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Starting from the Newtonian limit of Einstein 's equations in 
the presence of a positive cosmological constant , we obtain a new 
version of the virial theorem and a condition for gravitational equi­
librium. Such a condition takes the form P > APvac, where P is 
the mean density of an astrophysical system (e .g. galaxy, galaxy 
cluster or supercluster), A is a quantity which depends only on the 
shape of the system, and Pvac is the vacuum density. We conclude 
that gravi tational stability might be infiuenced by the presence of 
A depending strongly on the shape of the system. 

1. Introd uction 

Around 1998 two teams (the Supernova Cosmology Proj ect [1] 
and the High- Z Supernova Search Team [2]), by measuring distant 
type la Supernovae (SNla), obtained evidence of an accelerated ex­
panding universe. Such evidence brought back into physics Ein­
stein 's "biggest blunder", namely, a positive cosmological constant 
A, which would be responsible for speeding-up the expansion of the 
universe. However, as will be explained in the text below, the A 
term is not only of cosmological relevance but can enter also the do­
main of astrophysics . Regarding the application of A in astrophysics 
we note that, due to the small values that A can assume, i s "repul­
sive" effect can only be appreciable at distances larger than about 
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1 Mpc. This is of importance if one considers the gravitational 
force between two bodies. On the other hand for extended bod­
ies, if the astrophysical system is sufficiently diluted the "A- force" 
could overcome the Newtonian gravitational attraction leading to 
ask when such a system is gravitationally stable. 

In order to address the question of whether a system can be 
in gravitational equilibrium ar not, it is necessary to re- derive the 
virial theorem, in the Newtonian limit of Einstein's equations, with 
the presence of A different from zero. Sorne related astrophysical 
applications of the presence of A > O have been discussed in [3]. 

2. Newtonian limit of Einstein's equations with A =1- O 

In this section we will briefiy address the problern of the New­
tonian limit of Einstein's equation with the cosrnological constant. 
More details can be found in [4]. We begin with Einstein 's field 
equations 

(1) 

where Cp.v is the usual Einstein tensor. We assurne that the fields 
are weak enough so that the velocities of the bodies involved are 
rnuch less than the speed of light, that is 

1<p1 « 1. 

We also assume a nearly Lorentzian rnetric 

gQ~ = ~Q~ +hQ~ ' 

such that, in agreement with eq. (2), we irnpose 

I hQ~1 « 1. 

It is then straightforward to show that in first arder, eq. as [5] 

CM 1 2 
<P(r) = -- - -Ar . 

r 6 

(2) 

(3) 

(4) 

(5) 
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Since the general Newtonian limit has the form of a partial dif­
ferential equation , it is clearly necessary to impose sorne boundary 
condition to find the solution. However, not every boundary con­
dition is compatible with the condition (2). To see this point it is 
instructive to work out the constraints in more detail. To this end , 
it suffices to impose (2) on the spherically symmetric potential (6). 
It then follows readily that [4] 

2)2 1 
IVImax = -3- c..f1;. » M, 

Rmax » r » Rmin , (6) 

where 

Rmax 
f6 ( 1 !VI ) V A 1 - 3V3 M max ' 

[ 
1 ( M \ 2] CM 1 -- -) 

54 Mmax 

Equations (7) show that the Newtonian limit is only valid if the 
mass M generating the gravitational field is much smaller than 
Mmax and the distance we are allowed to consider in such a limit is 
restricted from below and aboye, as indicated. 

If A = O, both Mmax and Rmax tend to infinity. Hence , in 
principIe, the Newtonian limit with A =1- O is quite different from 
the case A = O. 

Due to the existence of Rmax, we can now easily see that the 
standard1 Dirichlet boundary condition 1>IR---+oo = O is not allowed. 
Instead, we can choose 1>IR = O for a certain finite radius R, which is 
of course smaller than Rmax, but still quite sizable. This boundary 
condition is clearly consistent with (2). Then, the general solution 
of (4) can by o btained in the form 

1 Standard refers here to the case A = Q. 
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<p(x) = -G J 1 :~2'1 ~ A Ixl
2 

d
3x' + G J G' (x , x') p(X' ) d

3x' , 

(7) 

with r < = min(lxl, Ix'l ), r> = max(lxl , IX' I) . 
The aboye solution consists of three pieces: the internal New­

tonian attractive potentia l, the external repulsive A part and a third 
term which is a direct effect of the boundary condition at a finite 
radius (an indirect effect of A). However, if we choose R to be one 
or two orders of magnitude smaller than Rmax we are justified to 
neglect _higher order contributions to <P , which are suppressed by 
powers of 1/ Rn. Then, in a first approximation, it is legitimate to 
drop the last term in eq. (8). This leads to 

A 2 
<p(x) = <P N( X) - "6 Ixl , 

<P (x) = -G J p(X') d3x' 
N I 'I ' x-x 

(8) 

where the first term is the Newtonian gravitational potential and 
the second one corresponds to an "anti- gravity" force proportional 
to the distance, as mentioned before. Note again that the A- force 
acts as an external force. With our A-corrected potential we are 
ready to study its dynamical effects on large astronomical systems. 
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3. The new virial theorem 
from the collisionless Boltzman equation 

As mentioned in the int roduction, our main objective is to study 
gravitational equilibrium in t he presence of the cosmological con­
stant. The new form of the gravitational potential demands now a 
re-derivation of the virial theorem from t he collisionless Boltzman 
equation. 

A full description of the state of any collisionless system is given 
by specifying the number of stars or galaxies contained in a volume 
d3x centered at x and with velocities in the range d3v around v . 
The system is under t he influence of a potential <I> (x,t) (in t his 
case the potential of eq. (9) ) . This quantity, denoted as f (x,v,t) , 
is called phase- space density or distribution function. 

For the cases under consideration the number of stars or galaxies 
are obviously conserved and move smoothly through space, hence 
f (x, v, t) must satisfy t he Liou ville theorem 

df o f 3 ( o f . o f .) 
dt = ot + ¿ ~ qi + a. Pi = O , 

t= l qz pz 
(9) 

where qi are the spatial generalized coordinates and Pi t he mo­
mentum coordinates . Taking into account that positions, velocit ies 
and accelerations are independent , eq. (9) becomes the collisionless 
Boltzman equation 

df = o f + t (Vi o f _ 0<1> o f) = O . (10) 
dt ot i= l OXi OXi OU, 

Multiplying eq. (10) with Vi, integrating over all velocities and 
using the divergence theorem in the form 

(11) 

we obtain 

o (pvJ' ) o (pViVj ) 0<1> O 
-~ + + p- = 

ot OXi OXj , 
(12) 
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which is known as Jeans equation. In the last equation we have 
defined 

p J fd3
v , 

Vi 1J 3 P f Vi d v , 

ViVj 1J 3 P vivj fd v (13) 

Here p has clearly the meaning of density. Now, multiplying eq. 
(13) with Xk and integrating over the spatial coordinates we get 

J 
8(pvj) d3 - J 8(ViVj) d3 J 81> d3 Xk x - - Xk X - Xk P - x. 

8t 8Xi 8xj 
(14) 

The first term on the right- hand side can be transformed again via 
the divergence theorem and in the second one we replace 1>(x) with 
the proper Newtonian limit , eq. (9). In this way one readily arrives 
at 

J 3 J 81>N 3 pVkvjd x- PXk 8x. d x 
J 

J 8(pVj) d3 Xk x 
8t 

A J 3 +"3 pXkxjd x. (15) 

At last , using the tensor definitions 

(16) 

where Kjk corresponds to the kinetic energy tensor, Wjk to the 
Chandrasekhar potential energy tensor and Ijk to the moment of 
inertia tensor , eq. (16) reads 
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(17) 

The left- hand side of eq. (18) can be rewritten, due to the time 
independence of Xk, as 

J 8(pvj) d3 
Xk x 

8t 
(18) 

(19) 

Above we have used the fact that the tensors in the right- hand 
side of eq. (18) are symmetric. Recalling the definition of I jk and 
taking t he derivative with respect to time we get 

(20) 

Now, because mass is obviously conserved, we can use the hydro­
dynamics equation of continuity in the form 

8p + 8 (pv:¡) = O. 
8t 8Xi 

(21 ) 

Hence, replacing 8p/ 8t from eq. (22) into eq. (21) and using t he 
divergence theorem we get 

(22) 

(23) 

Comparing eqs. (24) and (20), eq. (18) can be cast into a more 
familiar form 

1 82
Ijk . A 

"2 fii2 = 2 Kjk + Wjk + "3 I jk , (24) 

which is the new tensor virial theorem. Taking the steady state 
condition , 821/ 8t2 = O, eq. (25) transforms into the new scalar 
virial theorem for steady state 
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A 
2K + W + 3 1 = O 

and the definitions (17) become 

K 

W 

1 

t J pfJ2 d3x, 

t J p <I>(x) d3
x, 

J P /x/ 2 
d

3
x. 

4. Applications 

(25) 

(26) 

Once obtained our new virial theorem for an accelerated ex­
panding universe, we can use it in a variety of applications . On 
one hand, given the mean velocity of a test object (fJ in definitions 
(27)) around a system, i. e. a star around a galaxy or a galaxy 
around a cluster or supercluster, one can infer the mean density, 
p, of the system. On the other hand, due to our assumption of 
equilibrium in the re- derivation of the virial theorem, one can find 
the conditions for such an equilibrium to exist, which are our main 
resulto \Ve concentrate here on astrophysical applications. -A nice 
discussion of the use of the virial t heorem with A > O to cosmology 
can be found in [6]. 

Since the kinetic energy term in eq. (25) is clearly positive, we 
transform eq. (25) into the inequality 

A 
-1 +W< O, 3 - (27) 

which is the equilibrium condition that we were looking foro In 
order to obtain sorne more insight into the meaning of this inequal­
ity, we will evaluate it for different shapes of astrophysical bodies, 
assuming sorne constant mean density (p) for the system. With 
p = const, the definitions (27) take the form 
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W 
1 2 , 

- -p GW 
2 

W' 1 [1 d
3

x 1 Ix - x' l 
d3x' , 

J pI' , 

J' 1 Ixl2 d3x. (28) 

Hence, substituting (29) into eq. (28), one gets 

p 2:: ).. Pvac, (29) 

where Pvac refers to the vacuum density Pvac = A/ 87fG, and P is the 
system's mean density. For the geometric quantity ).. we obtain 

16 l' 
)..=-7f - . 

3 W' 
(30) 

It should be noticed that the value of ).. depends only on the shape 
of the system. Next, we focus our attent ion on computing ).. for 
various geometries. 

By evaluating the integrals and solving for P for the simplest 
case of a sphericallly symmetry system we get 

P 2:: 2 Pvac' (31) 

Now, for the more realistic case of an ellipsoid- like system with 
axes a, b and e, we have the following three possibilities (see [7]): 

)..oblate 
2 (a) [2 + (~f] 
"3 e ~ arcsin(e) 

e J1- (~r, 
for a = b > e; 
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A pTolate 

e 

for a = b < e; and 

AtTiaxial 

~ (~r [2 (~r + 1] 

J1 -(~r, 

e 

In (l+e ) , l-e 

(32) 

for a > b > e, where F((} , k) is the complete ellipt ic integral of the 
first kind , () = arccos( el a). 
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Figure 1. Plot of A oblate vs. eccentricity. 

To see in general how the A's behaves we recall the eccentricity 
of an ellipsoid é = 1- f3 I a, where f3 and a are the minor and major 
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axis respectively, and plot A oblate and A prolate against the eccentricity 
(figures 1 and 2). 

For the A triaxial case, we define the ratios b / a and c/ a and then 
plot Atriaxial against b/ a for fixed values of c/a (figure 3). 
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Figure 2. Plot of A prolate vs. eccentricity. 

As one can see clearly from the graphics, A grows significantly as 
the symmetry of the object deviates from spherical. Hence, A = 2 is 
the smallest value one can encounter. To have a clear idea on what 
we have done let us put sorne numbers in our equations. Consider a 
typical galaxy supercluster with mean density P rv 10- 29 g cm- 3 [8] 
(even val ues of the order of 10- 30 g cm -3 01' 10- 3 g cm -3 are known 
to exist [9]). According to the last SN la measurements 

Perit 

Pvae rv (O . 7 - 0.8) , 
Pcrit 

3H2 
o 

87rG' 
100hokm- 1Mpc- 1 , 

(0.6 - 0.8) , (33) 
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we have Pvae rv 10- 30 g cm -3 . Taking into account the fact that 
Iarge gaIaxy superclusters tend to be very eccentric , one observes 
that the inequality (30) can be easiIy violated, in which case such 
superclu ters cannot be gravitationally stabIe. For the case of typ­
ical elliptical gaIaxies one has P rv 10- 26 g cm - 3. It follows that for 
very eccentric proIate gaIaxies, the inequality can , in principIe, be 
violated. 
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Figure 3. PIot of A triaxial vs. b/ a for a fixed vaIue of e/ a = 0.001. 
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5. Conclusions 

We conclude that large galactic structures, like supercluster and 
possibly clusters with so me deviations from spherical symmetry, 
may not be gravitationally stable. Hence, when A ::1= O, previously 
thought stable systerns might no longer be considered in a steady 
stat e. We have also dernonstrated how srnaller systerns, like galaxies 
eccentric enough, can also be aHected by the presence of A. This 
rnay help explain why elliptical galaxies with eccentricit ies greater 
than 0.7 (in elliptical rnorphology E7 ) have not b en observed .2 

The last staternent should be treated with sorne care since galaxy 
sirnulations also seem to indicate a low ellipt icity in elliptic galaxies. 
However, it is obvious from our results t hat , assurning that galaxies 
are in gravitational equilibriurn , the sarne result can be obtained 
frorn the point of view of the virial theorern alone, provided that A 
is non-zero . 

2 As, obviously, galaxies have reached their gravitational equilibnum. 
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