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Physics defined on multiply connected manifolds is an old topic 
in theoretical physics. In the context of the path integral forma­
lism it was stud\ed by the first time by Schulman [1] in 1968 and 
rigorously formulated by Laidlaw and de Witt [2] and Dowker [3] 
in 1971. 

The central point is that in a multiply connected manifold the 
paths have different weights in the sum over histories and the pro­
blem - which does not exist in the "standard" quantum mechanics­
is how to define a quantum theory taking this fact into account. 

The problem of to how define a quantum theory on a topolo­
gically non- trivial manifold is not only an academic problem be­
cause it finds experimentally realizable systems such as the Aharo­
nov- Bohm effect [4] and the anyons that could be an explanation 
to the quantum Hall effect and, maybe, to high temperature super­
conductivity. 

The purpose of this lecture is to explain sorne aspects of the 
quantum theory defined on multiply connected manifolds in the 
context of the path integral formulation and the applications that 
these ideas find in anyon physics in one and two dimensions. 

In section 2 we start by explaining sorne examples that involve 
non-trivial topological aspects; this section does not involve calcu­
lations and its unique purpose is to introduce several useful con­
cepts. In section 3 we introduce the formal definition of a multiply 
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connected manifold. In section 4 path integrals on arbitrary ma­
nifolds. In section 5 several applications are studied. In section 6 
anyons in two dimensions and in section 7 anyons in one dimension. 
Section 8 is dedicated to the conclusions. 

2. Systems Defined on Non-Trivial Topological Manifolds 

Let us start by discussing the most popular example of a quan­
tum theory defined on a multiply connected manifold, namely the 
Aharonov- Bohm effect. 

The Aharonov- Bohm effect consists in the experimental arran­
gement shown in figure l. --------

screen 

Figure l. The solenoid has infinite lenght with an inner constant 
magnetic field; we assume also that the solenoid is impenetrable. 

The electrons can follow infinite paths, as shown in figure 2. 
PO 

Figure 2. Sorne of the the infinites path of the electron. 

The important question is that theoretically we expect that in­
terference lines can be observed on the screen, such as in a diffrac­
tion experiment, and that the lines be dependent only on the mag­
netic field inside of the solenoid. 

This example tell us that the electromagnetic potentials -that 
classically are unobservable- are quantum mechanically responsible 
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for the observability of the interference pattern. The experimental 
question relative to the Aharonov- Bohm effect was only solved with 
a serie of experiments performed by Tonomura and collaborators 
in the beginning of the eighties [5], · · · twentyfive years after the 
Aharonov and Bohm prediction. 

From a theoretical point of view, we can see the Aharonov­
Bohm effect as a phenomenon that occurrs because the R2 manifold 
(that is the plane where the paths live) has a point removed (the 
point where the solenoid is) and, as a consequence, the configuration 
space of this system is 3{2 

- {O}. 
The Aharonov-Bohm effect is an example of a mechanism that 

appears in many examples of recent physics, one of them is the 
problem of two-anyons. 

In arder to explain this problem, let us consider the motion of 
two non-relativistic particles moving on a plane. The motion is 
regular everywhere except in the point where the particles collide. 

The colision condition in the point x1 = x2 is equivalent to the 
replacement 

(1) 

and, in consequence, the manifold ( configuration space) has also a 
point removed. 

We can see formally this example as a similar phenomenon to 
the Aharonov- Bohm effect, each particle has a flux- tube attached 
to it and in the case of the two particles, we can exactly map it into 
the Aharonov-Bohm effect. 

Of course, there are questions to which we should give an ans­
wer: What is the analogue of the magnetic field for the case of two 
particles?; How to implement technically this fact?; etc. 

There is also another problem closely related with the previous 
ones, namely cosmic strings. The cosmic strings are solutions of 
the Einstein field equations when point- like matter is present . The 
solution is 

(2) 
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where c/J' is the defect angle. 
The cosmic strings are generally assumed to be singularities that 

remained after the formation of our universe and could be experi­
mentally detectable. The manifold when we project to a plane is 
again ~2 - {O} . 

In the next sections we will try to formalize these exam ples by 
developing appropriate computational techniques. 

3. Rudiments of Homotopy Theory 

The configuration space where we compute the propagator of a 
free particle is an example of a simply connected manifold. When 
we give two points of the manifold we can draw infinite, topologi­
cally equivalent, paths between these two points. 

The werd 'deformable' has a technical connotation for a ma­
thematical operation called homotopy transformation that we will 
define below [6]. 

The idea of a homotopy is the following; we will say that two 
curves are homotopically equivalent if it is possible to deform con­
tinuosly one into the other, in other words, two continuous appli­
cations f and g of the space X to the space Y, f , g : X - Y are 
homotopic (simbolically f rv g) if there exists a continuous function 
F : X x I - X , where I is the closed interval [0, 1], such that 

F(x, t)it=O = f(x), (3) 

and 

F(x, t)lt=l = g(x), (4) 

with (x, t) E X. 
It is clear that the idea of homotopy defines a class of equivalence 

between applications, i. e., 

l. J rv j , 

2. j rv g ~ g rv j , 
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3. f rv g and g rv h => f rv h, 

for all continuous functions f, g and h. 
If G is the space of all continuous applications between X and 

Y, then a relation of equivalence has the property of decomposing 
the space G in classes of equivalence or disjoint sets of functions 
which are homotopically equivalent. 

If the functions g and f are homotopic, then they belong to 
the same class of homotopy, otherwise they are non- homotopically 
equivalent. We will denote the homotopy class by [a] where the 
set [a] is the set of all paths that are homotopically equivalent. In 
the case of the Aharonov- Bohm effect in figure 2 the paths 1 and 
2 belong to the same class of homotopy. 

Now, we will restrict our considerations only to the applications 
that are closed curves or loops; we will say that the loops a and 
{3 with basis in x0 ( i. e the point where the extremes coincide) are 
equivalent if there exists a function H : I x I ~ X such that 
H(t, O)= a, H(t', O)= {3 and H(O , s) = H(1 , s) = x0 Vs E J. 

The function H(s, t) is a homotopy. Therefore, if a, {3 and ¡, 
are loops with basis in x0 E X, then 

l. a rv a, i.e. any loop is equivalent itself. 

2. lf a rv {3, then there exists a homotopy H : I X I ~ X with 
H(t, O)= a , H(t, 1) = {3 and H(O , s) = H(1, s) = x0 . 

3. a rv 'Y if a rv {3 and {3 rv 'Y· 

It is possible to define a homotopy L(t , s) between a and ¡as 
follows 

{ 
H(s, 2t) 

L(t, s) = H(s , 2t- 1) 

and consequently, a rv ¡. 

o:s;t:s;~ 
~:s;t:s;1 

(5) 

We can think of a more tangible example by considering the 
Aharonov- Bohm effect "joining" the two extremes in figure 2. Ob­
serving the figure 2, we see that there are paths that can be classified 
by a "topological invariant" : the winding number n. 
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In general, the loops can be summed up and the resulting sum 
~s another loop that links ¿ n times the hole. The set of all loops 
is a group that is isomorphic to the integer group. However, in 
order to implement this fact it is necessary to define the product of 
loops. The definition is the following; let a and (3 be curves in X 
with a(1) = (3(0), then the product * of curves is 

(a * (3) ( t) = { H ( 2 s, t) , ? :::; s :::; ~ 
H(2 S- 1, t) , 2 :::; S :::; 1 

(6) 

Once these definitions are given, we can show that the set of all 
the homotopy classes of loops {[a]} with basis in x0 of X is a group 
and it is denoted by rr1 (X, x0 ) and is formally equivalent to 

rr1(X, xo) = {[a]} . (7) 

The set rr1 endowed of the operation * defines the first homotopy 
group or fundamental group. The group rr1 is the first of an infinite 
set of (n > O) higher-order homotopy groups. rr1 eventually might 
be non- Abelian while the higher homotopy groups are all Abelian. 

4. Path Integrals on Multiply Connected Manifolds 

In this section we will introduce the concept of path integrals 
on multiply connected manifolds. Let us start by considering path 
integrals on simply connected manifolds and the most simple appli­
cation, namely, the free non- relativistic particle; this example is a 
warm- up exercise and will be useful when we consider the path in­
tegral over a multiply connected manifold at the end of this section. 

The idea of the path integral consists into summing over all 
the paths between the initial and final points A and B. The pro­
pagation amplitude between these two points is equivalent to the 
computation of the formal sum 

G[B, A]"' L something. (8) 
paths 

The previous expression has two difficulties: firstly, it has the 
technical problem of how to define the sum between paths, and; 
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second, it has the physical problem of how to define something. This 
second problem is equivalent to postulate the Schrodinger equation 
in the conventional quantum mechanics and it is equivalent to make 
the replacement 

something----+ ek8 , (9) 

where S is the action. 
The first problem is technically more difficult and, in essence, 

its solution consists into the replacement (for details see e.g. [7]) 

L ekS----+ jfidx(t)ekfdtL(x,x), 
paths t 

(10) 

where L(x, x) is the Lagrangian of the system. 
In general although we can give a discretization prescription, 

the physical quantities are well defined only by giving correctly the 
boundary conditions. Thus, if we are interested in computing the 
propagator of a particle, we must give the boundary conditions 

(11) 

and then the expression 

(12) 

together with (11) defines the propagation amplitude or propagator 
of the system. Here Vx(t) = Tit dx(t). 

We can verify explicitly how to work out these ideas by con­
sidering explicitly the most simple example, namely the motion of 
a free non- relativistic particle in one dimension described by the 
Lagrangian 

L = ~±2 2 . (13) 

We are interested in computing the propagation amplitude G[x2 , x1] 

with the boundary conditions (11). In order to compute 
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G[x2 , x1] = j Vx(t) e k f1
2 
dt~x2 , (14) 

we start by making the following change of variables 

~X 
x(t) = X 1 + ~t (t- t 1) + y(t) = XcZ + y(t), (15) 

where xc1 is the solution of the dassical equation of motion x = O 
and y(t) is a quantum fluctuation that, by consistency, satisfies the 
boundary condition 

o, 
o. 

When (15) is replaced in (14) we find that 

. (C.x )
2 ¡ i J2 d ( [)2) G[x2, x1] = et 2c.t Vy(t) e2 1 ty- t Y. 

(16) 

(17) 

The integral in y is Gaussian and the result of the integration is 

det( -an-~, (18) 

Now, we should compute the determinant, the procedure is the 
following: we start by solving the eingenvalue equation 

(19) 

with Dirichlet boundary conditions, and afterwards we use the for­
mula 

det( -8z) = II An. (20) 
n 

Using '1/Jn (tl) = O, 'l/Jn (t2) = O, we find that An = (mr / ~t) 2 and 
(20) becomes 

+oo (n7r)2 
det( -az) = g ~t (21) 
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However, (21) is a divergent quantity. 
In order to make sense of the divergent expression (21), we re­

gularize appropiately this product; firstly we observe that (21) has 
the general form TI anb. Then we can write 

I1 anb = e L n !n(anbl = eLn!na+bl::n!nn, (22) 

and using the Riemann ( - function 

we see that 

1 
((s)=l:--;, 

n n 

e log a((O)+b(' (O) . 

By analytic continuation we see that ((O) 
('(O) = -(1/2) ln 21r , and then 

rr anb = a-1/2 (27r)b/2) 

(23) 

(24) 

-1/2 and 

(25) 

so that (22) is simply (1/ ~t) and the propagator becomes 

G[x x ] = _1_ ei(Llx)2 / Llt 
2, 1 VíS:i ) (26) 

which is the standard result. 
In the previous problem we have assumed that the manifold is 

defined on 

-oo < x < oo. (27) 

The next question is: What happens if the manifold has another 
topological structure such as a circle or a torus, etc.? 

If the manifold has the topology of a circle, the boundary con­
ditions (11) do not define completely the problem and we must 
modify ( 11) in the following way 
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X¡' 

X2 + 2 nn, (28) 

where n is an integer number (winding number) . 
A physical system described by the Lagrangian 

(29) 

with the boundary conditions (28), is called quantum rotator and 
it is the most simple example defined on a multiply connected ma­
nifold. 

The strategy that we will follow below ( which in essence is due 
to Schulman) is to solve this example in detail and afterwards to 
derive a general formula. 

Let us start by making in (29) the identification x -+ cf>. Then, 
(28) becomes 

cf>¡ ' 
c/>2 + 2 n 1r. (30) 

The propagation amplitude for this case becomes 

(31) 

provided that the boundary condition (30) are assumed. When (31) 
is computed using (30), the propagation amplitude will depend on 
n, for this reason we have written Gn[c/>2 , c/>1]. 

We solve this problem in complete analogy with the free non­
relativistic particle. In fact, by making the change of variables 

!:::.cj> + 2nn 
cf>(t) = cf>¡ + !:::.t (t- t¡) + 'lj;(t) = cf>cl + 'lj; (t) ' (32) 

with c/>c1 the classical solution of the equation of motion and, by 
consistency, the quantum ftuctuations satisfy '1j;(t1) =O, '1j; (t2 ) =O. 
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Replacing (32) in (31) 

e· Ll.t. V'ljJett¡ 2'~'ut'l' 
i(L1.4>+2mr)2 ¡ · J.t2 dt I.J,!l 2.1. 

i(LI.4>+2mr)2 1 
e Ll.t det (8?}- 2 . (33) 

The determinant is computed as in the free non-relativistic par­
ticle case and the result is tlt. Thus, (33) is 

(34) 

Expression (34) is the propagation amplitude for a fixed homotopy 
class and, in consequence, the total propagation amplitude is 

n=+oo 

G[</>2, <PI] = L 3n Gn[</>2, <PI]' (35) 
n=-oo 

where :=:n is a factor which has to be determined. By invoking 
completness and unitarity of the Creen function i.e. 

1, 

we find that 2n must be en8 where ó is a phase. 
Using the identity 

(36) 

then, we find the final expression 
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which is the result found by Schulman in 1968, althought the deriva­
tion given by him is slightly different. 

Finally we will discuss briefiy the formal derivation of the heuris­
tic formula (16). Firstly, we should note the existence oftwo equiva­
lent manifolds, M and their universal covering M. Mis a multiply 
connected manifold while M is simply connected. Both manifolds 
are related by 

(38) 

where G[x2 , x¡) is a discrete group. By definition the quotient 
M / G[x2 , x1] is the set of all homotopy classes, i.e. 

(39) 

Then, two points x and x are equivalent under G[x2 , x1] if there 
exists an element g E G[x2 , x1] such that 

X= X o g o (40) 

In the case considered above, M = 5 1 and M = R and the 
relation ( 40) is 

( 41) 

while G[x2 , x1] = Z , where Z is the integer group. Once this 
nomenclature is introduced we can define the path integral. 

Let {;(x) be the wave function on M = R, this wave function is 
continuous and onevalued. Then ( 40) becomes 

J(x o g) = a(g) o {; (x) ' ( 42) 

\;/ g E Z. lf we impose the normalization of the wave function 

ia(g)j = 1, ( 43) 

then a(g) is a phase that satisfies the following property; let us 
consider the wave function with a well defined value. Then there 
exist the pre-image x = p- 1(x) of x with '1/J (x) = {; (x0 ); after a 
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complete turn around in Sl, 'lj;(x) takes another value and the pre­
image will be different, say i.g1 then 

{í;(io) --+ {í;(io · · · 91) = a(g1) · {í;(io). (44) 

Giving another turn around we find 

and, as a consequence 

(46) 

Thus 

(47) 

This last equation tells us, again, that a(g) is a phase but also 
that there is a close relation between phase factors and the group. 
In the case at hand, the phase factor is an unitary irreducible re­
presentation of Z. 

The propagator in M is defined as usual, 

{¡;(x1, il) = JM dx G[x2, l2; x1, l1J {;(x2, l2), (48) 

where G is the propagator for one-valued functions on M with a 
space made up of an infinite number of copies of M. Assuming 
continuity on the one-valued functions, we can write ( 48) as 

denoting the arbitrary point i' E M by i~ = { i' g} where x~ be­
longs toa copy on M for sorne fundamental domain M 0 . Thus 

{í;(x, t) = L 1- d(io · g) G[i, t; io · g, l1] {; (i0 · g, t'), (50) 
gEZ Mo ·g 
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but as the copies are identical, the integration on any copy is the 
same on the fundamental domain, then we write 

{í; (x, i) = ¿ [1- d(x) G[x, i; xo · g, f1J] {í;(xo · g, t'), (51) 
gEZ Mo 

or 

Following these arguments, if '1/J(x, t) is the wave function in 
the point x, then there exists a pre-image x of x where {í;(x, t) = 

'1/J (x , t). Furthermore, M and M are locally homeomorphic and, in 
consequence, dx = dx. Thus, 

'1/J (x, i) = JM dx G[x, i; x, t] '1/J(x, t), (53) 

where 

G[x, i; x, t] = L G[xo, io; x, t'] a(g), (54) 
gEZ 

with x = p(xo) and x = p(x0 ). Making x0 --+ xog- 1 and xo --+ xog- 1 

and afterwards g --+ g- 1 , we arrive finally to 

G[x, i; x, t] = L a(g-1
) G[x0 , io; x, t'], (55) 

gEZ 

which is the standard formula for the propagator in a multiply con­
nected manifold [2, 3]. Althought (55) was derived for a particular 
topology, it is a formula which is valid for general cases. 

5. Applications 

In this section we will apply the formulas derived in the above 
section to several problems such the Aharonov- Bohm effect includ­
ing spin ( and their relativistic extensions) and anyons. 



65 

The Aharonov- Bohm Effect 

In the Aharonov- Bohm effect the propagation amplitude is 

(56) 

In order to compute (56) it is convenient to discretize as follow 

( 
p )n ¡ +oo ¡ +oo n-1 

E.~ -. - · · · II dxk dyk 
'/,7r f:lt -oo -oo k=1 

x exp [i p t ( (xj - Xj-1)2 + (yj - Yj- 1)2) l , 
j=1 f:lt f:lt 

(57) 

where p = m/2, l'lt = (t2 - tl)jm. 
Using polar coordinates, 

(58) 

(xj-Xj-1)2+(yj-Yj-1)2 
= rJ+rJ_1-rjrj-1,cos(fJj-fJj_I), (59) 

the equation (57) becomes 
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Now we impose that the electron can go around the solenoid. 
Technically this is equivalent to impose the constraint 

n 

cp + 21rm- L (Bj- B1_ 1 ) =O . (61) 
j = l 

Via a delta function , i. e 

G[x2, x1J 

( 
p )n l oo ¡ +1r n-l 

lim -:-----::\ . . . rr rk drk d(}k 
n--+= Z 1f L.:l. t O -71" k= 1 

x8 [ql+ 27Tm- t,(B;-0;-Úl 
x exp [ ~ t, (r] + rJ_1 - r; r;_1 cos(B; - B;- 1))] ,(62) 

where cp is the angle between the source of electrons , the center of 
the solenoid and the screen (see fig. 3). 

source 

F igure 3. Here R and R' are the distances between the source and 
the screen to the centre of the solenoid. 

Now, we can exponentiate the 8 function and after a tedious 
calculation we find 
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(63) 

In order to compute these integrals we use the asymptotic formula 

J:rr dx ei>..x+z cos x ~ 2 7r I¡>..¡(z) , 

which is valid in the limit z ~ oo . 
Integrating in x, and r 

(64) 

(65) 

which is the the propagator for the m- th homotopy class for the 
Aharonov- Bohm effect . This formula was first obtained by Inomata 
[8] and Gerry and Singh [9] in 1979 and recently was simplified by 
Shiek [10]. 

The total propagator is 

00 

G[x2 , x¡J = L e2rriam G[x2, xl]m, (66) 
n=-oo 

where a is the magnetic flux. Replacing (65) in (66) 

Equation (67) has several "sub- applications." As was mentioned 
in section 2, the motion of two anyons is an example of it. In 
fact, let us consider the motion of 2 free particles in a plane. The 
Lagrangian is 
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(68) 

Defining relative and center of mass coordinates, as usual, we have 

(69) 

where i = i 2 - i 1 . The coordinate XcM is the center of mass 
position, d8 / dt is a topological invariant which has been added by 
hand and that, classically, does not contribute to the equation of 
motion and e is the relative angle between the particles. 

The partition function for this system becomes (the motion of 
the center of mass is trivially decoupled) 

with 

1 :J . 
Lrel = 2" M r + a e , (71) 

The brackets appearing in (70) are just the definition of the 
Green function and were computed previously. However the prop­
agator is divergent and we must regularize the expression 

(72) 

In arder to regularize we replace e-x by eex and take the limit 
e ---+ O at the end of the calculation. The reader interested in the 
explici t calculation can see ref. [11] . The final result is 

fooo dx e-ax fv(x) 

1 [a + ),-a -+-v--;a::::;2=-=1=1J -v 

Ja2 -1 vk [ 1 + y'2 e] ·-v . (73) 
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With these expressions in mind we can compute the second virial 
coefficient 

B (a, T) = 2 -X~ Z , (74) 

with Ar = (27rh2/Mkt) 112
. 

lf we expand around the Fermi statistics a = 2j + 1 + b then we 
find 

( . ) 1 2 2 B a = 2 J + 1 + 8, T = ¡ -Xr + 2 -Xr . (75) 

More details about the calculation can be found , e.g., in the 
book by Lerda [12]. 

5.2. The Relativistic Aharanov-Bohm Effect 

The relativistic extension of the Aharonov- Bohm effect is straight­
forward, but firstly we must define the path integral for a relativistic 
particle [13]. 

A relativistic particle is defined by the following Lagrangian 

1 . 2 1 2 L=-x -- m N 
2N 2 ' 

where N is the einbein. 
The classical symmetries of (76) are 

8N EN. 

(76) 

(77) 

The next step consists in computing the propagation amplitude 
associated to (76). However, this is not trivial because the rela­
tivistic particle is a generally covariant system and the propagator 
must be written á la Faddeev- Popov, i.e., 

G[x2, x1] = j VNVxJJ. det(N)-1 b(f(N)) det ( bf¿;)) eiS . 

(78) 



70 

This expression deserves sorne explanations. Firstly, we have 
inserted the factor det(N) - 1 , by hand in, order to have a func­
tional measure invariant under general coordinate transformations; 
secondly the remaining factors are the usual terms of the Faddeev­
Popov procedure, being f(N) =O the gauge condition. 

An appropiate gauge condition for this problem is Ñ = O (proper­
time gauge) and having into account the causality principie (78) 
beco mes 

G[x2, Xt] = fo oo dT j 'Dx1L ei f12dr(2N\o¡x2-!m2N(o))' (79) 

with T = N(0)!:1r, and we have assumed boundary conditions 

(80) 

The formula (79) was found by Schwinger in 1951. 
In order to compute (79) we repeat the arguments given in the 

non- relativistic case. That is, we make the change of variables 

!:1xJL 
x~L(r) = xi + !:1r (r- rl) + y~L(r) = x~1 + y~L(r) (81) 

where x~1 is the classical solution of the equation of motion and yJL 
is a quantum fluctuation that satisfies 

y~L(rt) 

yiL( 72) 

Replacing (82) in (79) we find 

o, 
O. (82) 

lo
oo .(óx )2 . 1112 J dDp eip·b.x 

G[x X l = dT r -D/2 et~-tTT = -- (83) 
2, 1 0 ( 21r)D p2 + m2 ' 

which is the expected result . 
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The next step is to apply these results to the study of the rela­
tivistic Aharonov- Bohm effect. The main idea is simple, we write 
the propagation amplitude for a relativistic particle as it was dis­
cussed above and afterwards we separate the vector xJ.L in compo­
nents (x0 , x1 , x2 ). 

The main steps are the following: 

l. Firstly, instead of (79), we write 

fooo dT e-i~m2N(O) 

x V xo e-l 1 r 2N(o) x J ·j2d 1 ( ' 0)2 

X J V xei J¡2 dr( 2N\o) :i:2) . 

(84) 

Then in (84) we can consider formally the integral in x0 asan 
ordinary free non- relativistic particle with mass N01 moving 
in a one dimensional space. The result of this integration is 
trivial 

1 -iLl.xo
2 

-e 2r .¡y (85) 

2. The integral in the spatial coordinates is more complicated 
but we can map this problem into a non- relativistic problem 
with formal mass N0-

1
. The final result is 
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For details and other applications see [14]. 

6. Anyons in Two Dimensions 

In this section we will discuss the idea of anyon from a more 
general point of view, but before let us consider a particular case 
known as Bose-Fermi Transmutation (BFT). 

The idea, due to Polyakov [15], consists into take an spinning 
particle described by the action [16] 

S=j dT (mJ±i-~e~"B~"-~05B5+AB~"x~"+J±iAB5), 
(87) 

with e~", 05 and A, fermionic variables. Then, when we integrate 
the fermionic variables we find a bosonic description of a spinning 
particle or more precisely, an action like 

S = j dT (m J±2 + topological invariant) , (88) 

We will precise this result below. 
In order to define appropriately the path integral we start by 

defining the gauge condition 

e5 =o, (89) 

which is consistent with the constraint B~"x~" = O. 
The next step consists in proposing the decomposition for the 

fermionic variable 

(90) 

where n 1 , n2 and e are tri- vectors that satisfy 
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eJ.L 
±¡.¿ 

.,ff2' 
J.L n 1 · eJ.L o, 

J.L 
ni · nJ.Li -8ii. (91) 

This decomposition is equivalent to choose a Frenet- Serret frame 
where the n's are the normal vectors and e is the vector tangent to 
the worldline. 

The effective fermionic action is computed from 

where <1> is the Polyakov spin factor defined as 

<1> J 1)K,l 1)K,2 

X exp [! dT ( -~ (K,l f\:1 + fí,2 f\:2) + (nl · n2) K,l K,2)] 

det [ ddT + (nl · n2)]. (93) 

The calculation of the determinant is straightforward [17, 18] 

where e parametrizes the different possible regularizations. If we 
impose invariance under the interchange of n 1 and n2 we find that 
e = O and the spin factor becomes 

where the factors ±1/2 denotes the two possible spin states. 
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The next question is , how to generalize this result for other 
spins? The answer can be obtained from Chern- Simons theories. 
Let us start by considering a set of N relativistic particles minimally 
coupled to an Abelian Chern- Simons field. The action is 

S 

(96) 

where }J.L = ¿{;'=1 xJ.L8(3l(x- xk(r)). 
Then, we integrate the A¡.¡, field and the result gives the effective 

action 

where K¡.¡,v(x, y) is the inverse of the operator E¡.¡,vp A¡.¡,8vAp and, of 
course, satisfies 

(98) 

replacing }J.L in (97) we find that the non- local term becomes 

(99) 

where Iij is 

I _ 1 J ¡.¡, v ( Xi - X j y 
ij - -

4 
dxi dxj E¡.¡,vp 3 . 

7r lxi- xjl 
(100) 

l<or closed curves ij, Iij beco mes the linking number, while for 
i = j there are additional contributions in the one particle sector. 
These diagonal terms are computed [19] by a regularization as a 
limit of non- diagonal terms. However , the result can be depen­
dent of the regularization. In order to perform this calculation we 
consider two infinitesimally close curves. 1 become 
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with 

(102) 

the non- conmutativity of the limit procedure e ~ O and the inte­
gration, implies 

T - 1· L I - 1 j d P v · P - 1m E - - - T E¡.;.vp e n n , 
E-+Ü 27!' 

(103) 

where el-l = é' /le! is the normal principal vector. The quantity T is 
called the torsion of the curve and I is the self- linking of the curve. 

The difference T- L is denoted by W and is the writhing num­
ber or cotorsion. Thus, the effect of the Chern- Simons field is to 
produce the interaction lagrangian 

Lint =S W, (104) 

where s = CJ / 47!' is the spin of the system. In this way we see that the 
BFT procedure is a particular case of a more general formulation 
coming from of a Chern- Simons contruction. 

7. Anyons in One-Dimension 

In this section we will discuss the possibility of anyons in one di­
mension. This possibility can be analized in complete analogy with 
the two dimensional case. In two dimensions there are anyons be­
cause there are points which have been removed from the manifold. 
In one dimension we can repeat the same argument as follows. Let 
us consider two non- relativistic particles moving on a line. For this 
system the configuration space consists of two disjoint pieces ( the 
real line minus the origin) because the point where the particles 
collide is singular. Classically the partid es cannot go through each 
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other, and they bounce elastically every time they meet. Thus, the 
action of this system is defined on the half- line [3, 6], i. e. 

(105) 

for O < x < oo, where x is the relative position of the two particles. 
As it is well known, the Hamiltonian associated to (105) is not self­
adjoint on the naive Hilbert space because there is no conservation 
of probability at x = O. The Hamiltonian for (105), however, can 
be made self- adjoint by adopting a class of boundary conditions for 
all the states in the Hilbert space of the form [20, 21] 

'1/J'(O) = 1 '1/J(O), (106) 

where 1 is an arbitrary real parameter. 1 

The computation of the propagator between an initial position 
x 1 and a final position x2 , for the above problem gives [22, 23] 

Go(x2- X¡)+ Go(x2 +X¡) 

-21 fooo d).. e--r>. Go(x2 +X¡+>..). 

(107) 

G0 is the Creen function for a free non- relativistic particle, i. e. 

(108) 

Although in one spatial dimension it is not possible to rotate par­
ticles, they can be exchanged and their "spin" and statistics can 

1There is an alternative approach to this problem. In the classical configu­
ration space we could have exchanged states, and x < O would have been also 
permitted. The resulting system is described by the same action as in (105) 
but with x =/: O instead of x > O. In this configuration space the self- adjoint 
extension of the Hamiltonian imposes a condition that replaces (106), with two 
complex parameters 'Y± instead of only one -y. Here we shall not follow this 
approach. It is remarkable however that, even when in our approach particle 
interchange is not included ab initio, quantum mechanics brings it in at the 
en d. 
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be determined by the ( anti- )symmetry of the wave function. This 
(anti- )symmetry, in turn, depends on the values of the parameter 
1 · This last fact can be seen by taking the limits 1 = O and 1 = oo 
of (107) [23] 

G-y=O,oo = Go(x2- xl) ± Go(x2 + xl), (109) 

Under interchange of the positions of two particles in initial or 
final states, G-y=O has even parity and G-y=oo has odd parity. Thus, 
for 1 = O ( 1 = oo) the par ti eles behave as bosons ( fermions). The 
cases O < 1 < oo give particles with fractional spin and statistics 
[24]. The propagator (107) can also be obtained in the path inte­
gral representation , summing over all paths -oo < x(t) < oo, but 
in the presence of a repulsive potential18(x). This problem was 
considered in [22, 23] and the result is 

(110) 

with 

(111) 

Here V x(t) is the usual functional measure. The potential term 
1 8(x(t)) can be interpreted as a semi- transparent barrier at x =O 
that allows the possibility of tunneling to the other side of the 
barrier. This is just another way of expressing the possibility of 
interchanging the (identical) particles. 

It is also interesting to note here that although in (1+1) di­
mensions the rotation group is discrete and the definition of the 
spin is a matter of convention, we may nevertheless view the one­
dimensional motion on the half- line as a radial motion with orbital 
angular momentum l = O [25] in a central potential. This gives 
rise to another possible definition of spin by taking the following 
representation for the 8- function 

8(x) = lim 
2
VE . 

€-> 0 X +E 
(112) 
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Making a series expansion around E = O, the leading term 
¡fijx2 is analogous to the centrifuga! potential for the radial equa­
tion in a spherically symmetric system, with .¡E¡ playing the role 
of an squared intrinsic angular momentum. Thus the spin of the 
system ( s) can be defined by 

(113) 

For real s (113) makes sense only when ¡ > O. This definition is 
consistent with the bosonic limit ¡ = O. For the fermionic case, the 
limit ¡ = oo mentioned above is to be interpreted as simultaneous 
with the limit E -t O, so that .¡f.¡ = 1/ 4. It is in this sense that 
the non- relativistic quantum mechanics on the half- line describes 
ene- dimensional anyons. However, the normalization s = 1/ 2 for 
fermions is conventional. We can extend these results to relativistic 
anyons. The calculations are more involved and we will give only 
the final resul t for the propagator 

Go[X(T¡,)- X(Ta)] + Go[X(Tb) + X(Ta)] 

-2 ¡ fo oo d). e- 1'>. Go [X(Tb) + X(Ta) +.A.] . 

(114) 

The details are discussed in [26] . 

8. Conclusions 

In these lectures we have discussed severa! aspects of quan­
tum mechanics defined on non- t rivial manifolds and, in particular, 
anyons in one and two C:i mensions. 
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