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(Recibido: Agosto/2016. Aceptado: Octubre/2016)

Abstract

We propose a simple theoretical model for a dissipative
quantum dot-microcavity system interacting with a
non-linear optical interaction. The Lindblad master
equation formalism is considered to study the full dynamics
for both weak and strong coupling regimes. The
photoluminescence spectra of the system at the stationary
limit is calculated in an exact form, and the effect due to
non-linear optical interaction is explicitly evidenced. The
entanglement of the system is calculated, and we found
revivals and sudden death are evidenced. We also study the
relationship between the light-matter and non-linear optical
interaction terms by calculating the average photon number.

Keywords: Entanglement, quantum dot, microcavity, non-linear
optical interaction.

Resumen

Se propone un modelo teórico sencillo para un sistema
disipativo de punto cuántico-microcavidad que interactúan
a través de una interacción óptica no lineal. El
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formalismo de la ecuación maestra en la forma de
Lindblad es considerado para estudiar la dinámica del
sistema en los reǵımenes de acoplamiento débil y fuerte,
respectivamente. El espectro de fotoluminiscencia del
sistema en el ĺımite estacionario es calculado en forma
exacta, y se muestra el efecto de la interacción óptica
no lineal expĺıcitamente sobre éste. Se calcula el
entrelazamiento del sistema, y se encuentra resurgimientos
y muerte súbita del entrelazamiento. Adicionalmente,
se estudia la relación entre los términos de interacción
luz-materia (Jaynes-Cummings) e interacción óptica no
lineal (medio Kerr) por medio del número medio de fotones.

Palabras clave: Entrelazamiento, punto cuántico, microcavidad,

interacción óptica no lineal.

Introduction

Recently, nonlinear photonic crystals (PCs) and microcavities have
attracted much attention due to their important applications,
particularly due to the possibility to control the light propagation
and the enhancement of various nonlinear optical phenomena. For
example, the Second-Harmonic (SHG) and Third-Harmonic (THG)
generation [1, 2] have wide applications as electro-optic modulators
and optical switches [3]. Unusual effects like off-resonant dot-cavity
interaction, photon blockade, generation of entangled photons
and the Purcell enhancement have a number of applications in
nano-photonics devices and quantum information processing [4].
The embedding the quantum dots in photonic band-gap structures
offers a way of controlling spontaneous emission of single photons
due to nonlinearities of light-matter coupling strength, and enabling
cavity-quantum electrodynamics experiments [5]. For example, the
bistability phenomenon can be observed as the result of the Kerr
effect (due to the presence of other QDs in the cavity). It describes
a self-interaction of a mode of radiation field in a cavity filled by
χ3-nonlinear medium. Moreover it is known to be responsible,
in particular, for dispersive optical bistability and for amplitude
squeezing [6], and has also been used to describe formation of
Schrödinger-cat states [7]. In the present paper, we propose
a simple theoretical model for describing a quantum dot-cavity
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(QD-Cavity) system coupled by a non-linear optical interaction
(Kerr medium), and we investigate the effects on the dynamics of
the system in both weak and strong coupling regimes, as well as on
photoluminescence spectrum and the entanglement of the system.
This paper is organized as follows: section 1 explains the theoretical
background of our model, as well as the Lindblad master equation
formalism for studying the QD-Cavity system. In addition, we
discuss the theoretical tools for computing the photoluminescence
spectrum and the quantification of entanglement. In section 2 the
results are discussed. Finally, we conclude in section 2.4.

1 Theoretical Background

We are interested in study a quantum dot embedded in a micropillar
cavity (QD-Cavity system) coupled by a confined mode of the
electromagnetic field, that interacts with a non-linear optical
interaction. This nonlinearity can be involved by considering an
effective Kerr medium that incorporate two-photon absorption, it is
a process where two photons are absorbed simultaneously, exciting
e.g. a quantum dot to a higher-lying state, with the energy increase
being equal to the sum of the photon energies. The QD-Cavity
system is depicted in Fig. 1, and the non-linear system can be
modelled, in the rotating wave approximation, by the following
Hamiltonian

Ĥ = ~ωâ†â+ ~ωaσ̂
†σ̂ + ~g(â†σ̂ + âσ̂†) + ~κ(â†â)2, (1)

where σ̂† = |X〉〈G| and σ̂ = |G〉〈X| are the exciton operators,
and â† (â) is the creation (annihilation) operators for photons. ωa

and ω are the exciton and photon energy, respectively (we have set
~ = 1). The light-matter interaction is modeled by the well-known
Jaynes-Cummings interaction g (JC), and the non linear optical
interaction by the κ parameter. We also define the detuning
between field and cavity frequency as ∆ = ω − ωa.

The Hamiltonian given by the Eq. (1) can be diagonalized when it
is written in the bared basis {|G〉, |X〉} ⊗ {|n〉}∞n=0. Thus, it takes
the block-diagonal form:

H =

(
ωn+ κn2 g

√
n

g
√
n ωan+ ω(n− 1) + κ(n− 1)2

)
, (2)
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Figure 1. Illustration of two quantum dots (red balls) embedded in a
micropillar cavity coupled by two different confined modes of the electromagnetic
field. The non-linear optical interaction is depicted in light-green color (Kerr

medium).

for n-th excitation manifold basis. The eigenvalues can be easily
obtained and are given by

ω± =
1

2

(
δ ±

√
4g2 + (∆ + κ)2

)
, (3)

where we have defined δ = κ+ωa +ω. Note that the eigenvalues of
the system depend on both interaction terms, the Fig. 2 shows the
dispersion relation vs energy. The effect due to the κ is evidenced
as a frequency shift and the coupling g behaves accordingly to the
well-known Jaynes-Cummings model.

1.1 Lindblad master equation.

To include the effects of the environment is required treat the
QD-Cavity system as an open quantum system. It is, to define
the Hamiltonians associated to the reservoirs, which is made of
electron-hole pairs, photons, phonons and terms associated to a
bilinear coupling between the system and reservoirs. The explicit
system-reservoir interaction for this model can be found in [8].
After tracing over the external reservoirs degrees of freedom and
assuming the validity of the Born-Markov approximation, we obtain
the Lindblad master equation for the reduced density matrix, it
reads

dρ̂

dt
=
ı̇

~
[ρ̂, Ĥ] +

γ

2
L(â) +

P

2
L(σ̂), (4)
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Figure 2. Dispersion relation vs. energy. The eigenvalues ω± are separated
by distance g in resonance and shifted by an amount κ. The parameters of the

system are fixed to ωa = 1000meV , ∆ = 0, g = 1meV and κ = 2meV .

where the corresponding Lindblad terms for the incoherent
processes of dissipation (γ) and pumping (P ) follows the rule:
L(Ô) = 2Ôρ̂Ô† − Ô†Ôρ̂− ρ̂Ô†Ô. Where γ is the decay rate due to
the loss of photons through the cavity mirrors, and P is the rate
at which the excitons are being pumped. The dynamical equations
for the populations and coherences in the bared basis are given by

ρ̇11 = γρ22 − Pρ11,

ρ̇22 = ı̇g(ρ23 − ρ32)− γρ22,

ρ̇33 = ı̇g(ρ32 − ρ23) + Pρ11,

ρ̇23 = ı̇((ωa − ω − κ)ρ23 + g(ρ22 − ρ33))− γ + P

2
ρ23,

ρ̇32 = c.c (ρ̇23),

ρ̇21 = −ı̇(ωρ21 + gρ31 + κρ21)− γ

2
ρ21 − Pρ21,

ρ̇12 = c.c (ρ̇21),

ρ̇31 = −ı̇(ωaρ31 + gρ21)− P

2
ρ31,

ρ̇13 = c.c (ρ̇31). (5)

where c.c is used to denote the complex conjugate. Note that we
have introduced a short notation for lowest quantum states of the
system |1〉 ≡ |G, 0〉, |2〉 ≡ |G, 1〉, |3〉 ≡ |X, 0〉. An schematic
representation of the action of the process involved in the dynamics
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of the system is shown in Fig. 3. It is worth of mentioning that
we will consider the lowest excitation manifold for exploring the
effects due to non linear optical interaction on both dynamics and
photoluminescence spectra.

|X0〉

|G0〉

|G1〉

P

γ

g

Figure 3. Ladder of bared states for a two level quantum dot coupled to the
microcavity. The double headed green arrow depicts the light-matter coupling
g, red line the exciton pumping rate P , and blue line the spontaneous emission

rate γ.

1.2 Quantum Regression Theorem and the Emission
Spectrum.

When light excites resonantly a QD-Cavity system one of the most
important measumerement is the photoluminescence spectrum or
so-called emission spectrum of the system. For such task, there
are different theoretical approaches in the literature, but frequently
this quantity is computed by performing a Fourier transform of the
first order correlation function 〈a†(t + τ)a(t)〉, which requires the
knowledge of the expectation value of two operators at different
times. To obtain the dynamical equation of such correlation
function should be applied the Quantum Regression Theorem [6]
which states that for an operator Ô the expectation value of the
two-time correlation function 〈Ô†(t + τ)Ô(t)〉 satisfies the same
equation of motion that as the single-time 〈Ô(t)〉 does. Following
Porras et. al. in Ref. [8] we obtain that:

〈â†(t+ τ)â(t)〉 =
∑
n=0

√
n+ 1

(
〈â†Gn(t+ τ)â(t)〉+ 〈â†Xn(t+ τ)â(t)〉

)
, (6)

where the following definitions has been used: â†Gn = |Gn+ 1〉 〈Gn|,
â†Xn = |Xn+ 1〉 〈Xn|, σ̂†

n = |Xn〉 〈Gn|, ζ̂n = |Gn+ 1〉 〈Xn− 1|. It
should be noted that these operators act between two consecutive
excitation manifolds, and together with our truncation level (first
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excitation manifold) in the Fock space, it reduces the number of
differential equations that are needed for calculating the emission
spectrum. Thus, the relevant subset of equations of motion is given
by

d〈â†1(τ)〉
dτ

= ı̇
(
(ω + κ)〈â†1(τ)〉+ g〈σ†3(τ)〉

)
− (

γ + P

2
)〈â†1(τ)〉,

d〈σ̂†3(τ)〉
dτ

= ı̇(ωa〈σ̂†3(τ)〉+ g〈â†1(τ)〉)− P

2
〈σ̂†3(τ)〉. (7)

Particularly, these coupled differential equations can be solved in
an exact form, more precisely, we have worked out the solutions
and the emission spectrum at the steady-state is given by

S(Ω− ω) =
ρ̃11

(
4g2γ̃ + 4g(γΩ̃ + P (3Ω̃−∆− κ)) + P (γ̃2 + 4(Ω̃−∆− κ)2)

)
2
(

2g2 + P γ̃ − 2Ω̃(Ω̃−∆− κ)
)2

+ 2(γΩ̃ + P (3Ω̃−∆− κ))2

(8)

where we have defined Ω̃ = Ω − ωa, γ̃ = γ − 2P and the density
matrix element at the steady-state as ρ̃11 =

(
4g2(γ+P )

)
/
(
4g2(γ+

3P ) + P (4g2 + (γ + P )2) + 4(κ−∆)2 − 8gP (κ+ ∆)
)
. It should be

noted that ρ̃11 has been calculated in the stationary limit, and it
plays the role of the initial condition for the dynamics associated
to the emission spectrum.

1.3 Measurement of entanglement in QD-Cavity systems

One of the most fundamental entanglement measurements for
bipartite systems is known as Peres criterion, it states that if the
state of bipartite system is separable then the eigenvalues of its
partial transpose are all positive. Since our density matrix ρ has
non-zero elements respect to the excitonic subsystem, the density
matrix takes the blocks diagonal form 1×1 and 2×2 when written
in the bared basis. We follows Quesada and coworkers in Ref. [9]
where they have derived a separability criterion which is equivalent
to Peres criterion, and it can detect entanglement in QD-Cavity
system. It is,

E(ρ) = 4
∑
n

(
max

{
0, |ρXn,Gn+1| −

√
ρGn,GnρXn+1,Xn+1

})2
. (9)

The evaluation of E(ρ) is in general quite difficult and has to be
done numerically.
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2 Results and discussion

2.1 Dynamics

We compare the time evolution of the populations ρ11, ρ22, ρ33 for
two different dynamical regimes of the QD-Cavity system. Fig. 4
shows a coherent exchange of energy of quantum dot with the cavity
mode, when evidences that the coupling constant g >> γ is the
dominant interaction. Thereby, the strong coupling regime exhibits
an oscillatory behaviour with some damping as is shown in panel
(a), in contrast to the weak coupling regime where the interaction
of quantum dot with the cavity mode is basically incoherent and
dominated by the damping rates, e.g g << γ. Therefore, the weak
coupling regime shows an enhanced decay rate as is shown in panel
(b).

0 10 20 30 40 50
t (meV/h̄)

0.0

0.2
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ρ33

0 10 20 30 40 50
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Figure 4. Time evolution of the populations ρ11, ρ22, ρ33. Panel (a) shows
the strong coupling regime. The parameters are fixed to g = 1, ωa = 1000,
ω = 998, P = 0.1, γ = 0.1 and κ = 0.5. Panel (b) shows the same calculations

in weak coupling regime, but g = 0.01, γ = 0.1.

2.2 Emission spectrum

We here focus on the emission spectrum of the system and the
effects due to the non-linear optical interaction. In Fig. 5 is shown
in panel (a) the spectra for κ = 0 where is evidenced the typical
strong coupling regime in QD-Cavity system. We observe that a
frequency shift occurs for the detuning as is shown in panel (b) with
κ = 1. It should noted that the dynamical regime remains without
significant changes.



Dynamics and entanglement of a quantum dot-cavity... 37

−4 −3 −2 −1 0 1 2 3 4
Ω− ω (meV )

−1.0

−0.75

−0.5

−0.25

0.0

0.25

0.5

0.75

1.0
ω
a
−
ω

(a)

−4−3−2−1 0 1 2 3 4
Ω− ω (meV )

(b)

Figure 5. Emission spectrum in strong coupling regime is shown in panel
(a) with the parameters fixed to g = 1meV , ω = 1000meV , P = 0.01meV ,
γ = 0.5meV , κ = 0 and −1 ≤ ∆ ≤ 1. Panel (b) the same calculation but

κ = 1.

2.3 Entanglement

To quantify the entanglement between quantum dot and cavity
we considered the criterion given by Eq. (9) which requires the
numerical solution of the density matrix of QD-Cavity system. In
Fig. 6 is shown the entanglement as a function of non-linear optical
interaction κ and time t in the strong coupling regime (a). We
found that the entanglement depends strongly on κ and shows the
typical Rabi oscillations when it is plotted as a function of κ and
time. Departing from κ = 1meV the entanglement increases the
frequency of its oscillations, and enhanced its efficiency. It is worth
to mention that depending on values of the detuning ∆ and κ the
pattern of the entanglement will shift along κ axes. In panel (b) the
entanglement versus time is shown for two particular values of κ.
We found that the phenomena called sudden death of entanglement
is evidenced.

2.4 Average number of photons

Since we have pumping and losses processes inside of QD-Cavity
system, the average number of photons changes as a result of
the competition between those two process, but also the coupling
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constants affect the dynamics of the system and they promote the
creation or annihilation of number of photons. In Fig. 7, we present
the evolution of the average number of photons by calculating

〈
â†â
〉

in the stationary limit as a function of coupling constants g and
κ. We found that the non-linear optical interaction κ reduces
signficantly the intensity of the light in the cavity. This is due
to that is a two-photon interaction and allows transitions that can
rapidly populate states with high number of photons, that promptly
will leave the cavity.

Figure 6. Entanglement as a function of non-linear optical interaction
κ and time t is shown in panel (a). Departing from κ = 1meV the
entanglement increases the frequency of its oscillations, but spoils its efficiency.
The parameters are fixed to g = 1meV , ωa = 1000meV , ω = 991meV ,
P = 0.001meV and γ = 0.001meV . Panel (b) shows the sudden death of

entanglement as function of time.

Figure 7. Average number of photons as a function of coupling constants
g and κ. The parameters of the system are fixed to ωa = 1000meV , ω =
998meV , P = 0.1meV and γ = 0.1meV . For this calculations the Fock space

was truncated in nmax = 20
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Conclusions

We found that the non-linear optical interaction (Kerr medium)
affects strongly the dynamics of the QD-Cavity system in both
weak and strong coupling regimes. The emission spectrum was
calculated in an exact form for lowest excitation manifold, and we
found that arises a frequency shift in the emission spectrum due
to the Kerr medium. In addition, it was examined the influence of
Kerr medium on the entanglement of the system as well as on the
average photon number.
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