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1. Introduction

Physics defined on multiply connected manifolds is an old topic
in theoretical physics. In the context of the path integral forma-
lism it was studied by the first time by Schulman [1] in 1968 and
rigorously formulated by Laidlaw and de Witt [2] and Dowker [3]
in 1971.

The central point is that in a multiply connected manifold the
paths have different weights in the sum over histories and the pro-
blem —which does not exist in the “standard” quantum mechanics—-
is how to define a quantum theory taking this fact into account.

The problem of to how define a quantum theory on a topolo-
gically non-trivial manifold is not only an academic problem be-
cause it finds experimentally realizable systems such as the Aharo-
nov-Bohm effect [4] and the anyons that could be an explanation
to the quantum Hall effect and, maybe, to high temperature super-
conductivity.

The purpose of this lecture is to explain some aspects of the
quantum theory defined on multiply connected manifolds in the
context of the path integral formulation and the applications that
these ideas find in anyon physics in one and two dimensions.

In section 2 we start by explaining some examples that involve
non-trivial topological aspects; this section does not involve calcu-
lations and its unique purpose is to introduce several useful con-
cepts. In section 3 we introduce the formal definition of a multiply
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connected manifold. In section 4 path integrals on arbitrary ma-
nifolds. In section 5 several applications are studied. In section 6
anyons in two dimensions and in section 7 anyons in one dimension.
Section 8 is dedicated to the conclusions.

2. Systems Defined on Non—Trivial Topological Manifolds

Let us start by discussing the most popular example of a quan-
tum theory defined on a multiply connected manifold, namely the
Aharonov-Bohm effect.

The Aharonov—Bohm effect consists in the experimental arran-
gement shown in figure 1.

Figure 1. The solenoid has infinite lenght with an inner constant
magnetic field; we assume also that the solenoid is impenetrable.

The electrons can follow infinite paths, as shown in figure 2.

nz0

Figure 2. Some of the the infinites path of the electron.

The important question is that theoretically we expect that in-
terference lines can be observed on the screen, such as in a diffrac-
tion experiment, and that the lines be dependent only on the mag-
netic field inside of the solenoid.

This example tell us that the electromagnetic potentials -that
classically are unobservable- are quantum mechanically responsible
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for the observability of the interference pattern. The experimental
question relative to the Aharonov—Bohm effect was only solved with
a serie of experiments performed by Tonomura and collaborators
in the beginning of the eighties [5], -- - twentyfive years after the
Aharonov and Bohm prediction.

From a theoretical point of view, we can see the Aharonov—
Bohm effect as a phenomenon that occurrs because the %2 manifold
(that is the plane where the paths live) has a point removed (the
point where the solenoid is) and, as a consequence, the configuration
space of this system is R2 — {0}.

The Aharonov-Bohm effect is an example of a mechanism that
appears in many examples of recent physics, one of them is the
problem of two—anyons.

In order to explain this problem, let us consider the motion of
two non-relativistic particles moving on a plane. The motion is
regular everywhere except in the point where the particles collide.

The colision condition in the point z; = x5 is equivalent to the
replacement

— ®* — {0}, (1)

and, in consequence, the manifold (configuration space) has also a
point removed.

We can see formally this example as a similar phenomenon to
the Aharonov-Bohm effect, each particle has a flux-tube attached
to it and in the case of the two particles, we can exactly map it into
the Aharonov-Bohm effect.

Of course, there are questions to which we should give an ans-
wer: What is the analogue of the magnetic field for the case of two
particles?; How to implement technically this fact?; etc.

There is also another problem closely related with the previous
ones, namely cosmic strings. The cosmic strings are solutions of
the Einstein field equations when point-like matter is present. The
solution is

ds? = dt® — r2d¢? — dr® — d2?, (2)
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where ¢’ is the defect angle.

The cosmic strings are generally assumed to be singularities that
remained after the formation of our universe and could be experi-
mentally detectable. The manifold when we project to a plane is
again %% — {0} .

In the next sections we will try to formalize these examples by
developing appropriate computational techniques.

3. Rudiments of Homotopy Theory

The configuration space where we compute the propagator of a
free particle is an example of a simply connected manifold. When
we give two points of the manifold we can draw infinite, topologi-
cally equivalent, paths between these two points.

The word ‘deformable’ has a technical connotation for a ma-
thematical operation called homotopy transformation that we will
define below [6].

The idea of a homotopy is the following; we will say that two
curves are homotopically equivalent if it is possible to deform con-
tinuosly one into the other, in other words, two continuous appli-
cations f and g of the space X to the space Y, f,g: X — Y are
homotopic (simbolically f ~ g) if there exists a continuous function
F: X x I — X, where I is the closed interval [0, 1], such that

F(z,t)|i=0 = f(x), (3)

and

F(z,t)|e=1 = g(), (4)

with (z,t) € X.
It is clear that the idea of homotopy defines a class of equivalence
between applications, ¢.e.,

L f~F,

2. f~g=>g~f,



55

3. f~gandg~h = f~h,

for all continuous functions f, g and h.

If G is the space of all continuous applications between X and
Y, then a relation of equivalence has the property of decomposing
the space G in classes of equivalence or disjoint sets of functions
which are homotopically equivalent.

If the functions g and f are homotopic, then they belong to
the same class of homotopy, otherwise they are non-homotopically
equivalent. We will denote the homotopy class by [a] where the
set [a] is the set of all paths that are homotopically equivalent. In
the case of the Aharonov-Bohm effect in figure 2 the paths 1 and
2 belong to the same class of homotopy.

Now, we will restrict our considerations only to the applications
that are closed curves or loops; we will say that the loops a and
B with basis in zy (i.e the point where the extremes coincide) are
equivalent if there exists a function H : I x I — X such that
H(t,0) =a, H(t',0) = fand H(0,s) = H(1,s) =z Vs € I.

The function H(s,t) is a homotopy. Therefore, if , 3 and 7,
are loops with basis in zq € X, then

1. @ ~ a, i.e. any loop is equivalent itself.

2. If a ~ 3, then there exists a homotopy H : I x I — X with
H(t,0) =, H(t,1) = 8 and H(0,s) = H(1,s) = zo.

3. a~vyifa~fand B~ 7.

It is possible to define a homotopy L(t,s) between a and ~y as
follows

<1
=2
<1 (5)

and consequently, a ~ .

We can think of a more tangible example by considering the
Aharonov-Bohm effect “joining” the two extremes in figure 2. Ob-
serving the figure 2, we see that there are paths that can be classified
by a “topological invariant”: the winding number n.
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In general, the loops can be summed up and the resulting sum
is another loop that links Y n times the hole. The set of all loops
is a group that is isomorphic to the integer group. However, in
order to implement this fact it is necessary to define the product of
loops. The definition is the following; let a and 3 be curves in X
with a(1) = 3(0), then the product * of curves is

H(2s,t), OSSS%
(a*ﬁ)(t):{ngs—)L t), 1<s<1 (6)

Once these definitions are given, we can show that the set of all
the homotopy classes of loops {[a]} with basis in zy of X is a group
and it is denoted by (X, xy) and is formally equivalent to

m(X, zo) = {[o]}. (7)

The set m; endowed of the operation * defines the first homotopy
group or fundamental group. The group = is the first of an infinite
set of (n > 0) higher-order homotopy groups. m; eventually might
be non—-Abelian while the higher homotopy groups are all Abelian.

4. Path Integrals on Multiply Connected Manifolds

In this section we will introduce the concept of path integrals
on multiply connected manifolds. Let us start by considering path
integrals on simply connected manifolds and the most simple appli-
cation, namely, the free non-relativistic particle; this example is a
warm-up exercise and will be useful when we consider the path in-
tegral over a multiply connected manifold at the end of this section.

The idea of the path integral consists into summing over all
the paths between the initial and final points A and B. The pro-
pagation amplitude between these two points is equivalent to the
computation of the formal sum

G[B, A] ~ ) something. (8)

paths
The previous expression has two difficulties: firstly, it has the
technical problem of how to define the sum between paths, and;
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second, it has the physical problem of how to define something. This
second problem is equivalent to postulate the Schrodinger equation
in the conventional quantum mechanics and it is equivalent to make
the replacement

something — ers, (9)

where S is the action.
The first problem is technically more difficult and, in essence,
its solution consists into the replacement (for details see e.g. [7])

T S / [] da(t)er J @), (10)
paths t
where L(z, z) is the Lagrangian of the system.

In general although we can give a discretization prescription,
the physical quantities are well defined only by giving correctly the
boundary conditions. Thus, if we are interested in computing the
propagator of a particle, we must give the boundary conditions

IE(tl) = I,
z(t2) = w2, (11)
and then the expression
Glz2, 1] = / Dzx(t) enS (12)

together with (11) defines the propagation amplitude or propagator
of the system. Here Dz(t) = [, dz(t).

We can verify explicitly how to work out these ideas by con-
sidering explicitly the most simple example, namely the motion of
a free non-relativistic particle in one dimension described by the
Lagrangian

1

L=§¢2. (13)

We are interested in computing the propagation amplitude G|z, 2]
with the boundary conditions (11). In order to compute
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Gloz, m1] = [ Da(t) et i #1#, (14)
we start by making the following change of variables
N
z(t) = 2, + A—t(t—'tl)‘l‘y(t) =zq+y(t), (15)

where z; is the solution of the classical equation of motion & = 0
and y(t) is a quantum fluctuation that, by consistency, satisfies the
boundary condition

y(t1) = 0,

When (15) is replaced in (14) we find that

Glas, ] = 5 [ Dy et liasatn. ()
The integral in y is Gaussian and the result of the integration is

det(—82)" 2, (18)

Now, we should compute the determinant, the procedure is the
following: we start by solving the eingenvalue equation

with Dirichlet boundary conditions, and afterwards we use the for-
mula

det(—?) = ]’[,\ (20)

Using ¥n(t1) = 0, ¥n(t2) = 0, we find that A, = (n7/At)* and
(20) becomes

+00

det(—82) = [ (%)2 ; (21)

—00
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However, (21) is a divergent quantity.

In order to make sense of the divergent expression (21), we re-
gularize appropiately this product; firstly we observe that (21) has
the general form [Jan®. Then we can write

H anb = eEn In(anb) _ 62“ 1na+bzn lnn7 (22)
and using the Riemann (—function
ORI (23)
s)=) —
n ns,
we see that
H an’ = emalimenod = = +blims o £ 0"
eloga¢(0)+b¢'(0) (24)
By analytic continuation we see that ((0) = —1/2 and
¢'(0) = —(1/2) In 27, and then
[Ian’ = a2 (2m)%2, (25)

so that (22) is simply (1/At) and the propagator becomes

1 a2
Glzg, 1] = —= BB 26
[ 2 1] \,/A_t ( )
which is the standard result.
In the previous problem we have assumed that the manifold is
defined on

—00< T <00. (27)

The next question is: What happens if the manifold has another
topological structure such as a circle or a torus, etc.?

If the manifold has the topology of a circle, the boundary con-
ditions (11) do not define completely the problem and we must
modify (11) in the following way
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$(t1) = I,
z(t) = x2+2nm, (28)

where n is an integer number (winding number).
A physical system described by the Lagrangian
L=1g (29)
2 )
with the boundary conditions (28), is called quantum rotator and
it is the most simple example defined on a multiply connected ma-
nifold.

The strategy that we will follow below (which in essence is due
to Schulman) is to solve this example in detail and afterwards to
derive a general formula.

Let us start by making in (29) the identification  — ¢. Then,
(28) becomes

#(t1)) = ¢1,
d(t) = ¢a+2nm. (30)

The propagation amplitude for this case becomes

Ghld2, 1] = / D (t) gk fl"’dt%qﬁ, 31)

provided that the boundary condition (30) are assumed. When (31)
is computed using (30), the propagation amplitude will depend on
n, for this reason we have written Gy [pa, ¢1].

We solve this problem in complete analogy with the free non—
relativistic particle. In fact, by making the change of variables

n A¢ + 2nm
At

with ¢ the classical solution of the equation of motion and, by
consistency, the quantum fluctuations satisfy 1(¢;) = 0, ¥(t2) = 0.

B(t) = ¢ (t —t1) +¥(t) = da + ¥(t), (32)
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Replacing (32) in (31)

i(Ap+2nm)? i [t2 gt lyo,?
Gn[¢2,¢1] = e At / D/lpelj;l t2¢ t w

i(Agp+2nm 2 =
= R det (0372, (33)

(ST

The determinant is computed as in the free non-relativistic par-
ticle case and the result is A¢t. Thus, (33) is

1  (ag+2nm)?
e At
VAL

Expression (34) is the propagation amplitude for a fixed homotopy
class and, in consequence, the total propagation amplitude is

Gnld2, ¢1] = (34)

n=-+o0o

Glgz, ¢l = Y EnGulgs, 6], (35)

n=—oo

where =, is a factor which has to be determined. By invoking
completness and unitarity of the Green function i.e.

nzl)

we find that =, must be €™ where § is a phase.
Using the identity

BT 2 0D -1/2 22 z 1
da(r,z) = 3 €M (cry e gy (2,-2), (30)
n=-—o00

T T

then, we find the final expression

z—_

2 ‘ 82

2
Gz, ¢1] = % exp l boR E] s <A¢ Ats At

(37)
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which is the result found by Schulman in 1968, althought the deriva-
tion given by him is slightly different.

Finally we will discuss briefly the formal derivation of the heuris-
tic formula (16). Firstly, we should note the existence of two equiva-
lent manifolds, M and their universal covering M. M is a multiply
connected manifold while M is simply connected. Both manifolds
are related by

_M
G[-’L’Q, 33'1] ,

where G[zg, 7] is a discrete group. By definition the quotient
M/G|z2, x1] is the set of all homotopy classes, i.e.

M= (38)

M /G, 1) = {[z], z € M}. (39)

Then, two points z and Z are equivalent under G[z2, z;] if there
exists an element g € G[zy, ;] such that

E=g:+g. (40)

In the case considered above, M = S! and M = R and the
relation (40) is

ET=z+27n, (41)

while G|zy, 1] = Z, where Z is the integer group. Once this
nomenclature is introduced we can define the path integral.

Let (%) be the wave function on M = R, this wave function is
continuous and onevalued. Then (40) becomes

U(E - g) = alg) - P(&), (42)

Vg € Z. If we impose the normalization of the wave function

la(g)l =1, (43)

then a(g) is a phase that satisfies the following property; let us
consider the wave function with a well defined value. Then there

exist the pre-image & = p~!(z) of z with ¥(z) = ¢ (Zo); after a
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complete turn around in S*, 9 (z) takes another value and the pre-
image will be different, say Z.g; then

Y(o) = P(&0- - g1) = algr) - P(&) (44)

Giving another turn around we find

Y(Zo-g1) — Y(To 91 92) = a(g2) ¥(Zo-91) = a(g1)-a(g2)¥(Zo), (45)

and, as a consequence

¥(&o - 9192) = a(g1) - a(ga) (o) - (46)
Thus

a(g1 - g2) = a(g1) - a(ga) - (47)

This last equation tells us, again, that a(g) is a phase but also
that there is a close relation between phase factors and the group.
In the case at hand, the phase factor is an unitary irreducible re-
presentation of Z.

The propagator in M is defined as usual,

P(3y, 1) = /M dz G[&s, ty; &1, 1] (%2, Ba) (48)
where G is the propagator for one-valued functions on M with a

space made up of an infinite number of copies of M. Assuming
continuity on the one-valued functions, we can write (48) as

1/}(5:1,51)=2/md5;1é[£2, fa; B0, 0@ - 9), £),  (49)
biie

denoting the arbitrary point # € M by & = {i'g} where z}) be-
longs to a copy on M for some fundamental domain M. Thus

W@ D=3 [ d@-g)Gle a0, b9 0.t), (50)

geZ
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but as the copies are identical, the integration on any copy is the
same on the fundamental domain, then we write

0@ )= X [, d@6ls & g0 0,0 B0, 1), (51

geZ M

or

0@ 0 = [ d@) Y Clas, B 3o+, 6] 0G0 -9, ¢),  (52)
Mo geZ
Following these arguments, if ¢(z,t) is the wave function in
the point z, then there exists a pre-image Z of z where ¥(Z,t) =
¥(z,t). Furthermore, M and M are locally homeomorphic and, in
consequence, dr = dz. Thus,

W(E, 1) = /M dz G[z, #; z, t] ¥(z, t), (53)
where
Gz, & z,t] = Y. GlZo, to; 7, ] alg), (54)
geZ

with = p(Z) and = = p(xq). Making o — zog~! and Ty — Tog™"
and afterwards g — g~!, we arrive finally to

G|z, t; x, t] = > alg™) Glio, to; %, t'], (55)
geZ
which is the standard formula for the propagator in a multiply con-
nected manifold [2, 3]. Althought (55) was derived for a particular
topology, it is a formula which is valid for general cases.

5. Applications

In this section we will apply the formulas derived in the above
section to several problems such the Aharonov-Bohm effect includ-
ing spin (and their relativistic extensions) and anyons.
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The Aharonov—Bohm Effect

In the Aharonov-Bohm effect the propagation amplitude is

Glos, m] = ¥ =, /( )’Dmeisf*". (56)

In order to compute (56) it is convenient to discretize as follow

. p n 00 +o0 n—1
i = i () [T [ T o
== X k=1

— lip 2": ((a:j _Al;j—l)Q . (y; —Alij—l) )] ,

j=1
(57)
where p = m/2, At = (t, — t,)/m.
Using polar coordinates,
z; = rjcosb;,
Y = Ty sin 9]', (58)

and writing dzxdyy = ridridfy, and

(:z;j—:cj_l)2+(yj —y;1)? = r]2~+rj2-_1 —7;jTj—1,c08(6; —6;-1), (59)

the equation (57) becomes

Glza, 2]

I P\" [ T dr db
= Jim () [ [ T reanean,

T k=1

Z‘ n
X exp IV—P; > (r;‘) + r?_l — rjTj-1 cos(6; — Hj_l)) .(60)
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Now we impose that the electron can go around the solenoid.
Technically this is equivalent to impose the constraint

¢+27Tm—zn:(9j—0j_1)20. (61)

Jj=1

Via a delta function, i.e

G[xz, 331]
n—1
= nh_)rgo (MTAt) / /W kl_Il 'rkdrkdﬁk
) (b +2am— Z i~ ]—1)}
j=1

n

—'.; > (sz + 75y — ;71 cos(f; — 93-_1))] ,(62)

7=1

X exp

where ¢ is the angle between the source of electrons, the center of
the solenoid and the screen (see fig. 3).

source screen

ol

- g
R T

Figure 3. Here R and R’ are the distances between the source and
the screen to the centre of the solenoid.

Now, we can exponentiate the § function and after a tedious
calculation we find

G[$2,$1]m

+ n—1
— : i iA(p+2mm)
"h—’n”lO <z7rAt) /o / H L drk / aAe
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oo [t

x n—1
/ / H Xme Az(TJrJ 1cosxj—z)\)(]) (63)

T =1
In order to compute these integrals we use the asymptotic formula
+7 i
/ dX eMxtzcosx 27TI|A|(z) , (64)

which is valid in the limit z — oo.
Integrating in x, and r

Gles, il = —z'7rpAt et Ar(RP+R?)
00 ; RR'
X /_oo d\ eXet2mm) [y, ( 21 E) (65)

which is the the propagator for the m—th homotopy class for the
Aharonov-Bohm effect. This formula was first obtained by Inomata
[8] and Gerry and Singh [9] in 1979 and recently was simplified by
Shiek [10].

The total propagator is

G[.’L‘Q, .’131 Z e2mam G[.’L‘Q, 1131] (66)

n=—oo

where «a is the magnetic flux. Replacing (65) in (66)

Gz, 1] = z7rpAt i (R*+R?)
o A 2'RR'
% Z (_l‘)|m+a| ei(m+a)é J|m+a| ( RAI:,O> .(67)

”

Equation (67) has several “sub-applications.” As was mentioned
in section 2, the motion of two anyons is an example of it. In
fact, let us consider the motion of 2 free particles in a plane. The
Lagrangian is
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1.2 1.
L—§xf+2x§ (68)

Defining relative and center of mass coordinates, as usual, we have

1.2 1352 i

L: §.f +§XCN1+aded(tx) ;

where £ = ¥ — ;. The coordinate Xczw is the center of mass

position, dO©/dt is a topological invariant which has been added by

hand and that, classically, does not contribute to the equation of
motion and © is the relative angle between the particles.

The partition function for this system becomes (the motion of

the center of mass is trivially decoupled)

_ % [ 7 [(iesten

(69)

7?) + (7:16~3Hrez

-n],  (70)

with

1 . )
Lea =3 M7 +ab), (71)

The brackets appearing in (70) are just the definition of the
Green function and were computed previously. However the prop-
agator is divergent and we must regularize the expression

/ du e Dy () - (72)

n=-—oo

In order to regularize we replace e™* by e** and take the limit
e — 0 at the end of the calculation. The reader interested in the
explicit calculation can see ref. [11]. The final result is

F,(a) / dz e I,(z)

= \/_—Tl [a+\/a+\/7l —V,

F,(l+¢) — [1+\/§e] : (73)

=}
)

-3
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With these expressions in mind we can compute the second virial
coefficient

B(a, T)=2) 7, (74)

with A\p = (2rh2/Mkt)"/*.
If we expand around the Fermi statistics a = 25 + 1+ 6 then we
find

B(a=2j+1+6,T):%/\2T+2)\§1. (75)

More details about the calculation can be found, e.g., in the
book by Lerda [12].

5.2. The Relativistic Aharanov—Bohm Effect

The relativistic extension of the Aharonov-Bohm effect is straight-
forward, but firstly we must define the path integral for a relativistic
particle [13].

A relativistic particle is defined by the following Lagrangian

1 1
L=cei*—~-m?N 76
where N is the einbein.

The classical symmetries of (76) are

ozt = eit,
6N = €eN. (77)

The next step consists in computing the propagation amplitude
associated to (76). However, this is not trivial because the rela-
tivistic particle is a generally covariant system and the propagator
must be written 4 la Faddeev—Popov, i.e.,

Glzg, 1] = / DN Dz* det(N)~ 1 6(f(N)) det <6f(§£\/)> e
(78)
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This expression deserves some explanations. Firstly, we have
inserted the factor det(/N)~!, by hand in, order to have a func-
tional measure invariant under general coordinate transformations;
secondly the remaining factors are the usual terms of the Faddeev—
Popov procedure, being f(N) = 0 the gauge condition.

An appropiate gauge condition for this problem is N = 0 (proper—
time gauge) and having into account the causality principle (78)
becomes

S .2 X
Glz2, z1] :/0 aT / D elfl dr(ﬁﬁizz_%mzl\,(o)) , (79)

with 7'= N(0)A, and we have assumed boundary conditions

IH(TI) = Ip,

£f(ry) = a5. (80)

The formula (79) was found by Schwinger in 1951.
In order to compute (79) we repeat the arguments given in the
non-relativistic case. That is, we make the change of variables

Azt
AT
where z%, is the classical solution of the equation of motion and y*
is a quantum fluctuation that satisfies

z#(r) =z + (1 =7) +yH(r) = oty + y*(7) (81)

y¥(n) = 0,
y'(r) = 0. (82)

Replacing (82) in (79) we find

Glzz, 1] =/0 dT T~P/% e™or 2T=/ en)? FrmE’ (83)

which is the expected result.
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The next step is to apply these results to the study of the rela-
tivistic Aharonov-Bohm effect. The main idea is simple, we write
the propagation amplitude for a relativistic particle as it was dis-
cussed above and afterwards we separate the vector z* in compo-
nents (z°,z!, 22).

The main steps are the following:

1. Firstly, instead of (79), we write

o0 )
Glz2, 7] = /0 dT e~izm*N(0)

X /Da:eiflz‘h(mlo #1,
(84)

Then in (84) we can consider formally the integral in z as an
ordinary free non-relativistic particle with mass N; ! moving
in a one dimensional space. The result of this integration is
trivial

L % (85)

2. The integral in the spatial coordinates is more complicated
but we can map this problem into a non-relativistic problem
with formal mass Ny . The final result is

. > (_i)|n+a| —in+a d3p ip-Az
Gewol = 1 3 e | G

X (J|n+a+1|( v RR',D) + J|n+a—1|( % RR'P))
X (K]n+a+1|(\/—1ﬁp) . K[n+a—1|(\/ﬁp)) ’

(86)
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with p = € — (p? + m?).

For details and other applications see [14].

6. Anyons in Two Dimensions

In this section we will discuss the idea of anyon from a more
general point of view, but before let us consider a particular case
known as Bose-Fermi Transmutation (BFT).

The idea, due to Polyakov [15], consists into take an spinning
particle described by the action [16]

s=[dar (m\/ﬁ— = 0,0" - %esésﬂe#i,,ﬂ/ﬁws) ,
(87)
with 6,, 05 and A, fermionic variables. Then, when we integrate

the fermionic variables we find a bosonic description of a spinning
particle or more precisely, an action like

S = / dr (m Vi? + topological invariant) , (88)

We will precise this result below.
In order to define appropriately the path integral we start by
defining the gauge condition

05 =0, (89)

which is consistent with the constraint §#z, = 0.
The next step consists in proposing the decomposition for the
fermionic variable

0" = n¥ K1 + nh Ko + € ke, (90)

where n;,ny and e are tri-vectors that satisfy
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o =
nf-e, = 0,
nomu; = 6. (91)

This decomposition is equivalent to choose a Frenet—Serret frame
where the n’s are the normal vectors and e is the vector tangent to
the worldline.

The effective fermionic action is computed from

¢iS(@) =/Dgupg5 DA6(05) € = exp [im / Vi &, (92)

where @ is the Polyakov spin factor defined as

> = /DIﬁDIig

1
X exp ':/ dr <'—§ (Kll f‘.€1 + K9 K,g) + (m d ng) K1 l‘&2>

= det [diiﬂnl-m)] . (93)

The calculation of the determinant is straightforward [17, 18]

d .
dist [_ + (nl . 712)] — echdT(nl-nz) cos [% / dr (nl . nz) , (94)

dr

where ¢ parametrizes the different possible regularizations. If we
impose invariance under the interchange of n; and n, we find that
¢ = 0 and the spin factor becomes

¢ = exp [% / dt (ny ng)] + exp [—% / dt (n; - ng)] . (95)

where the factors +1/2 denotes the two possible spin states.
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The next question is, how to generalize this result for other
spins? The answer can be obtained from Chern—-Simons theories.
Let us start by considering a set of N relativistic particles minimally
coupled to an Abelian Chern—Simons field. The action is

N
s = Yom [dar\fii+ [ dz,ar
k=1
1 3,. uvp
+%/dxe A, OuAy, (96)
where J+ = S| 2#68) (z — (7).

Then, we integrate the A, field and the result gives the effective
action

Sepy =m. / dr Vi? — % / &Pr dy J*(x) K (z, y) I (y), (97)

where K,,(z,y) is the inverse of the operator e#*?A,,0,A, and, of
course, satisfies

42 4,0, Ay Ko 2, y) = 6 8(z — 1), (98)
replacing J* in (97) we find that the non-local term becomes
N
o
—— Z L, (99)
2 55 !

where [;; is

p

L= i / dot da e, L5 (100)
For closed curves ij, I;; becomes the linking number, while for

t = j there are additional contributions in the one particle sector.
These diagonal terms are computed [19] by a regularization as a
limit of non-diagonal terms. However, the result can be depen-
dent of the regularization. In order to perform this calculation we

consider two infinitesimally close curves. I become

|z — 2
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1 £ 58 dzt (z.(1) — z(7'))" dz?
I=— [ drdrl £ €
47 / TOT 50 S gy |z (1) — z(7')]> dr’’ (101)
with
Te(7) = 2(7) +en(r), (102)

the non—conmutativity of the limit procedure € — 0 and the inte-
gration, implies

i 1 G
TZLI_I’I(I) LE—I:% /drep,,pe”n n’, (103)

where e* = e*/|e| is the normal principal vector. The quantity T is
called the torsion of the curve and [ is the self-linking of the curve.

The difference T'— L is denoted by W and is the writhing num-
ber or cotorsion. Thus, the effect of the Chern—-Simons field is to
produce the interaction lagrangian

Lint =sW ) (104)

where s = 0 /4 is the spin of the system. In this way we see that the
BFT procedure is a particular case of a more general formulation
coming from of a Chern—-Simons contruction.

7. Anyons in One-Dimension

In this section we will discuss the possibility of anyons in one di-
mension. This possibility can be analized in complete analogy with
the two dimensional case. In two dimensions there are anyons be-
cause there are points which have been removed from the manifold.
In one dimension we can repeat the same argument as follows. Let
us consider two non-relativistic particles moving on a line. For this
system the configuration space consists of two disjoint pieces (the
real line minus the origin) because the point where the particles
collide is singular. Classically the particles cannot go through each
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other, and they bounce elastically every time they meet. Thus, the
action of this system is defined on the half-line [3, 6], i.e.

=2 [° ma, (105)

2 Jy

for 0 < x < 0o, where z is the relative position of the two particles.
As it is well known, the Hamiltonian associated to (105) is not self-
adjoint on the naive Hilbert space because there is no conservation
of probability at = 0. The Hamiltonian for (105), however, can
be made self-adjoint by adopting a class of boundary conditions for
all the states in the Hilbert space of the form [20, 21]

¥'(0) = v¢(0), (106)

where 7 is an arbitrary real parameter.!
The computation of the propagator between an initial position
z; and a final position z,, for the above problem gives [22, 23]

G,\,[I(tz), l‘(tl)] = Go(xg — 1131) 1= Go(.’IIQ + .’171)
2y /0°° d\e™ Go(zz + 71+ A).
(107)

G is the Green function for a free non-relativistic particle, i.e.

1 ;
Go(z —y) = Tosi gilz—v)’ /2t (108)

Although in one spatial dimension it is not possible to rotate par-
ticles, they can be exchanged and their “spin” and statistics can

IThere is an alternative approach to this problem. In the classical configu-
ration space we could have exchanged states, and = < 0 would have been also
permitted. The resulting system is described by the same action as in (105)
but with z # 0 instead of z > 0. In this configuration space the self-adjoint
extension of the Hamiltonian imposes a condition that replaces (106), with two
complex parameters v+ instead of only one y. Here we shall not follow this
approach. It is remarkable however that, even when in our approach particle
interchange is not included ab initio, quantum mechanics brings it in at the
end.
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be determined by the (anti-)symmetry of the wave function. This
(anti-)symmetry, in turn, depends on the values of the parameter
7. This last fact can be seen by taking the limits v = 0 and v = oo
of (107) [23]

G'y:O,oo = Go(l‘z == .’El) = GO(Z'Q + .'L'l) y (109)

Under interchange of the positions of two particles in initial or
final states, G,=p has even parity and G =~ has odd parity. Thus,
for v =0 (y = 00) the particles behave as bosons (fermions). The
cases 0 < v < oo give particles with fractional spin and statistics
[24]. The propagator (107) can also be obtained in the path inte-
gral representation, summing over all paths —oo < z(t) < oo, but
in the presence of a repulsive potential y6(x). This problem was
considered in [22, 23] and the result is

G, [z(t2), /D:v (110)

with

s=[ “ at (27: + bz ())), (111)

Here Dx(t) is the usual functional measure. The potential term
v 6(z(t)) can be interpreted as a semi-transparent barrier at = 0
that allows the possibility of tunneling to the other side of the
barrier. This is just another way of expressing the possibility of
interchanging the (identical) particles.

It is also interesting to note here that although in (14+1) di-
mensions the rotation group is discrete and the definition of the
spin is a matter of convention, we may nevertheless view the one—
dimensional motion on the half-line as a radial motion with orbital
angular momentum [ = 0 [25] in a central potential. This gives
rise to another possible definition of spin by taking the following
representation for the §—function

6(xz) = lim Ve

112
e—0 22 + € (12)
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Making a series expansion around e¢ = 0, the leading term
vv/€/x? is analogous to the centrifugal potential for the radial equa-
tion in a spherically symmetric system, with /ey playing the role
of an squared intrinsic angular momentum. Thus the spin of the
system (s) can be defined by

s? = \/en. (113)

For real s (113) makes sense only when y > 0. This definition is
consistent with the bosonic limit v = 0. For the fermionic case, the
limit v = co mentioned above is to be interpreted as simultaneous
with the limit € — 0, so that \/ey = 1/4. It is in this sense that
the non-relativistic quantum mechanics on the half-line describes
one-dimensional anyons. However, the normalization s = 1/2 for
fermions is conventional. We can extend these results to relativistic
anyons. The calculations are more involved and we will give only
the final result for the propagator

G,[X (1), X(1a)] = Go[X(m) — X(7a)] + Go[X (1) + X (7a)]
2~ /0 dre™™ Go[X (1) + X (1) + A].
(114)

The details are discussed in [26].

8. Conclusions

In these lectures we have discussed several aspects of quan-
tumn mechanics defined on non-trivial manifolds and, in particular,
anyons in one and two <imensions.
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