)

with # = -2E>0. Because of the accidental degeneracy peculiar
to the Coulomb potential there are different radial functions
for distinct values of 1 corresponding to the same energy #.
Denoting by Rni the radial function coresponding to ¥n and a
given value of 1, and defining the radial Hamiltonian operator

ﬁl by the expression

d? 2 d_2_1(1+1)

l- + —
dr? rdr r r?

it 1is possible to recast the radial equation (2) in the
compact form
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It is seen from this expression that Wn i3 an eigenvalue of

ﬁl - From the definition (3) it follows immediately that

o d? .2 d _ 2_(1+1)(1+2)

o e - +
dr? r dr 3 r?

Due to the symmetry property of the Coulomb potential the

(5)

eigenvalue of I?l is simultaneously an eigenvalue of ﬁ1+1 but

their eigenfunctions are different, thence
ﬁ1+1 n, 1+1 Wan.1+1 (6)

We now introduce two operators B* and F- such that their
product has the same eigenfunctions as A, . The eigenvalues
H*H- of (or for that matter those of ¥~4* ) may differ from

the eigenvalues of A, . We write

A;,8; = B+C(1) (7)
where C(1) is a scalar.

The combined operator ﬁfﬂﬁf thus has a distinct eigenvalue
for each different value of 1, i.e., it is non-degenerate with
respect to 1; this is the main difference between ﬁl and the
combined operator defined by Eq.(7). The reason different
subscripts are employed for - and A* will be apparent at the

end of this section. The two first-order differential
operators are defined as follows:

ke b oy 8)
A L LRSS 9)
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Substituting the last two expressions above into Eq.(7) and
equating coefficients gives relationships from which the
desired operators can be obtained. Different analytic forms of
C(1l) will give rise to distinct ladder operators. For
instance, the choices C(1) = -1/12, and C(1) = -1/(1+1)2 lead,
respectively, to the sets of references 11 and 13. Now it can
be shown that choosing C(1)=-1/(1+1)2, the ladder operators
generated agree with those of Ref.13, namely:

, {8ty g pliig
W e Ft (10a)
Sl (100)

These two operators can be readily computed from Egs.(8) and
(9) in conjunction with Eq. (7).

Substitution of Eqgs.(8) and (9) into Eq.(7) and equating
coefficients on both sides of the resulting equation yield:

4
CZC‘ = -—-(7+—1)-;: C,+C"-0
Ci+Cy = 2, (C,-1)C, = -1(1+1) (11)
GG+ Gy = 2

To keep the notation uncluttered the argument 1 has been
omitted on all the C's. The solution of the system of

equations given by (11) is
2 i 1

Substitution of these results into Egs.(8) and (9) yields
Eas. (10).

A useful additional relationship is
AiA;, = H,, + C(1) (13)

It will be shown next that apart from proportionality
constants

HiRyy (T) ~ Ry 14, (T) (14)
1-+1Rn.1+1 (r) ~Rn.1 (r) (15)
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Multiplying both sides of Eq.(7) from the left with ﬁl’ and

acting with the resulting operator on the radial wavefunction
Rn1 renders the expresion

ﬁ;ﬁiolﬁzRM = ﬁ:{[ﬁl‘*c’(l) ]Rnl (16)

Employing the relationship (13) in conjunction wiht Eq.(4),
Eq.(16) develops into

(A),,+C(1) ] (A}R,) = [W+C(1)) (H;R,,)
therefore
Ay (A[Ry;) = W(HR,) (a7)

It is important to note that this is in the form of the
eigenvalue equation (6). Equation (17) thus shows

that H; R,, is an eigenfunction of H,,, , thus proving Eq.
(14). Equation (15) may be proved in a similar manner.

The mathematical entities ﬁ; and 1?1'*1 are thus the raising

and lowering operators of the hydrogen-atom radial
wavefunctions Rn1 and Rn,1+1, respectively.

Jd. COMPUTATION OF THE ENERGY LEVELS AND
EIGENFUNCTIONS

The problem under consideration is that of finding the
possible eigenvalues of Eq. (2) and the corresponding
eigenfunctions. Employing the hypervirial theorem{19.201 it
can be shown that for a given value W, the quantity 1 is
bounded from above. Designating the maximm allowed value of 1

by X, the adder operator ﬁ; when applied to the
corresponding eigenfunction must give zero:
ﬁld-Rn'l--O (18)

If Ran,1 is operated on by the combined operator of Eq. (7)
with 1=1*, then

AL, (B4R, ;) = [H+C(1") 1R, ;0 = [W+C(1")]R, ;.  (19)
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The quantity within parentheses on the left side of this
equation vanishes due to condition (18). Since in this work
C(1*)= -1/(1*+1)2 it follows from Eq. (19) that

1
W = cm—— 20
(1*+1)2 (20)
Let n =1* + 1; since E = -W/2, we deduce from Eq. (20) that
1
E = = 21
>n? (21)

This is the well-known expression for the possible bound-state
energies of the hydrogen atom, expressed in atomic umnits; the
quantity n is the ©principal gquantum number. From  the

definition of H; it is known that the minimm value that I

can take on is zero. Thus for a given value of n, 1
encompasses the range from O to 1* = n - 1.

The radial function Rni(r) can now be computed. Consider first
Rn,n-1(r). Eq. (18) with 1* = n - 1 reads:

ﬁ;-l Ry pa(r) =0 (22)
If this expression is written out explicitly, one obtains
d n-1 1
('EE = 0 + 'E)Rn,n-l =0 (23)

This is a first-order differential equation having the
solution

Ry pq(X) = Co¥/Prmt (24)

C being a normalizing factor.
For every 1 < 1*, Rni can be formally obtained by applyving

iteratively the operator Z~ on Ra.n-1; thus

n-1
Ry lr) = ( H 1?1-) Rpni1 = 1?1-#1 ﬁl_+z' . 'I?x;-z @—1 Ry, n-1 (25)

i=ml+l

The radial function Rani(r) should be expressed in terms of
polynomials. First it will be shown that Rai(r) may be written
as follows:

n-1-1
Ry (r) = C(n,1)e """ ri( ; Ak (26)
=
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where C(n,l) is chosen 80 as to normalize the radial function
Ra1(r). Equation (26) may be proved employing the method of
induttion, beginning by calculating Ran.n-2. Except for a
proportionality constant the following can be written from
(15)

R A

0,02 ip-2+1

Employing Eq. (10a.) with 1 = n - 2 in this expression yields
(C=constant)

R A

n,n-2+1 = ¥p-1

R (27)

n,n-1

d n_ 1
Fana=Cl G+ 3 5T Runs
= w2 -z/n.. n-2 5 .y 1 .
C(n,n-2) e */?r™2(2n-1) [1 —TETY ] (28)

In similar fashion, if C" designates a new constant, then

R

n,n-3

=C’( d‘i + n;l - nfz YR, nea (29)

"l ar?
n(n-2) n?(n-2) (2n-3)
Assuming that the eigensolution Rni may be written in the form

given by Eq. (26), we propose to show that Ran.1-1 may be
expressed as

=C(n,n-3) e */8rn-3(2n-3) [1~

n-1

R, ;4(r) = C(n,1-1) e */ar11 (; B, % (30)
3

The radial function R, ;; is uniquely generated from Rn1

employing the ladder operator ﬁ; . HWe write

d43 %
J

. - opd
Rn'l_l(r) = C ﬁl Rnl = C (HI_+ )Rnl

d . 141 1 \io- e ;
R ,.{r) = C(n,1-1) (—+ -=){e-t/2 £ 1 ; A, r)}
ar..  ovyd -

Performing the indicated operations in the last expression
above yields
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n-1-1
Ropa(2) = Cla, 1-1)e/ar i (137 (5+21+1) 4, 2 7)
=0

n-1-1

—l %) ; Ariv

When this last equation is put in the form (30) the following
relationships between the old and the new coefficients are
achieved:

b = (21+1) A

B, = (k+21+1) Ak-(%a--})Ak_l (K=1,.....,n-1-1) (31)

dusd
By = '(3"'—1') Ap-11

The ansatz (26) has been thus justified. For completeness sake
it is next shown that the radial function Rni for the hydrogen
atom obtained above agrees with the one deduced employing the
usual power-series solution method. It suffices to show that
the coefficients of the polynomial in (26) are related by the
following recursion formulaf211 yalid for K<n-1-1

2 k+1l+1-n
ks ) (k+1) (k+21+2) Ax

Ak+1 (32)

Note that if instead of r a new measure of length p defined
by (ao = Bohr radius)

r /8 IE‘I 2r
| | =
P : e (33)
is employed, (in atomic units p = 2r/n), the recursion

relation would be

k+1+1-n
A1 * TR (Kez1e2) Ok

The proof of Egq. (32) can also be performed employing the
method of induction. When 1 = n - 2, the parameter K can take
on only two values : 0 and 1. From the expression within
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square brackets in Equation (28) it is seen that Ao =1,
Ar1 = -1/[n(n-1)], thus

_ A
M n(n-1) s
which is just Eq. (32) with 1 =n - 2 and k = 0. Similarly
when I-n-3, the three polynomial coefficients in the
expression within square brackets in Eq. (29) also satisfy
the recursion formula (32).

Assuming that all coefficients Ax in the expression for Rma
given by Eq.(26) satisfy (32), it is necessary to show that
the coefficients Bx in- Rn.1-1 satisfy (32) as well. The
recursion formula for the coefficients Bk in the expression
for Rn.1-1 reads:

k+1-n
(k+1) (ke2D) °F (36)

2

From the middle expression of Eq. (31)

The ratio of succeeding terms is thus
Chsaiad . (-2 4ty 2

. n 1

B, | (317)

Bk+1

Substituting in this expression the relationships between the
coefficients Ax given by Eq. (32), Eq. (36) is obtained. This
concludes the proof.

4. CONCLUDING REMARKS

Employing the simple and elegant method of factorization two
ladder operators were constructed and used for solving the
radial equation corresponding to a hydrogen—-atom system. The
possible energy states of this system were determined
employing an almost wholly algebraic procedure involving the
use of the ladder operators. The operators introduced in this
article can be safely applied to the case 1 = 0, in
contradistinction to the ladder operators advocated in Ref.11.
Further, their application to the computation of the explicit
analytic form of the eigensolutions of the radial equation for
the hydrogen atom appears to be more convenient. The insight
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gained by the student may be helpful, at an advanced level, in
the treatment of the creation and annihilation operators in
quantum-field theory. The above features should render this
article especially useful to undergraduate students of

physics.
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