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Resumen

En este trabajo se presenta la aplicación del método Canónico
de Ostrogradski a teoŕıas de campo relativista. Se consi-
dera una teoŕıa de campo escalar basada en una densidad
Lagrangiana con un número infinito de derivadas. Además
se obtienen las corrientes y cargas conservadas provenientes
de imponer variaciones arbitrarias en las coordenadas y en
los campos, también se obtiene la forma más general posible
de los momentos canónicamente conjugados para cualquier
grado en el número de derivadas y luego se construye el
Hamiltoniano y las diferentes relaciones de conmutación que
deben cumplir los campos. Finalmente se muestra que los
resultados son consistentes con los obtenidos en teoŕıas sin
un gran número de derivadas.

Palabras clave: Teoŕıa de Campos, Cuantización Canónica y Altas
Derivadas.

Abstract

I present the application of Ostrogradski Canonical method
in relativistic field theories. A scalar field theory based on
a Lagrangian density with an infinite number derivatives
is considered. I obtain, the currents and conserved charges,
when the arbitrary variations in the coordinates and fields
are imposed, as well as, the most general form of the canoni-
cal conjugated momentums for any order in the derivatives,
and the different commutation relations of the fields in the
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Hamiltonian formalins. Finally, it is shown that our results
are consistent with those obtained from second order deriva-
tives.

Keywords: Field Theory, Canonical Quantization, Higher Deriva-
tive.

1. Introducción

Las teoŕıas f́ısicas descritas por Lagrangianos con altas derivadas
aparecen en distintos escenarios de la f́ısica, por ejemplo la Elec-
trodinámica de Podolski [1], otras teoŕıas con muchas derivadas son
inevitables en las teoŕıas de cuerdas [2], existen otros muchos ejem-
plos tales como las teoŕıas efectivas a bajas enerǵıas, la gravedad
con altas derivadas [5].

Un formalismo canónico para estas teoŕıas fue desarrollado por
Ostrogradski [4], aunque su formulación es auto-consistente difiere
un poco del formalismo canónico. Es bien conocido que la gener-
alización del principio variacional a una teoŕıa con un número de
derivadas no requiere de gran dificultad [7]. Sin embargo, cuando
se trata de obtener un formalismo Hamiltoniano canónico desde
un Lagrangiano con altas derivadas a partir de un principio de
Hamilton y que lleve a ecuaciones de Hamilton de primer orden
consistentes con las ecuaciones de Euler-Lagrange, se tiene un cier-
to grado de confusión [7]. La dificultad radica, en que en estas
teoŕıas es necesario tener en cuenta que las velocidades tienen el
carácter de variables canónicas independientes, lo cual hace indis-
pensable distinguir entre la coordenada de velocidad independiente
y la derivada temporal de una coordenada independiente. Como
un resultado de este trabajo se obtuvo una forma completamente
general de los diferentes momentos conjugados de todas las coor-
denadas independientes que puedan aparecer a cualquier orden en
las derivadas, y aśı poder construir el formalismo Hamiltoniano de
manera inmediata.

Además, se obtuvo la corriente de Noether [8] al considerar
transformaciones sobre las coordenadas y los campos. Este art́ı-
culo es organizado de la siguiente forma: En la sección 2, se presenta
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el formalismo básico y se obtienen las ecuaciones de movimiento,
la densidad de enerǵıa, momentum y momentum angular prove-
nientes de considerar transformaciones infinitesimales bajo el grupo
de Poincaré. En la sección 3, se desarrolla el formalismo Hamiltoni-
ano, el cual depende de las derivadas parciales de altos ordenes del
campos. En la sección 4, se aplican los resultados de las secciones
anteriores al caso de una teoŕıa con dos derivadas del campo, lo cual
es muy simple y verifica la validez de estos resultados, por último,
se prueba que las ecuaciones de Hamilton conducen a las mismas
ecuaciones de movimiento obtenidas a través del formalismo La-
grangiano.

2. Ecuación de Movimiento y Cantidades Conservadas a
Altos Ordenes en las Derivadas

Es conocido que la teoŕıa de campo, de un campo escalar, es
descrita por los campos φa(x), siendo a = 1, 2, · · · , n el número de
campos de la teoŕıa y x = xµ con µ = 0, 1, 2, 3 las coordenadas del
espacio tiempo. En este caso la cantidad fundamental de interés
f́ısico es la acción del sistema S, la cual es definida de la forma

S =

∫
Ld4x. (1)

Para una teoŕıa de campo escalar φ(x) con m derivadas la den-
sidad Lagrangiana es de la forma

L = L(φ, ∂µ1φ, ∂µ1∂µ2φ, · · · · · · , ∂µ1 · · · ∂µmφ). (2)

A partir de la acción (2), se obtienen las ecuaciones de movimien-
to, los momentos canónicamente conjugados, la corriente y carga
conservada, para cualquier orden (m) en las derivadas que apare-
cen en la densidad Lagrangiana. Estas cantidades son obtenidas,
debido a que la acción debe de ser invariante bajo transformaciones
de simetŕıa internas o bajo transformaciones de simetŕıa espacio-
tiempo. En general, el concepto de invarianza bajo cierta simetŕıa
se discutirá cuando las coordenadas espacio-temporales y los cam-
pos vaŕıan de acuerdo a un cierto parámetro pequeño δwi, como
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sigue

xµ → x′µ = xµ + δxµ

φ(x)→ φ′(x′) = φ(x) + δφ(x), (3)

donde las variaciones δxµ y δφ estan caracterizadas por un conjunto
infinitesimal de parámetros δwi, de la forma

δxµ = Xµ
i (x)δwi

δφ(x) = Φi(x)δwi (4)

siendo Xµ
i (x) y Φi(x) las funciones generales que describen el tipo

de transformación que se esta haciendo sobre las coordenadas y
los campos, es decir, estas dependen del grupo de simetŕıa que se
este estudiando. Para aclarar esto en las siguientes subsección ver-
emos el caso de una translación infinitesimal en el 4-espacio y una
translación infinitesimal de Lorentz.

Es importante aclarar que la variación total del campo, no sólo
viene de su propia variación sino además del hecho que las coorde-
nadas también cambian, es decir:

φ(x)→ φ′(x′) = φ′(x+ δx) = φ′(x) + δxµ (∂µφ)

= φ(x) + δ0φ(x) + δxµ (∂µφ) , (5)

donde, la variación debido a cambios únicamente en el campo se
rotulo como δ0φ. Igualando (5) con (3) y sustituyendo (4) resulta

δ0φ(x) = δφ(x)− δxµ (∂µφ) = [Φi(x)− (∂µφ)Xµ
i (x)] δwi (6)

Bajo estas variaciones arbitrarias de las coordenadas y los cam-
pos (4), la acción del sistema se transforma en

S → S ′ = S + δS

= S +

∫
δ(d4x)L+

∫
d4x (δL) , (7)
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donde δL es la variación en la densidad Lagrangiana debido a
las variaciones en x y φ, y δ(d4x) es la variación en la medida de la
integración, la cual es

d4x→ d4x′ =

∣∣∣∣det

[
∂x′µ

∂xν

]∣∣∣∣ d4x =

∣∣∣∣det

[
∂(xµ + δxµ)

∂xν

]∣∣∣∣ d4x

= det
[
δµν + ∂ν

(
Xµ
i (x)δwi

)]
d4x

=
[
1 + ∂µ

(
Xµ
i (x)δwi

)]
d4x

= [1 + ∂µ (δxµ)] d4x (8)

de aqúı se obtiene que δ (d4x) = ∂µ (δxµ) d4x, aśı la acción trans-
formada es

S ′ = S +

∫
d4x∂µ(δxµ)L+

∫
d4x (δL) , (9)

luego de reemplazar las distintas variaciones de las coordenadas
y los campos, para un Lagrangiano L = L(φ, ∂µ1φ, ∂µ1∂µ2φ, · · · ,
, ∂µ1 · · · ∂µmφ), se obtiene que la variación en la acción es

δS =

∫
d4x


m∑
i=0

(−)i
i∏

j=0

∂µj

 ∂L

∂

(
i∏

j=0

∂µjφ
a

)
 δ0φ

+∂µ

(δxµ)L+
m−1∑
i=0

m−(i+1)∑
j=0

(−)j
j∏

k=0

∂µk

×

 ∂L

∂

(
∂µ

j∏
k=0

∂µk
i∏
l=0

∂νlφ
a

)


i∏
l=0

∂νl(δ0φ
a)


 ,(10)

siendo n el orden de derivadas en el Lagrangiano.
Reemplazando, las transformaciones (6), (4) y dado que la ac-

ción es invariante bajo las variaciones paramétricas de δwi, se tiene
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que δS
δwi

= 0, lo que permite obtener las siguientes expresiones
para las ecuaciones de movimiento y la corriente conservada

m∑
i=0

(−)i
i∏

j=0

∂µj

 ∂L

∂

(
i∏

j=0

∂µjφ
a

)
 = 0 (11)

con ∂µ0 = 1 y la corriente dada por

jµ,ai =


m−1∑
i=0

m−(i+1)∑
j=0

(−)j
j∏

k=0

∂µk

 ∂L

∂

(
∂µ

j∏
k=0

∂µk
i∏
l=0

∂νlφ
a

)


×
i∏
l=0

∂νl (∂ρφ
a)− L(δµρ )

]
Xρ
i (12)

−
m−1∑
i=0

m−(i+1)∑
j=0

(−)j
j∏

k=0

∂µk

 ∂L

∂

(
∂µ

j∏
k=0

∂µk
i∏
l=0

∂νlφ
a

)


i∏
l=0

∂νl(Φ
a
i ).

La corriente dada en (12) es conservada, ya que ∂µj
µ,a
i = 0

como lo establece el teorema de Noether [8]. La correspondiente
carga conservada es

Qi(t) ≡
∫
d3xj0

i (t,x). (13)

Para obtener ∂µj
µ
i = 0 se utilizo las ecuaciones de movimien-

to de Euler-Lagrange (11) para los campos φa. Apliquemos estos
resultados, a dos casos particulares:

2.1. Una translación en el 4-espacio

xµ → xµ + εµ y el campo escalar permanece invariante φ → φ,
en este caso la ecuación (4) toma la forma:

δxµ = δνµεν , (14)
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es decir, δwi → εν , X
i
µ → δνµ y Φi(x) → 0. Con lo que la ecuación

(12) ahora es el tensor T µν , momentum enerǵıa, y tiene la forma

T µν =
m−1∑
i=0

m−(i+1)∑
j=0

(−)j
j∏

k=0

∂µk

 ∂L

∂

(
∂µ

j∏
k=0

∂µk
i∏
l=0

∂νlφ
a

)


×
i∏
l=0

∂νl (∂νφ
a)− L(δµν ), (15)

y la carga conservada (13) es el cuadri-momentum

Pν =

∫
d3xT 0

ν

=

∫
d3x


m−1∑
i=0

m−(i+1)∑
j=0

(−)j
j∏

k=0

∂µk

 ∂L

∂

(
∂0

j∏
k=0

∂µk
i∏
l=0

∂νlφ
a

)


×
i∏
l=0

∂νl (∂νφ
a)− L(δ0

ν)

]
. (16)

Para el caso de m = 2, es decir, una teoŕıa que depende de dos
derivas, se tiene el tensor momentum-enerǵıa T µν

T µν = ∂L
∂(∂µφ)

(∂νφ)− δµνL (17)

que satisface ∂µT
µ
ν = 0. Las cuatro cantidades conservadas, estan

dadas por el cuadri-momento Pν

Pν =
∫
d3xT 0

ν =
∫
d3x

[
∂L

∂(∂0φ)
(∂νφ)− δ0

νL
]
, (18)

cuyas diferentes componentes son:

E =

∫
d3xT 0

0 y Pi =

∫
d3xT 0

i , (19)

donde E es la enerǵıa total de la configuración de campo, mien-
tras que Pi es el momentum total de la configuración de campo.
Cantidades bien conocidas en todos los textos de teoŕıa cuántica de
campos [3].
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2.2. Translación infinitesimal de Lorentz

xµ → xµ + εµνx
ν , donde el tensor εµν es antisimétrico, es de-

cir εµν = ενµ, y el campo escalar nuevamente es invariante. De la
ecuación (4) tenemos:

Xµ
ρσ(x) = −δµρxσ + δµσxρ (20)

y dado que los campos no transforman, se tiene

Φi
ρσ = 0 (21)

ahora la ecuación (12) es el tensor Mµ
αβ

Mµ
αβ =


m−1∑
i=0

m−(i+1)∑
j=0

(−)j
j∏

k=0

∂µk

 ∂L

∂

(
∂µ

j∏
k=0

∂µk
i∏
l=0

∂νlφ
a

)


×
i∏
l=0

∂νl (∂ρφ
a)− L(δµρ )

}(
−δραxβ + δρβxα

)
(22)

en términos del tensor momentun enerǵıa

Mµ
αβ = T µβ xα − T

µ
αxβ (23)

el cual satisface ∂µM
µ
αβ = 0, resultando seis cargas conservadas.

Para α, β = 1, 2, 3 la transformación de Lorentz es una rotación
y las tres cargas conservadas dan en momentum angular total del
campo

Qij =

∫
d3x (xiT0j − xjT0i) . (24)

Este formalismo puede ser fácilmente aplicado al caso donde las
transformaciones de simetŕıa son internas, es decir, aquellas que no
involucran las coordenadas espacio-tiempo (xµ).
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3. Estructura del Formalismo Hamiltoniano en Teoŕıa de
Campos

La relación entre el formalismo Lagrangiano y la teoŕıa cuántica
es v́ıa la integral de camino. Pero aqúı no se discutirá los métodos de
la integral de camino, sino que nos enfocaremos en la cuantización
canónica. Para esto, es necesario el formalismo Hamiltoniano para
una teoŕıa de campos. Partiendo mediante la definición del momen-
tum canónicamente conjugado πa(x) del campo φa(x).

πa(x) =
∂L

∂φ̇a(x)
. (25)

Este no se debe de confundir con el momentum total Pi definido
en (19). La densidad Hamiltoniana es dada por

H = πa(x)φ̇a(x)− L, (26)

donde como en mecánica clásica, hemos eliminado φ̇a(x) en favor de
πa(x) en cualquier lugar en el H. El Hamiltoniano es simplemente

H =

∫
d3xH (27)

3.1. Ejemplo: Campo Escalar Real

Para el Lagrangiano

L =
1

2
φ̇2 − 1

2
(∇φ)2 − V (φ), (28)

el momentum esta dado por π = φ̇, lo cual conduce al siguiente
Hamiltoniano,

H =

∫
d3x

(
1

2
φ̇2 − 1

2
(∇φ)2 − V (φ)

)
. (29)

En el formalismo Lagrangiano, la invarianza Lorentz es clara
ya que la acción es invariante bajo transformaciones de Lorentz.
En contraste, el formalismo Hamiltoniano no es manifiestamente
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invariante Lorentz: hemos escogido una preferencia temporal. Por
ejemplo, las ecuaciones de movimiento para φ(x) = φ(~x, t) surjen
de las ecuaciones de Hamilton

φ̇(~x, t) =
∂H

∂π(~x, t)
y π̇(~x, t) = − ∂H

∂φ(~x, t)
, (30)

las cuales a diferencia de la ecuaciones de Euler-Lagrange, no lu-
cen invariantes de Lorentz. Sin embargo, aunque en el formalismo
Hamiltoniano no se vea explicitamente la invarianza Lorentz, la
f́ısica debe de permanecer sin cambio alguno. Es decir, si partimos
de una teoŕıa relativista, todas las respuestas finales deben ser in-
variantes Lorentz aun si esta invarianza no se encuentra manifiesta
en los pasos intermedios.

Ahora veamos el papel de los corchetes de Poisson en teoŕıa
de campos. Dados dos funcionales K[φ, π] y Q[φ, π] se define el
corchete de Poisson de la forma

{K,Q} =

∫
d3x

(
∂K

∂φ

∂Q

∂π
− ∂K

∂π

∂Q

∂φ

)
, (31)

tomando Q = H y las ecuaciones de movimiento (30), vemos que
la evolución temporal del funcional K es

K̇(t) =

∫
d3x

[
∂K

∂φ
φ̇+

∂K

∂π
π̇

]
= {K,H} . (32)

Aśı, las ecuaciones de movimiento (30) son

φ̇(x, t) = {φ(x, t), H(t)}
π̇(x, t) = {π(x, t), H(t)} . (33)

Los corchetes de Poisson son de especial interés para la teoŕıa
de campos, pues los campos cumplen las siguientes relaciones

{φ(x, t), π(x′, t)} =

∫
d3y

[
∂φ(x, t)

∂φ(y, t)
· ∂π(x′, t)

∂π(y, t)

−∂φ(x, t)

∂π(y, t)
· ∂π(x′, t)

∂φ(y, t)

]
=

∫
d3yδ3(x− y)δ3(x′ − y)

= δ3(x− x′), (34)
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y

{φ(x, t), φ(x′, t)} = {π(x, t), π(x′, t)} = 0. (35)

Ahora la teoŕıa de campos puede ser cuántizada de igual for-
ma que un sistema mecánico discreto, mediante el reemplazo de
los corchetes de Poisson por las relaciones de conmutación entre los
operadores en el espacio de Hilbert. Es decir, en el proceso de cuan-
tización canónica de campos, los campos clásicos φ(x, t) y π(x, t)
son reemplazados por los operadores φ̂(x, t), π̂(x, t) y los corchetes
de Poisson por las relaciones de conmutación

{φ(x, t), π(x′, t)} → 1

i

[
φ̂(x, t), π̂(x′, t)

]
, (36)

de tal forma que los operadores de campo ˆφ(x, t) y ˆπ(x, t) en tiem-
pos iguales, satisfacen las siguientes relaciones de conmutación[

φ̂(x, t), π̂(x′, t)
]

= δ3(x− x′)[
φ̂(x, t), φ̂(x′, t)

]
= [π̂(x, t), π̂(x′, t)] = 0. (37)

4. Formalismo Hamiltoniano a Altos Ordenes
en las Derivadas

Ahora generalizamos el formalismo Hamiltoniano para un sis-
tema con φa campos escalares (a = 1, 2, · · · , n), de tal forma que
el Lagrangiano es una función de los campos y sus derivadas de
orden m. A partir de este Lagrangiano se calculan los diferentes
momentos canónicamente conjugados, teniendo en cuenta que las
velocidades deben de ser consideradas como coordenadas canónicas
independientes diferentes a las derivadas temporales de las coorde-
nadas.
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La forma expĺıcita del momento canónico a cualquier orden en
el número de derivadas que aparecen en el Lagrangiano es de la
forma:

πφ
(l−1)

=
m−l∑
i=0

(−)i
i∏

k=0

(
d

dt

)k  ∂L

∂

(
i∏

k=0

(
d
dt

)k
φ
l

)
 (38)

+
m∑

j=l+1

j∑
i=l+1

(−)
i+l+1

C
i,j

i−l−1∏
k=0

(
d

dt

)k j−i+1∏
n=0

(
∂xn
)

×

 ∂L

∂

(
i−l−1∏
k=0

(
d
dt

)k j−i+1∏
n=0

∂xnφl

)


donde φ
l

significa dlφ
dtl

, con l = 1, 2, ...,m y φ0 = φ, además m indi-
ca el orden de las derivadas que contiene el Lagrangiano, es decir,
aparecen tantos momentos conjugados como derivadas tenga el La-
grangiano. Un importante punto a destacar es que los momentos
obtenidos en (38), son muy distintos al conocido π

φ
= ∂L

∂φ̇
, esto es

debido a los efectos de los términos de altas derivadas en el La-
grangiano. Los coeficientes C

i,j
que aparecen en el segundo término

de (38), son obtenidos en la Tabla 1.

Tabla 1: Tabla de los coeficientes C
i,j

, donde las i′s corren en
forma diagonal y las j′s en forma vertical, por ejemplo el

coeficiente C3,4 = 6.
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Conocidos los diferentes momentos canónicamente conjugados,
el Hamiltoniano canónico se define de la manera estándar, es decir
de la forma:

H =

∫
d3x

(
π
φ
φ̇+ π

φ̇
φ̈+ . . .+ π

φ(l−1)
φ
l
− L

)
. (39)

De (39), se obtienen las ecuaciones de movimiento de Hamilton,
las cuales en este caso toman la forma

φ̇
l

=
∂H

∂π
φ(l−1)

, π̇
φ(l−1)

= − ∂H

∂φ
(l−1)

. (40)

La cuantización canónica asociada a los operadores de campo
φ̂
l

y π̂
φ(l−1)

, obedece las siguientes relaciones de conmutación (37),

donde los campos son evaluados en el mismo instante de tiempo[
φ̂

(l−1)
(t, ~x) , π̂

φ
(l−1)

(t, ~y)
]

= δ3 (~x− ~y)[
φ̂
l
(t, ~x) , φ̂

l′
(t, ~y)

]
=
[
π̂
φ
l
(t, ~x) , π̂

φ
l′

(t, ~y)
]

= 0. (41)

De esta forma, si tenemos una cantidad dinámica la cual de-
pende de los campos y de sus momentos canónicamente conjuga-

dos, por ejemplo Ĝ
(
φ̂,

˙̂
φ, . . . , φ̂

(l−1)
, π̂

φ
, π̂

φ̇
, . . . , π̂

φ
(l−1)

)
, su derivada

temporal es

dĜ

dt
=

∫
d3x

(
∂Ĝ

∂φ̂

˙̂
φ+ . . .+

∂Ĝ

∂φ̂
(l−1)

φ̂
l
+
∂Ĝ

∂π̂
φ̂

˙̂π
φ̂

+ . . .

+
∂Ĝ

∂π̂
φ̂(l−1)

˙̂π
φ̂(l−1)

)
,

(42)

y utilizando las ecuaciones de Hamilton (40), resulta

dĜ

dt
=

∫
d3x

m∑
l=1

(
∂Ĝ

∂φ̂
(l−1)

∂Ĥ

∂π̂
φ̂(l−1)

− ∂Ĝ

∂π̂
φ̂(l−1)

∂Ĥ

∂φ̂
(l−1)

)

=
1

i

[
Ĝ, Ĥ

]
, (43)

indicando que la evolución temporal del operador Ĝ, es simplemente
la relación de conmutación entre los operadores Ĝ y Ĥ.
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5. Aplicaciones

Una forma de verificar estos resultados obtenidos es estudiando
el caso del Lagrangiano de Klein-Gordon el cual depende de una
sola derivada,

L =
1

2

(
∂µφ∂

µφ−m2φ2
)

(44)

se obtiene la ecuación de movimiento conocida como la ecuación de
Klein-Gordon, (� +m2)φ = 0, y la cuantización del campo escalar
[9]. Ya que este Lagrangiano (44), es equivalente a

L = −1

2
φ
(
� +m2

)
φ = −1

2
φ∂2

0φ+
1

2
φ∇2φ− m2

2
φ2 (45)

Lagrangiano de orden dos en las derivadas [6]. Ahora podemos
aplicar todo lo obtenido en la sección anterior y hallar la ecuación
de movimiento y cuantizar esta teoŕıa con dos derivadas. En la
ecuación (11) tomando m = 2 se tiene:

∂L
∂φ
− ∂µ

(
∂L

∂ (∂µφ)

)
+ ∂µ∂ν

(
∂L

∂ (∂µ∂νφ)

)
= 0 (46)

la cual es exactamente la ecuación de Klein-Gordon, (�+m2)φ = 0.
Ahora con m = 2 en (38) se calculan de forma directa los dos mo-
mentos canónicamente conjugados de las variables φ y dφ

dt
, algo que

marca la diferencia al caso convencional donde aparece solamente
un momento conjugado, estos son:

π
φ

= ∂L
∂φ̇
− d

dt

(
∂L
∂φ̈

)
+ 2∂i

(
∂L

∂(∂iφ̇)

)
= 1

2
φ̇

π
φ̇

= ∂L
∂φ̈

= −1
2
φ. (47)

De la expresión (39), el Hamiltoniano es

H =

∫
d3x

(
π
φ
φ̇+ π

φ̇
φ̈− L

)
=

∫
d3x

(
π
φ
φ̇− 1

2
φ∇2φ+

m2

2
φ2

)
=

∫
d3x

(
1

2
φ̇2 − 1

2
φ∇2φ+

m2

2
φ2

)
(48)
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y las ecuaciones de movimiento (40), son

φ̇ =
∂H

∂πφ
= 0, π̇φ = −∂H

∂φ
= ∇2φ−m2φ

φ̈ =
∂H

∂πφ̇
= 0, π̇φ̇ = −∂H

∂φ̇
= −φ̇ (49)

de las cuales fácilmente resulta la ecuación de movimiento de Klein-
Gordon, como era de esperar.

Ahora para el procedimiento de cuantización debemos tener en
cuenta que las expresiones de los momentos conjugados (47) son
ecuaciones de constricciones, y pueden ser escritas de la forma

Y1 = π
φ
− 1

2
φ̇ ≈ 0

Y2 = π
φ̇

+ 1
2
φ ≈ 0, (50)

donde el śımbolo ” ≈ ” se lee ”débilmente cero” y significa que Yi,
con i = 1, 2, puede tener corchetes de Poisson canónicos que no son
cero con algunas variables canónicas [10]. El corchete de Poisson
entre Y1 y Y2 es

{Y1, Y2} =

{
πφ −

1

2
φ̇, π

φ̇
+

1

2
φ

}
=
{
πφ, πφ̇

}
+

1

2
{πφ, φ} −

1

2

{
φ̇, π

φ̇

}
− 1

4

{
φ̇, φ

}
=

1

2

∫
d3y

(
∂π

φ
(x, t)

∂φ(y, t)
· ∂φ(x′, t)

∂π
φ
(y, t)

−
∂π

φ
(x, t)

∂π
φ
(y, t)

· ∂φ(x′, t)

∂φ(y, t)

)
− 1

2

∫
d3y

(
∂φ̇(x, t)

∂φ̇(y, t)
·
∂π

φ̇
(x′, t)

∂π
φ̇
(y, t)

− ∂φ̇(x, t)

∂π
φ̇
(y, t)

·
∂π

φ̇
(x′, t)

∂φ̇(y, t)

)
{Y1, Y2} = −δ3(x− x′), (51)

donde sea utilizado que φ, φ̇, π
φ

y π
φ̇

son variables independientes
en el formalismo de Hamilton. Debido a que el corchete de Poisson
(51) es diferente de cero, se tiene que las constricciones Y1 y Y2 son
constricciones de segunda clase [10]. Ahora es posible escribir la ma-
triz Cij, que involucra los corchetes de Poisson y las constricciones
(50), definida de la forma [10]:

Cij(x, x
′) = {Yi(x), Yj(x

′)} , (52)
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que para este caso particular es

Cij(x, x
′) =

(
0 −1
1 0

)
δ3(x− x′). (53)

Para que una constricción de segunda clase este fuertemente
constreñida a cero, es necesario cambiar los corchetes de Poisson
por los corchetes de Dirac. Debido a que los corchetes de Dirac con
constricciones de segunda clase son cero [10]. Los corchetes de Dirac
entre dos cantidades A y B están definidos (50) como

{A(x), B(x′)}Dx0=x′0
= {A(x, t), B(x′, t)}x0=x′0

−
∫
d3yd3z {A(x, t), Xi(y, t)}x0=y0

C−1
ij (y, z) {Xj(z, t), B(x′, t)}z0=x′0

. (54)

Relación con la cual es muy simple obtener los corchetes de
Dirac fundamentales de nuestra teoŕıa{

φ(x), π
φ
(x′)
}D
x0=x′0

= 1
2
δ3(~x− ~x′){

φ̇(x), π
φ̇
(x′)
}D
x0=x′0

= 1
2
δ3(~x− ~x′){

φ(x), φ̇(x′)
}D
x0=x′0

= δ3(~x− ~x′) (55){
π
φ̇
(x), π

φ
(x′)
}D
x0=x′0

= −1
4
δ3(~x− ~x′).

Los demás corchetes permanecen iguales a cero.
Ahora siguiendo el procedimiento convencional de la cuanti-

zación del campo, los campos φ(x, t), φ̇(x, t), πφ(x, t) y πφ̇(x, t)

deben de ser reemplazados por operadores φ̂(x, t), ˆ̇φ(x, t), π̂φ(x, t)
y π̂φ̇(x, t), para los cuales las relaciones de conmutación (41) eval-
uadas en el mismo instante, son[

φ̂(t, ~x), π̂
φ
(t, ~y)

]
= iδ3(~x− ~y)[

ˆ̇φ(t, ~x), π̂
φ̇
(t, ~y)

]
= iδ3(~x− ~y). (56)

las demás relaciones de conmutación son cero.
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6. Conclusiones

Sea estudiado el formalismo de cuantización canónica a cualquier
orden en las derivadas para una teoŕıa de campos escalar. Se mostro
cual es la forma expĺıcita de las ecuaciones de movimiento, las cor-
rientes conservadas, los momentos canónicamente conjugados para
cualquier orden en las derivadas que aparecen en el Lagrangiano,
por último mediante el uso de la teoŕıa de sistemas constreñidos
[10], se obtuvieron las conocidas relaciones de conmutación para el
campo escalar con dos derivadas.
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