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Resumen

En este trabajo se presenta la aplicacion del método Candnico
de Ostrogradski a teorias de campo relativista. Se consi-
dera una teoria de campo escalar basada en una densidad
Lagrangiana con un numero infinito de derivadas. Ademas
se obtienen las corrientes y cargas conservadas provenientes
de imponer variaciones arbitrarias en las coordenadas y en
los campos, también se obtiene la forma més general posible
de los momentos candénicamente conjugados para cualquier
grado en el ntimero de derivadas y luego se construye el
Hamiltoniano y las diferentes relaciones de conmutacién que
deben cumplir los campos. Finalmente se muestra que los
resultados son consistentes con los obtenidos en teorias sin
un gran numero de derivadas.

Palabras clave: Teoria de Campos, Cuantizacién Canodnica y Altas
Derivadas.

Abstract

I present the application of Ostrogradski Canonical method
in relativistic field theories. A scalar field theory based on
a Lagrangian density with an infinite number derivatives
is considered. I obtain, the currents and conserved charges,
when the arbitrary variations in the coordinates and fields
are imposed, as well as, the most general form of the canoni-
cal conjugated momentums for any order in the derivatives,
and the different commutation relations of the fields in the
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Hamiltonian formalins. Finally, it is shown that our results
are consistent with those obtained from second order deriva-
tives.

Keywords: Field Theory, Canonical Quantization, Higher Deriva-
tive.

1. Introduccién

Las teorias fisicas descritas por Lagrangianos con altas derivadas
aparecen en distintos escenarios de la fisica, por ejemplo la Elec-
trodindmica de Podolski [1], otras teorias con muchas derivadas son
inevitables en las teorias de cuerdas [2], existen otros muchos ejem-
plos tales como las teorias efectivas a bajas energias, la gravedad
con altas derivadas [5].

Un formalismo candnico para estas teorias fue desarrollado por
Ostrogradski [4], aunque su formulacién es auto-consistente difiere
un poco del formalismo candnico. Es bien conocido que la gener-
alizacién del principio variacional a una teoria con un numero de
derivadas no requiere de gran dificultad [7]. Sin embargo, cuando
se trata de obtener un formalismo Hamiltoniano canénico desde
un Lagrangiano con altas derivadas a partir de un principio de
Hamilton y que lleve a ecuaciones de Hamilton de primer orden
consistentes con las ecuaciones de Euler-Lagrange, se tiene un cier-
to grado de confusién [7]. La dificultad radica, en que en estas
teorias es necesario tener en cuenta que las velocidades tienen el
caracter de variables candnicas independientes, lo cual hace indis-
pensable distinguir entre la coordenada de velocidad independiente
y la derivada temporal de una coordenada independiente. Como
un resultado de este trabajo se obtuvo una forma completamente
general de los diferentes momentos conjugados de todas las coor-
denadas independientes que puedan aparecer a cualquier orden en
las derivadas, y asi poder construir el formalismo Hamiltoniano de
manera inmediata.

Ademés, se obtuvo la corriente de Noether [8] al considerar
transformaciones sobre las coordenadas y los campos. Este arti-
culo es organizado de la siguiente forma: En la seccion 2, se presenta
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el formalismo basico y se obtienen las ecuaciones de movimiento,
la densidad de energia, momentum y momentum angular prove-
nientes de considerar transformaciones infinitesimales bajo el grupo
de Poincaré. En la seccién 3, se desarrolla el formalismo Hamiltoni-
ano, el cual depende de las derivadas parciales de altos ordenes del
campos. En la seccién 4, se aplican los resultados de las secciones
anteriores al caso de una teoria con dos derivadas del campo, lo cual
es muy simple y verifica la validez de estos resultados, por tltimo,
se prueba que las ecuaciones de Hamilton conducen a las mismas
ecuaciones de movimiento obtenidas a través del formalismo La-
grangiano.

2. Ecuaciéon de Movimiento y Cantidades Conservadas a
Altos Ordenes en las Derivadas

Es conocido que la teoria de campo, de un campo escalar, es
descrita por los campos ¢*(z), siendo a = 1,2,--- ,n el nimero de
campos de la teorfa y x = x, con u = 0,1,2,3 las coordenadas del
espacio tiempo. En este caso la cantidad fundamental de interés
fisico es la accion del sistema S, la cual es definida de la forma

5= / Ld'z. (1)

Para una teorfa de campo escalar ¢(x) con m derivadas la den-
sidad Lagrangiana es de la forma

L= ‘C(¢7 am ¢7 au18;t2¢7 """ 78/“ o a,um¢>' (2)

A partir de la accién (2), se obtienen las ecuaciones de movimien-
to, los momentos candénicamente conjugados, la corriente y carga
conservada, para cualquier orden (m) en las derivadas que apare-
cen en la densidad Lagrangiana. Estas cantidades son obtenidas,
debido a que la accién debe de ser invariante bajo transformaciones
de simetria internas o bajo transformaciones de simetria espacio-
tiempo. En general, el concepto de invarianza bajo cierta simetria
se discutird cuando las coordenadas espacio-temporales y los cam-
pos varfan de acuerdo a un cierto pardmetro pequeiio dw’, como
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sigue

T, — T, =T, + 01,
P(x) = ¢'(2') = ¢(z) + dp(z), (3)

donde las variaciones dx* y d¢ estan caracterizadas por un conjunto
infinitesimal de parametros dw"’, de la forma

szt = X! (z)ow'
dp(x) = ' (z)ow’ (4)

siendo X! (z) y ®'(z) las funciones generales que describen el tipo
de transformacion que se esta haciendo sobre las coordenadas y
los campos, es decir, estas dependen del grupo de simetria que se
este estudiando. Para aclarar esto en las siguientes subseccion ver-
emos el caso de una translacién infinitesimal en el 4-espacio y una
translacion infinitesimal de Lorentz.

Es importante aclarar que la variacién total del campo, no sélo
viene de su propia variacién sino ademas del hecho que las coorde-
nadas también cambian, es decir:

dx) = ¢'(2) = ¢(x+0x) = ¢(x) + 52" (0,0)
= () + dop(x) + 02" (9,0) (5)

donde, la variaciéon debido a cambios tinicamente en el campo se
rotulo como dp¢. Igualando (5) con (3) y sustituyendo (4) resulta

do(x) = 6¢(x) — 0a" (0u0) = [®i(w) — (Fud) X[ (x)] Ow'  (6)

Bajo estas variaciones arbitrarias de las coordenadas y los cam-
pos (4), la accién del sistema se transforma en

S—>8 = S§+40S8
= S+/(5(d4x)£+/d4:c (0L), (7)
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donde 0L es la variacion en la densidad Lagrangiana debido a
las variaciones en x y ¢, y §(d*x) es la variacién en la medida de la
integracion, la cual es

ox'*
det [8 }

dx — d'2' = dr = d*z

xv Oxv
= det [0/ 4 0, (X! (z)dw’)] d*z
(140, (X!'(z)dw')] d*z

= [1+4 0, (6z")] d*z (8)

o [aw + 5;cu>]

de aqui se obtiene que § (d*x) = 9, (dz#) d*z, asi la accién trans-
formada es

S =5+ / 0420, (50) L + / diz (5L) (9)

luego de reemplazar las distintas variaciones de las coordenadas
y los campos, para un Lagrangiano £ = L(¢,0,, 0,0, 0,0, -,
,Ouy -+ O, @), se obtiene que la variacién en la accién es

5S = /d4m Z(—)iHaM (ag > S0
= %,

= oo
=0
m—1m—(i+1) j
0, (5L + 1 ] o0
=0 j=0 k=0
oL i

x — [10.0¢") ¢ .(10)
o(0 Mo Mo, ) | 0
k=0 =0

siendo n el orden de derivadas en el Lagrangiano.
Reemplazando, las transformaciones (6), (4) y dado que la ac-
cién es invariante bajo las variaciones paramétricas de dw’, se tiene
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que 651‘31- = 0, lo que permite obtener las siguientes expresiones

para las ecuaciones de movimiento y la corriente conservada

S TTon | 2 | =0 (1)
‘ ) (H ama)

con 9, =1y la corriente dada por

m—1m—(i+1) J
A oL
- H O j i
2 & U Ao o)
k=0  1=0

% [] 0 (@p67) — (62| X7 (12)
1=0
m—1m— (1+1 7 i
oL “
=) 110 - ; [To.(29).
i=0  j=0 k=0 o (% [1 0. T10., ¢a) 1=0
k=0 =0
La corriente dada en (12) es conservada, ya que 0,7 = 0

como lo establece el teorema de Noether [8]. La correspondiente
carga conservada es

Qilt) = / P20t %). (13)

Para obtener 9,5/ = 0 se utilizo las ecuaciones de movimien-
to de Euler-Lagrange (11) para los campos ¢®. Apliquemos estos
resultados, a dos casos particulares:

2.1. Una translacién en el 4-espacio

x, — x, + ¢, y el campo escalar permanece invariante ¢ — ¢,
en este caso la ecuacién (4) toma la forma:

0Ty = 0,Eu, (14)
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es decir, 0w’ — ¢,, X}, = 0" y ®(x) — 0. Con lo que la ecuacién
(12) ahora es el tensor T/, momentum energia, y tiene la forma

m—1m— (z+1) ﬁ a£
j i
=3 = o (oo, o)
k=0 =0
X Oy, (0,0") — L(0})), (15)

~

=0

y la carga conservada (13) es el cuadri-momentum

P, = / d>2T?

x |10 (8,0") — L(5))

=0

3

H oL
; %%ﬁ%ﬁ%@
k=0 =0

—1m— (z+1 i

Il
o

7 7=0 k

(16)

Para el caso de m = 2, es decir, una teoria que depende de dos
derivas, se tiene el tensor momentum-energz’a T

Th = 5055 (0,0) — 6L (17)

que satisface 9, T} = 0. Las cuatro cantidades conservadas, estan
dadas por el cuadri-momento P,

P, = [ daT) = [ & |55

0,0) = 0L].  (18)

cuyas diferentes componentes son:

E= / 2Ty y P, = / 2T}, (19)

donde E es la energia total de la configuracién de campo, mien-
tras que P; es el momentum total de la configuracion de campo.
Cantidades bien conocidas en todos los textos de teoria cuantica de
campos [3].
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2.2. Translacién infinitesimal de Lorentz

x, — x, + €,x", donde el tensor ¢,, es antisimétrico, es de-
Cir €., = €y, y €l campo escalar nuevamente es invariante. De la
ecuacién (4) tenemos:

Xﬁa(x) = —0lw, + 0z, (20)
y dado que los campos no transforman, se tiene
¢, =0 (21)

ahora la ecuacién (12) es el tensor M/,

m—1m—(i+1) J oL
Mgﬁ = Z Z H J i
=0 j=0 k=0 G, (aﬂ IT 0 11 8ul¢a>
k=0 =0

i

% [T 0w (0,6%) — £(5 >}( s+ 85ea) (22)

=0

en términos del tensor momentun energia
My = Thre —Thag (23)

el cual satisface 0,M, 55 = 0, resultando seis cargas conservadas.
Para o, = 1,2,3 la transformacion de Lorentz es una rotacion
y las tres cargas conservadas dan en momentum angular total del
campo

Qij = /dBLU (LCZ'TOJ' — ijOi> . (24)

Este formalismo puede ser facilmente aplicado al caso donde las
transformaciones de simetria son internas, es decir, aquellas que no
involucran las coordenadas espacio-tiempo (z,,).
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3. Estructura del Formalismo Hamiltoniano en Teoria de
Campos

La relacion entre el formalismo Lagrangiano y la teoria cuantica
es via la integral de camino. Pero aqui no se discutira los métodos de
la integral de camino, sino que nos enfocaremos en la cuantizacion
canodnica. Para esto, es necesario el formalismo Hamiltoniano para
una teoria de campos. Partiendo mediante la definicién del momen-
tum candnicamente conjugado 7 (x) del campo ¢*(x).

_ oL
aéa(l’)

Este no se debe de confundir con el momentum total P; definido
en (19). La densidad Hamiltoniana es dada por

() : (25)

H = m(2)d%(x) — L, (26)

donde como en mecanica clésica, hemos eliminado ¢, (z) en favor de
Ta(x) en cualquier lugar en el . El Hamiltoniano es simplemente

H= / B (27)

3.1. Ejemplo: Campo Escalar Real
Para el Lagrangiano

1.

o 1 2
L=5¢"~35 (Vo)" = V(9), (28)

el momentum esta dado por 7 = gz.S, lo cual conduce al siguiente
Hamiltoniano,

1. 1
H= [0 (50 5 (v0F Vo). (29
En el formalismo Lagrangiano, la invarianza Lorentz es clara

ya que la accién es invariante bajo transformaciones de Lorentz.
En contraste, el formalismo Hamiltoniano no es manifiestamente
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invariante Lorentz: hemos escogido una preferencia temporal. Por
ejemplo, las ecuaciones de movimiento para ¢(z) = ¢(&,t) surjen
de las ecuaciones de Hamilton

Lo oH .. OH
¢(l’,t) - aﬂ'(f, f}) Yy 7T(£>t) - 8¢(f, t)a (30)

las cuales a diferencia de la ecuaciones de Euler-Lagrange, no lu-
cen invariantes de Lorentz. Sin embargo, aunque en el formalismo
Hamiltoniano no se vea explicitamente la invarianza Lorentz, la
fisica debe de permanecer sin cambio alguno. Es decir, si partimos
de una teoria relativista, todas las respuestas finales deben ser in-
variantes Lorentz aun si esta invarianza no se encuentra manifiesta
en los pasos intermedios.

Ahora veamos el papel de los corchetes de Poisson en teoria
de campos. Dados dos funcionales K[p, 7| y Q[o, 7| se define el
corchete de Poisson de la forma

- OK0Q 0K 00
(K.} = [ & (a—¢a7 - a—w—(b) , (31)

tomando () = H y las ecuaciones de movimiento (30), vemos que
la evolucion temporal del funcional K es

K(t) = / & [%{; a—KW]—{K HY. (32)

Asi, las ecuaciones de movimiento (30) son

d(z,t) = {(x,t), H(t)}
w(z,t) = {m(z,t), H(t)}. (33)
Los corchetes de Poisson son de especial interés para la teoria
de campos, pues los campos cumplen las siguientes relaciones

5 [0¢(z,1) 87T(a:’,t)
(oG, 1), nla’, 1)} = /d L’)‘aﬁ% )

0¢(z,t) 87r( )}
or(y.t) 9o(y.t)

d*yo* (x — y)d° («' — y)
=0*(z — '), (34)

t)
t
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y
{¢(x,1), (2", 1)} = {m(x, ), m(z", 1)} = 0. (35)

Ahora la teoria de campos puede ser cuantizada de igual for-
ma que un sistema mecanico discreto, mediante el reemplazo de
los corchetes de Poisson por las relaciones de conmutacién entre los
operadores en el espacio de Hilbert. Es decir, en el proceso de cuan-
tizacién candnica de campos, los campos clasicos ¢(x,t) y w(z,1t)
son reemplazados por los operadores gZA)(x, t), w(x,t) y los corchetes
de Poisson por las relaciones de conmutacion

(ol 0,7, 1)) = = [9l 1), 70" 1)] (36)

]

de tal forma que los operadores de campo ¢(:1§, t)y 7r(32, t) en tiem-
pos iguales, satisfacen las siguientes relaciones de conmutacion

[¢3<x, 1), 7 (2, t)] = 8z — o)
Olw,b), (' )| = [F(x,1), 7(2',1)] = 0. (37)
[ )

4. Formalismo Hamiltoniano a Altos Ordenes
en las Derivadas

Ahora generalizamos el formalismo Hamiltoniano para un sis-
tema con ¢, campos escalares (a = 1,2,--- ,n), de tal forma que
el Lagrangiano es una funcion de los campos y sus derivadas de
orden m. A partir de este Lagrangiano se calculan los diferentes
momentos canonicamente conjugados, teniendo en cuenta que las
velocidades deben de ser consideradas como coordenadas candnicas
independientes diferentes a las derivadas temporales de las coorde-
nadas.
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La forma explicita del momento candnico a cualquier orden en
el nimero de derivadas que aparecen en el Lagrangiano es de la
forma:

1= k=0

Tou sy = é;l(—)if[ (%)k a( : 32)%) (38)

j=l+1i=l+1 k=0

oL
X : —
i—[—1 J kj*?ﬁi’l
8( [T () 11 axn@)
k=0 n=0
donde ¢, significa i—t‘f’, conl=12..my ¢, = ¢, ademas m indi-

ca el orden de las derivadas que contiene el Lagrangiano, es decir,
aparecen tantos momentos conjugados como derivadas tenga el La-
grangiano. Un importante punto a destacar es que los momentos
obtenidos en (38), son muy distintos al conocido 7, = g—g, esto es
debido a los efectos de los términos de altas derivadas en el La-
grangiano. Los coeficientes C, ; que aparecen en el segundo término

de (38), son obtenidos en la Tabla 1.

\ 2 — 2
3 3 <—3
4 4 J
5 10 10

Tabla 1: Tabla de los coeficientes C, ,, donde las i's corren en
forma diagonal y las j's en forma vertical, por ejemplo el
coeficiente C, , = 6.
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Conocidos los diferentes momentos canénicamente conjugados,
el Hamiltoniano canénico se define de la manera estandar, es decir
de la forma:

H:/d3x<ﬂ¢¢+wé¢+...+w ¢l—£). (39)
De (39), se obtienen las ecuaciones de movimiento de Hamilton,
las cuales en este caso toman la forma

b= = (10)

¢(1-1)
P-1) agzs(lfl)

P1-1)

La cuantizacion candnica asociada a los operadores de campo
6,y T b obedece las siguientes relaciones de conmutacién (37),

donde los campos son evaluados en el mismo instante de tiempo
[¢(zf1) (t, ) aﬁ%ﬂ) (t, 37)] =6’ (7 —19)
6,(6.3),6, 9] = |7, .77, 5] =0 (@)

De esta forma, si tenemos una cantidad dindmica la cual de-
pende de los campos y de sus momentos canénicamente conjuga-

dos, por ejemplo G (qﬁ qﬁ, e gb(l o Tgs Ty T ), su derivada
® ®-1)

temporal es

G oG - oG
%:/d&%( A¢—|— ¢l aA A—i-...
0¢ 8¢(l b
L 0G
or éam )’
P(1-1)
(42)
y utilizando las ecuaciones de Hamilton (40), resulta
dG = oH T OH
d_f:/d32< _aAaG ; )
agb(l 1) ¢(z 1 7T‘£(l—1) agb(lfl)
- [e.a]. (43)

indicando que la evolucién temporal del operador G , es simplemente
la relacion de conmutacion entre los operadores G y H.
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5. Aplicaciones

Una forma de verificar estos resultados obtenidos es estudiando
el caso del Lagrangiano de Klein-Gordon el cual depende de una
sola derivada,

L= % (0,00" ¢ — m*¢°) (44)

se obtiene la ecuacién de movimiento conocida como la ecuacion de
Klein-Gordon, ([0 + m?)¢ = 0, y la cuantizacién del campo escalar
[9]. Ya que este Lagrangiano (44), es equivalente a

2

L= 30 (O+m’) 6= —godko+ oV~ 2 g (43)

Lagrangiano de orden dos en las derivadas [6]. Ahora podemos
aplicar todo lo obtenido en la seccién anterior y hallar la ecuacion
de movimiento y cuantizar esta teoria con dos derivadas. En la
ecuacién (11) tomando m = 2 se tiene:

% (aam) 2 (amam) 0 00

la cual es exactamente la ecuacién de Klein-Gordon, ((J+m?)¢ = 0.
Ahora con m = 2 en (38) se calculan de forma directa los dos mo-
mentos candénicamente conjugados de las variables ¢ y %, algo que
marca la diferencia al caso convencional donde aparece solamente
un momento conjugado, estos son:

_ oL d [ 9L oL 1
mo= 58— () 20 (a(aias)) =29

o)
qu:a—g:—% . (47)

De la expresion (39), el Hamiltoniano es
B . . ;
H = /dx<7r¢¢+7rd.>qb—£>
o1 m?
= /d?’x (mgb — §¢V2(/§ + 7¢2)

) 2
= [ (5 jovie+ o) (15)
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y las ecuaciones de movimiento (40), son

_OH . _8H i
787%*0, Ty = —&b Vi —m2¢
- OH OH ~

de las cuales facilmente resulta la ecuacion de movimiento de Klein-
Gordon, como era de esperar.

Ahora para el procedimiento de cuantizacién debemos tener en
cuenta que las expresiones de los momentos conjugados (47) son
ecuaciones de constricciones, y pueden ser escritas de la forma

Yi=m, — 50~
Yo=m + 30 ~0, (50)

donde el simbolo 7 &~ 7 se lee " débilmente cero” y significa que Y,
con ¢ = 1,2, puede tener corchetes de Poisson candnicos que no son
cero con algunas variables canénicas [10]. El corchete de Poisson
entre Y; vy Y5 es

1. 1
{Yb}/Q} = {ﬂ-(b - §¢’ 7T¢ + §¢}

= {W”%} +%{”¢’¢} - % {é’%} - %1 {QW}
)

L[ (O (xt) 9¢(a’t)  Om(x,t) Op(a',t)
2 /d Y ( 06(y, ) 379,( t)  om,(y.t) 09(y.t) )
L (06, t) Om (@) Og(x,t) 0T, (2t
2 /d ! (84)(3/,75) om,(y.t)  Om,(y.t)  0d(y,1) >
{)/17 )/2} - _53(1: - ZL’/), (51)

donde sea utilizado que ¢, qB, T,y ™, son variables independientes
en el formalismo de Hamilton. Debido a que el corchete de Poisson
(51) es diferente de cero, se tiene que las constricciones Y; y Ys son

constricciones de segunda clase [10]. Ahora es posible escribir la ma-

triz Cj;, que involucra los corchetes de Poisson y las constricciones
(50), definida de la forma [10]:

Cijw, 2") = {Yi(x), Y;(«")}, (52)
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que para este caso particular es
/ 0 _]_ 3 /
Cij(z,2") = L0 8 (z — ). (53)

Para que una constriccion de segunda clase este fuertemente
constrenida a cero, es necesario cambiar los corchetes de Poisson
por los corchetes de Dirac. Debido a que los corchetes de Dirac con
constricciones de segunda clase son cero [10]. Los corchetes de Dirac
entre dos cantidades A y B estén definidos (50) como

[A(), B’ _, = {Ale,t), B2, 1)}

o= =1,

_ /d3yd3z {A(x,t),Xi(yat)}:p():yo

Cij' (v, 2) {X;(2, 1), B(', 1)} (54)

zo=x(, '

Relacién con la cual es muy simple obtener los corchetes de
Dirac fundamentales de nuestra teoria

{o(2),m, ()}, =137 — )

To=1x()

fo@.m @) =
{o@.ow)} == (5)
{7, ()., (f)}iz% __18F- )

Los demas corchetes permanecen iguales a cero.

Ahora siguiendo el procedimiento convencional de la cuanti-
zacién del campo, los campos ¢(x, 1), é(x, t), mp(x,1) y mh(x,1)
deben de ser reemplazados por operadores ¢(x,t), ¢(x, ), (X, 1)
y T4(x,t), para los cuales las relaciones de conmutacién (41) eval-
uadas en el mismo instante, son

[6(t.8).7,(6,9)| = i6*(F — )

(), 75 (89| = 6@ - ). (56)

las demés relaciones de conmutacion son cero.
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6. Conclusiones

Sea estudiado el formalismo de cuantizacién candnica a cualquier
orden en las derivadas para una teoria de campos escalar. Se mostro
cual es la forma explicita de las ecuaciones de movimiento, las cor-
rientes conservadas, los momentos canénicamente conjugados para
cualquier orden en las derivadas que aparecen en el Lagrangiano,
por ultimo mediante el uso de la teoria de sistemas constrenidos
[10], se obtuvieron las conocidas relaciones de conmutacién para el
campo escalar con dos derivadas.
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