
momento Revista de F́ısica, No 54, Ene - Jun / 2017 54

BASES FOR QUANTUM ALGEBRAS AND SKEW
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Abstract

Considering quantum algebras and skew
Poincaré-Birkhoff-Witt (PBW for short) extensions
defined by a ring and a set of variables with relations
between them, we are interesting in finding a criteria
and some algorithms which allow us to decide whether
an algebraic structure, defined by variables and relations
between them, can be expressed as a skew PBW extension,
so that the base of the structure is determined. Finally, we
illustrate our treatment with examples concerning quantum
physics.
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Resumen

Para las álgebras cuánticas y las extensiones torcidas
de Poincaré-Birkhoff-Witt definidas por un anillo y
un conjunto de variables con relaciones entre ellas,
estamos interesados en establecer un criterio y algunos
algoritmos que nos permitan decidir si una estructura
algebraica, definida en términos de generadores y
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relaciones, puede expresarse como una extensión torcida de
Poincaré-Birkhoff-Witt, de manera que se determine la base
de la misma. Ilustramos nuestro tratamiento con diversas
álgebras de la f́ısica cuántica.

Palabras clave: Álgebras cuánticas, extensiones torcidas de

Poincaré-Birkhoff-Witt, lema del diamante.

Introduction

Historically, the importance of quantum algebras has been
considered for several authors in the context of quantum mechanics,
see [1] and [2]. For instance, in [3] it was presented a purely
algebraic formulation of quantum mechanics which does not require
the specification of a space of state vectors; rather, the required
vector spaces can be identified as substructures in the algebra
of dynamical variables (suitably extended for bosonic systems).
As we can see, this formulation of quantum mechanics captures
the undivided wholeness characteristic of quantum phenomena,
and provides insight into their characteristic nonseparability and
nonlocality. In fact, and like the authors say in [3], “the formalism
we present fulfils Dirac’s aim of working with the algebra of
quantum mechanics alone. Furthermore, this approach addresses
Dirac’s interpretational difficulty, since it can be interpreted in
terms of a “process” approach to quantum theory”.

Now, from a philosophical point of view, it is very important
the new relationships between physics and mathematics that
emerge with Heisenberg’s discovery of matrix mechanics and its
development in the work of Born, Jordan, and Heisenberg himself.
Precisely, this is the Einstein’s view of “the Heisenberg method”, as
“a purely algebraic method of description of nature”. In [4], chapter
4, it is examined the shift from geometry to algebra in quantum
mechanics as a reversal of the philosophy that governed classical
mechanics by grounding it mathematically in the geometrical
description of the behavior of physical objects in space and time
(Heisenberg’s matrix mechanics abandons any attempts to develop
this type of description and instead offers essentially algebraic
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machinery for predicting the outcomes of experiments observed in
measuring instruments).

One of the fundamental objects in quantum theory is the
Heisenberg algebra (see [5] for a detailed exposition of this quantum
algebra). This algebra and its generalizations - deformations -
have recently become of interest in both theoretical physics and
mathematics, where it is regarded as a fundamental object and as a
suitable model for checking various physical and mathematical ideas
and constructions (c.f. [6–15], and others). For example, in [15] it
is discussed representations of the Heisenberg relation in various
mathematical structures; in [12], it is investigated the structure of
two-sided ideals - a key concept in noncommutative algebra - in
the q-deformed Heisenberg algebras and the relationships of this
algebra with the quantum plane, and its realizations are of primary
importance to studying the dynamics of a q-deformed quantum
system (see [11] for an exposition of the q-deformed Heisenberg
algebra and its relation with the origin of q-calculus).

Actually, and following [14], “algebraic methods have long been
applied to the solution of a large number of quantum physical
systems. In the last decades, quantum algebras appeared in the
framework of quantum integrable one-dimensional models and have
ever since been applied to many physical phenomena [...] It
was found that it could be generalized leading to the concept of
deformed Heisenberg algebras [16], that have been used in many
areas, as nuclear physics, condensed matter, atomic physics, etc”.
Indeed, the algebraic approach in theoretical physics has been also
considered in a possible reconciliation of the quantum mechanics
with general relativity theory, where the gravity does not need to
be quantized [17].

With this in mind, several families of algebras have been defined
with the purpose of studying mathematical and physical properties
of different algebraic systems. One of them are the skew
Poincaré-Birkhoff-Witt extensions (PBW for short) introduced in
[18]. These extensions have been studied in several papers ([18–28],
and others), and the PhD Thesis [29], where the first author studied
ring and module theoretical properties of these algebras.
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Skew PBW extensions are defined by a ring and a set of variables
with relations between them, (analogously to the definition of
several quantum algebras, see [6, 8–10, 13, 30–32], and others).
In the study of these algebras it is important to specify one basis
for every one of them, since this allows us to characterize several
properties with physical meaning. This can be appreciated in
several works: in [33] it was considered the PBW theorem for
quantized universal enveloping algebras; in [34] it was established
the quantum PBW theorem for a wide class of associative algebras;
in [35], it was studied the PBW bases for quantum groups using the
notion of Hopf algebra, and in [36] it was considered this theorem
for diffusion algebras. Following this idea, in this article we present
a criteria and some algorithms which decide whether a given ring
with some variables and relations can be expressed as a skew PBW
extension with a basis in the sense of Definition 2.1. With this
objective, our techniques used here are fairly standard and follow
the same path as other text on the subject (see [37] and [29]). The
results presented are new for skew PBW extensions and all they
are similar to others existing in the literature (cf. [12, 15, 33, 35],
and others).

The paper is organized as follows. Section 1 contains the criteria
and algorithms of our treatment. Section 2 is dedicated to definition
and some properties of skew PBW extensions. Section 3 presents
two examples of quantum algebras which illustrate the results
established in Section 1 (other examples can be found in [29]).
Finally, we present some conclusions about this topic and a future
work.

1. Diamond Lemma and PBW Bases

Bergman’s Diamond Lemma [37] provides a general method
to prove that certain sets are bases of algebras which are
defined in terms of generators and relations. For instance,
the Poincaré-Birkhoff-Witt theorem, which appeared at first for
universal enveloping algebras of finite dimensional Lie algebras
(see [30] for a detailed treatment) can be derived from it. PBW
theorems have been considered several classes of commutative and
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noncommutative algebras (see [33–36], and others). With this in
mind, and since skew PBW extensions are defined by a ring and
a set of variables with relations between them (Definition 2.1),
in this section we establish a criteria and some algorithms which
decide whether a given ring with some variables and relations can
be expressed as a skew PBW extension. This answer is obtained
following the original ideas presented in [37] and the treatment
developed in [29].

Definition 1.1. (i) Let X be a non-empty set and denote by
〈X〉 and R〈X〉 the free monoid on X and the free associative
R-ring on X, respectively. A subset Q ⊆ 〈X〉×R〈X〉 is called
a reduction system for R〈X〉. An element σ = (Wσ, fσ) ∈ Q
has components Wσ a word in 〈X〉 and fσ a polynomial in
R〈X〉. Note that every reduction system for R〈X〉 defines
a factor ring A = R〈X〉/IQ, with IQ the two-sided ideal of
R〈X〉 generated by the polynomials Wσ − fσ, with σ ∈ Q.

(ii) If σ is an element of a reduction system Q and A,B ∈ 〈X〉,
the R-linear endomorphism rAσB : R〈X〉 → R〈X〉, which
fixes all elements in the basis 〈X〉 different from AWσB and
sends this particular element to AfσB is called a reduction
for Q. If r is a reduction and f ∈ R〈X〉, then f and r(f)
represent the same element in the R-ring R〈X〉/IQ. Thus,
reductions may be viewed as rewriting rules in this factor
ring.

(iii) A reduction rAσB acts trivially on an element f ∈ R〈X〉 if
rAσB(f) = f . An element f ∈ R〈X〉 is said to be irreducible
under Q if all reductions act trivially on f . Note that the set
R〈X〉irr of all irreducible elements of R〈X〉 under Q is a left
submodule of R〈X〉.

(iv) Let f be an element of R〈X〉. We say that f reduces to
g ∈ R〈X〉, if there is a finite sequence r1, . . . , rn of reductions
such that g = (rn · · · r1)(f). We will write f →Q g. A finite
sequence of reductions r1, . . . , rn is said to be final on f , if
(rn · · · r1)(f) ∈ R〈X〉irr.

(v) An element f ∈ R〈X〉 is said to be reduction-finite, if
for every infinite sequence r1, r2, . . . of reductions there
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exists some positive integer m such that ri acts trivially
on the element (ri−1 · · · r1)(f), for every i > m. If f is
reduction-finite, then any maximal sequence of reductions
r1, . . . , rn such that ri acts non-trivially on the element
(ri−1 · · · r1)(f), for 1 ≤ i ≤ n, will be finite. Thus, every
reduction-finite element reduces to an irreducible element.
We remark that the set of all reduction-finite elements of
R〈X〉 is a left submodule of R〈X〉.

(vi) An element f ∈ R〈X〉 is said to be reduction-unique if it is
reduction-finite and if its images under all final sequences of
reductions coincide. This value is denoted by rQ(f).

Proposition 1.2 ([29], Lemma 3.1.2). (i) The set R〈X〉un of
reduction-unique elements of R〈X〉 is a left submodule, and
rQ : R〈X〉un → R〈X〉irr becomes an R-linear map. (ii) If
f, g, h ∈ R〈X〉 are elements such that ABC is reduction-unique
for all terms A,B,C occurring in respectively f, g, h, then fgh is
reduction-unique. Moreover, if r is any reduction, then fr(g)h is
reduction-unique and rQ(fr(g)h) = rQ(fgh).

Proof. (i) Consider f, g ∈ R〈X〉un, λ ∈ R. We know that λf +
g is reduction-finite. Let r1, . . . , rm be a sequence of reductions
(note that it is final on this element), and r := rm · · · r1 for the
composition. Using that f is reduction-unique, there is a finite
composition of reductions r′ such that (r′r)(f) = rQ(f), and in a
similar way, a composition of reductions r′′ such that (r′′r′r)(g) =
rQ(g). Since r(λf+g) ∈ R〈X〉irr, then r(λf+g) = (r′′r′r)(λf+g) =
λ(r′′r′r)(f) + (r′′r′r)(g) = λrQ(f) + rQ(g). Hence, the expression
r(λf + g) is uniquely determined, and λf + g is reduction-unique.
In fact, rQ(λf + g) = λrQ(f) + rQ(g), and therefore (i) is proved.
(ii) From (i) we know that fgh is reduction-unique. Consider
r = rDσE, for σ ∈ Q, D,E ∈ 〈X〉. The idea is to show that fr(g)h
is reduction-unique and rQ(fr(g)h) = rQ(fgh). Note that if f, g, h
are terms A,B,C, then rADσEC(ABC) = ArDσE(B)C, that is,
ArDσE(B)C is reduction-unique with rQ(ABC) = rQ(ArDσE(B)C).
Now, more generally, f =

∑
i λiAi, g =

∑
j µjBj, h =

∑
k ρkCk,

where the indices i, j, k run over finite sets, with λi, µj, ρk, and
where Ai, Bj, Ck are terms such that AiBjCk is reduction unique for
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every i, j, k. In this way, fr(g)h =
∑

i,j,k λiµjρkAir(Bj)Ck. Finally,
since Air(Bj)Ck is reduction-finite for every i, j, k, and we have
rQ(Air(Bj)Ck) = rQ(AiBjCk) from (i), fr(g)h is reduction-unique
and rQ(fr(g)h) = rQ(fgh).

Proposition 1.3 ([29], Proposition 3.1.3). If every element f ∈
R〈X〉 is reduction-finite under a reduction system Q, and IQ is
the ideal of R〈X〉 generated by the set {Wσ − fσ | σ ∈ Q} then
R〈X〉 = R〈X〉irr ⊕ IQ if and only if every element of R〈X〉 is
reduction-unique.

Proof. Suppose that R〈X〉 = R〈X〉irr⊕ IQ and consider f ∈ R〈X〉.
Note that if g, g′ ∈ R〈X〉 are elements for which f reduces to g and
g′, then g − g′ ∈ R〈X〉 ∩ IQ = {0}, that is, f is reduction-unique.
Conversely, if every element of R〈X〉 is reduction-unique under Q,
then rQ : R〈X〉 → R〈X〉irr is a R-linear projection. Consider f ∈
ker(rQ), that is, rQ(f) = 0. Then f ∈ IQ, whence the ker(rQ) ⊆ IQ,
but in fact, ker(rQ) contains IQ: for every σ ∈ Q,A,B ∈ 〈X〉,
we have rQ(A(Wσ − fσ)B) = rQ(AWσB) − rQ(AfσB) = 0 from
Proposition 1.2, when r = r1σ1.

Under the previous assumptions, A = R〈X〉/IQ may be identified
with the left free R-module R〈X〉irr with R-module structure given
by the multiplication f ∗ g = rQ(fg).

Definition 1.4. An overlap ambiguity for Q is a 5-tuple of the
form (σ, τ, A,B,C), where σ, τ ∈ Q and A,B,C ∈ 〈X〉 \ {1} such
that Wσ = AB and Wτ = BC. This ambiguity is solvable if there
exist compositions of reductions r, r′ such that r(fσC) = r′(Afτ ).
Similarly, a 5-tuple (σ, τ, A,B,C) with σ 6= τ is called an inclusion
ambiguity if Wτ = B and Wσ = ABC. This ambiguity is solvable
if there are compositions of reductions r, r′ such that r(AfτB) =
r′(fσ).

Definition 1.5. A partial monomial order ≤ on 〈X〉 is said to be
compatible with Q if fσ is a linear combination of terms M with
M < Wσ, for all σ ∈ Q.

Proposition 1.6 ([29], Proposition 3.1.6). If ≤ is a monomial
partial order on 〈X〉 satisfying the descending chain condition and
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compatible with a reduction system Q, then every element f ∈ R〈X〉
is reduction-finite. In particular, every element of R〈X〉 reduces
under Q to an irreducible element.

Let ≤ be a monoid partial order on 〈X〉 compatible with the
reduction system Q. Let M be a term in 〈X〉 and write YM for
the submodule of R〈X〉 spanned by all polynomials of the form
A(Wσ − fσ)B, where A,B ∈ 〈X〉 are such that AWσB < M . We
will denote by VM the submodule of R〈X〉 spanned by all terms
M ′ < M . Note that YM ⊆ VM .

Definition 1.7. An overlap ambiguity (σ, τ, A,B,C) is said to
be resolvable relative to ≤ if fσC − Afτ ∈ YABC. An inclusion
ambiguity (σ, τ, A,B,C) is said to be resolvable relative to ≤ if
AfτC − fσ ∈ YABC.

If r is a finite composition of reductions, and f belongs to VM , then
f − r(f) ∈ YM . Hence, f ∈ YM if and only if r(f) ∈ YM ([19],
Proposition 3.1.8).

Proposition 1.8 (Bergman’s Diamond Lemma [37]; [29], Theorem
3.21). Let Q be a reduction system for the free associative R-ring
R〈X〉, and let ≤ be a monomial partial order on 〈X〉, compatible
with Q and satisfying the descending chain condition. The following
conditions are equivalent: (i) all ambiguities of Q are resolvable; (ii)
all ambiguities of Q are resolvable relative to ≤; (iii) all elements
of R〈X〉 are reduction-unique under Q; (iv) R〈X〉 = R〈X〉irr⊕ IQ.

1.1. Algorithms

Throughout this section we will consider the lexicographical degree
order �deglex to be defined on the variables x1, . . . , xn. For more
details about these orders, see [18], section 3.

Definition 1.9. A reduction system Q for the free associative
R-ring R〈x1, . . . , xn〉 is said to be a �deglex-skew reduction system if
the following conditions hold: (i) Q = {(Wji, fji) | 1 ≤ i < j ≤ n};
(ii) for every j > i, Wji = xjxi and fji = ci,jxixj + pji, where
ci,j ∈ R \ {0} and pji ∈ R〈x1, . . . , xn〉; (iii) for each j > i,
lm(pji) �deglex xixj. We will denote (Q,�deglex) this type of
reduction systems.
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Note that if 0 6= p ∈
∑

rα
xα, rα ∈ R, we consider its Newton

diagram as N (p) := {α ∈ N | rα 6= 0}. Let exp(p) := max N (p).
In this way, by Proposition 1.6 every element f ∈ R〈x1, . . . , xn〉
reduces under Q to an irreducible element. Let IQ be the two-sided
ideal of R〈x1, . . . , xn〉 generated by Wji − fji, for 1 ≤ i < j ≤ n.
If xi + IQ is also represented by xi, for each 1 ≤ i ≤ n, then
we call standard terms in A. Proposition 1.11 below shows that
any polynomial reduces under Q to some standard polynomial and
hence standard terms in A generate this algebra as a left free
R-module.

Proposition 1.10 ([29], Lemma 3.2.2). If (Q,�deglex) is a
skew reduction system, then the set R〈x1, . . . , xn〉irr is the left
submodule of R〈x1, . . . , xn〉 consisting of all standard polynomials
f ∈ R〈x1, . . . , xn〉.

Proof. It is clear that every standard term is irreducible. Now, let
us see that if a monomial M = λxj1 · · ·xjs is not standard, then
some reduction will act non-trivially on it. If s < 2 the monomial
is clearly standard. This is also true if jk ≤ jk+1, for every 1 ≤
k ≤ s − 1. Let s ≥ 2. There exists k such that jk > jk+1 and
M = CxjxiB = CWjiB where j = jk, i = jk+1 and where C and B
are terms. Then CWjiB →Q CfjiB acts non trivially on M .

Proposition 1.11 ([29], Proposition 3.2.3). If (Q,�deglex) is a
skew reduction system for the set R〈x1, . . . , xn〉, then every element
of R〈x1, . . . , xn〉 reduces under Q to a standard polynomial. Thus
the standard terms in A = R〈x1, . . . , xn〉/IQ span A as a left free
module over R.

Proof. It follows from Proposition 1.10 and Proposition 1.6.

Next, we present an algorithm to reduce any polynomial in
R〈x1, . . . , xn〉 to its standard representation modulo IQ. The basic
step in this algorithm is the reduction of terms to polynomials
of smaller leading term. In the proof of Proposition 1.10 we can
choose k to be the least integer such that jk > jk+1, thus yielding
a procedure to define for every non-standard monomial λM a
reduction denoted red that acts non-trivially on M . In this way,
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the linear map red : R〈x1, . . . , xn〉 → R〈x1, . . . , xn〉 depends on M .
However, the following procedure is an algorithm.

Algorithm: Monomial reduction algorithm

INPUT: M = λxj1 · · ·xjr a non standard monomial.
OUTPUT: p = red(M), a reduction under Q of the monomial M
INITIALIZATION: k = 1, C = λ
WHILE jk ≤ jk+1 DO
C = Cxjk
k = k + 1
IF k + 2 ≤ r THEN
B = xjk+2

· · ·xjr
ELSE
B = 1
j = jk, i = jk+1

p = Cfj,iB.

An element f ∈ R〈x1, . . . , xn〉 is called normal if deg(Xt) �deglex

deg(lt(f)), for every term Xt 6= lt(f) in f . (In Definition 2.4 we
will see that elements of skew PBW extensions are normal).

Proposition 1.12 ([29], Proposition 3.2.4). Let (Q,�deglex) be
a skew quantum reduction system. There exists a R-linear
map stredQ : R〈x1, . . . , xn〉 → R〈x1, . . . , xn〉irr satisfying the
following conditions: (i) for every f ∈ R〈x1, . . . , xn〉, there
exists a finite sequence r1, . . . , rm of reductions such that
stredQ(f) = (rm · · · r1)(f); (ii) if f is normal, then mdeg(lm(f)) =
mdeg(lm(stredQ(f))).

From the proof of Proposition 1.12 we obtain the next algorithm.
Remark 1.13 and Theorem 1.14 are the key results connecting this
section with skew PBW extensions.

Algorithm: Reduction to standard form algorithm

INPUT: f a non-standard polynomial.
OUTPUT: g = stredQ(f) a standard reduction under Q of f
INITIALIZATION: g = 0
WHILE f 6= 0 DO

IF lm(f) is standard THEN
f = f − lm(f)
g = g + lm(g)

ELSE
f = f − lm(f) + red(lm(f)).
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Remark 1.13. A free left R-module A is a skew PBW extension
with respect to �deglex if and only if it is isomorphic to the quotient
R〈x1, . . . , xn〉/IQ, where Q is a skew reduction system with respect
to �deglex.

By Proposition 1.8, the set of all standard terms forms a R-basis
for A = R〈x1, . . . , xn〉/IQ. We have the following key result:

Theorem 1.14 ([29], Theorem 3.2.6). Let (Q,�deglex) be a skew
reduction system on R〈x1, . . . , xn〉 and let A = R〈x1, . . . , xn〉/IQ.
For 1 ≤ i < j < k ≤ n, let gkji, hkji be elements in R〈x1, . . . , xn〉
such that xkfji (resp. fkjxi) reduces to gkji (resp. hkji) under Q.
The following conditions are equivalent:

(i) A is a skew PBW extension of R;

(ii) the standard terms form a basis of A as a left free R-module;

(iii) gkji = hkji, for every 1 ≤ i < j < k ≤ n;

(iv) stredQ(xkfji) = stredQ(fkjxi), for every 1 ≤ i < j < k ≤ n.

Moreover, if A is a skew PBW extension, then stredQ = rQ and
A is isomorphic as a left module to R〈x1, . . . , xn〉irr whose module
structure is given by the product f ∗ g := rQ(fg), for every f, g ∈
R〈x1, . . . , xn〉irr.

Proof. The equivalence between (i) and (ii) as well between (i) and
(iii) is given by Proposition 1.8. The equivalence between (i) and
(iv) is obtained from Proposition 1.8 and Proposition 1.12. The
remaining statements are also consequences of Proposition 1.8.

Theorem 1.14 gives an algorithm to check whether the algebraic
structure R〈x1, . . . , xn〉/IQ is a skew PBW extension since
stredQ(xkfji) and stredQ(fkjxi) can be computed by means of
Algorithm “Reduction to standard form algorithm”.

Remark 1.15. In [38], it was also investigated the problem of
determining if one quantum algebra have a PBW basis, and more
especifically, if the algebra is a skew PBW extension, using different
tools. In this sense, our Theorem 1.14 establishes an analogous
result to [38], Theorem 2.4.
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2. Skew Poincaré-Birkhoff-Witt extensions

Skew PBW extensions introduced in [18] include many algebras of
interest for modern mathematical physicists. As examples of these
extensions, we mention the following: (a) the enveloping algebra
of any finite-dimensional Lie algebra; (b) any differential operator
formed from commuting derivations; (c) any Weyl algebra; (d) those
differential operator rings V (B,L) where L is a Lie algebra which
is also a finitely generated free B-module equipped with a suitable
Lie algebra map to derivations on B; (e) the twisted or smash
product differential operator ring involving finite-dimensional Lie
algebras acting on a ring by derivations together with Lie 2-cocycles;
(f) group rings of polycyclic by finite groups; (g) Ore algebras of
injective type; (h) operator algebras; (i) diffusion algebras; (j) some
quantum algebras; (k) quadratic algebras in 3 variables; (l) some
types of Auslander-Gorenstein rings; (m) some skew Calabi-Yau
algebras; (n) quantum polynomials, (o) some quantum universal
enveloping algebras. A detailed list of examples of skew PBW
extensions is presented in [29], [20] and [24].

Definition 2.1 ([18], Definition 1). Let R and A be rings. We
say that A is a skew PBW extension of R (also called a σ-PBW
extension of R), if the following conditions hold:

(i) R ⊆ A;

(ii) there exist elements x1, . . . , xn ∈ A such that A is a left free
R-module, with basis the basic elements Mon(A) := {xα =
xα1

1 · · ·xαnn | α = (α1, . . . , αn) ∈ Nn}.

(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an
element ci,r ∈ R \ {0} such that xir − ci,rxi ∈ R.

(iv) For any elements 1 ≤ i, j ≤ n, there exists ci,j ∈ R \ {0}
such that xjxi − ci,jxixj ∈ R +Rx1 + · · ·+Rxn.

Under these conditions, we write A := σ(R)〈x1, . . . , xn〉.

Proposition 2.2 ([18], Proposition 3). Let A be a skew PBW
extension of R. For each 1 ≤ i ≤ n, there exists an injective
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endomorphism σi : R → R and an σi-derivation δi : R → R such
that xir = σi(r)xi + δi(r), for each r ∈ R.

Two particular cases of skew PBW extensions are considered in the
following definition.

Definition 2.3 ([18], Definition 4). Let A be a skew PBW
extension of R. (a) A is called quasi-commutative if the conditions
(iii) and (iv) in Definition 2.1 are replaced by (iii’): for each
1 ≤ i ≤ n and all r ∈ R \ {0} there exists ci,r ∈ R \ {0} such that
xir = ci,rxi; (iv’): for any 1 ≤ i, j ≤ n there exists ci,j ∈ R \ {0}
such that xjxi = ci,jxixj; (b) A is called bijective if σi is bijective
for each 1 ≤ i ≤ n, and ci,j is invertible for any 1 ≤ i < j ≤ n.

Definition 2.4 ([18], Definition 6). Let A be a skew PBW
extension of R with endomorphisms σi, 1 ≤ i ≤ n, as in Proposition
2.2.

(i) For α = (α1, . . . , αn) ∈ Nn, σα := σα1
1 · · ·σαnn , |α| := α1 +

· · · + αn. If β = (β1, . . . , βn) ∈ Nn; then α + β := (α1 +
β1, . . . , αn + βn).

(ii) For X = xα ∈ Mon(A), exp(X) := α and deg(X) := |α|. The
symbol � will denote a total order defined on Mon(A) (a total
order on Nn

0 ). For an element xα ∈ Mon(A), exp(xα) := α ∈
Nn

0 . If xα � xβ but xα 6= xβ, we write xα � xβ. Every
element f ∈ A can be expressed uniquely as f = a0 + a1X1 +
· · · + amXm, with ai ∈ R \ {0}, and Xm � · · · � X1. With
this notation, we define lm(f) := Xm, the leading monomial
of f ; lc(f) := am, the leading coefficient of f ; lt(f) := amXm,
the leading term of f ; exp(f) := exp(Xm), the order of f ;
and E(f) := {exp(Xi) | 1 ≤ i ≤ t}. Note that deg(f) :=
max{deg(Xi)}ti=1. Finally, if f = 0, then lm(0) := 0, lc(0) :=
0, lt(0) := 0. We also consider X � 0 for any X ∈ Mon(A).
Again, for a detailed description of monomial orders in skew
PBW extensions, see [18], Section 3.
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3. Examples

In this section we present two examples of skew PBW extensions
which illustrate the results of Section 1.1. Our aim is to show
that several rings have a PBW basis in the sense of Definition
2.1. Other well known examples for quantum physics (Weyl
algebras, quantum Weyl algebras, dispin algebras, Woronowicz
algebra, skew polynomial rings, q-Heisenberg algebra, etc) can be
realized following the ideas presented in this paper (see [29] for a
detailed description of each one of these algebras).

Hayashi algebra

With the purpose of obtaining bosonic representations of the
Drinfield-Jimbo quantum algebras, Hayashi considered in [39] the
A−q algebra. Let us see its construction (we follow [34], Example
2.7.7). Let U be the algebra generated by the indeterminates
ω1, . . . , ωn, ψ1, . . . , ψn, ψ

∗
1, . . . , ψ

∗
n, with the relations

ψjψi − ψiψj = ψ∗
jψ

∗
i − ψ∗

i ψ
∗
j = ωjωi − ωiωj = ψ∗

jψi − ψiψ∗
j = 0, 1 ≤ i < j ≤ n,

ωjψi − q−δijψiωj = ψ∗
jωi − q−δijωiψ∗

j = 0, 1 ≤ i, j ≤ n,

ψ∗
i ψi − q2ψiψ∗

i = − q2ω2
i , 1 ≤ i ≤ n.

(3.1)

Let x1 := ω1, . . . , xn := ωn, xn+1 := ψ1, . . . , x2n := ψn, x2n+1 :=
ψ∗1, . . . , x3n := ψ∗n. The relations (3.1) are equivalent to

xjxi − xixj = xn+jxn+i − xn+ixn+j = x2n+jx2n+i − x2n+ix2n+j = 0, 1 ≤ i < j ≤ n,

xn+ixj − q
δij xjxn+i = x2n+jxi − q

−δij xix2n+j = 0, 1 ≤ i, j ≤ n,

x2n+jxn+i = xn+ix2n+j , 1 ≤ i < j ≤ n,

x2n+ixn+i = q
2
xn+ix2n+i − q

2
x
2
i , 1 ≤ i ≤ n.

Again, consider x1 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · ≺ x2n ≺ x2n+1 ≺ x3n.
Then (Q,�deglex) is a skew reduction system, and we obtain the
following cases:

1 ≤ i < j < k ≤ n: stredQ(xkfji) = xkxixj = xixkxj = xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

n+ 1 ≤ i < j < k ≤ 2n: stredQ(xkfji) = xkxixj = xixkxj = xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

2n+ i ≤ i < j < k ≤ 3n: stredQ(xkfji) = xkxixj = xixkxj = xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;
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1 ≤ i < j ≤ n and n+ 1 ≤ k ≤ 2n:

if k = n+ i, then, stredQ(xkfji) = xkxixj = qxixkxj = qxixjxk,

stredQ(fkjxi) = xjxkxi = xjqxixk = qxixjxk;

if k 6= n+i, n+j, then, stredQ(xkfji) = xkxixj = xixkxj = xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

if k = n + j, then, stredQ(xkfji) = xkxixj = xixkxj =
xiqxjxk = qxixjxk,

stredQ(fkjxi) = qxjxkxi = qxjxixk = qxixjxk;

1 ≤ i < j ≤ n and 2n+ 1 ≤ k ≤ 3n:

if k = 2n + i, then, stredQ(xkfji) = xkxixj = q−1xixkxj
= q−1xixjxk,

stredQ(fkjxi) = xjxkxi = xjq
−1xixk = q−1xixjxk;

if k 6= 2n + i, 2n + j, then, stredQ(xkfji) = xkxixj = xixkxj =
xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

if k = 2n+j, then, stredQ(xkfji) = xkxixj = xixkxj = xiq
−1xjxk =

q−1xixjxk,

stredQ(fkjxi) = q−1xjxkxi = q−1xjxixk = q−1xixjxk;

1 ≤ i ≤ n, n+ 1 ≤ j ≤ 2n, 2n+ 1 ≤ k ≤ 3n:

if j = n + i and k = 2n + i, then, stredQ(xkfji) = xkqxixj =
qq−1xixkxj = xi(q

2xjxk − q2x2i ) = q2xixjxk − q2x3i ,

stredQ(fkjxi) = (q2xjxk−q2x2i )xi = q2xjxkxi−q2x3i = q2xixjxk−
q2x3i ;

if j = n + i and k 6= 2n + i, then, stredQ(xkfji) = xkqxixj =
qxixkxj = qxixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = qxixjxk;

if j 6= n + i and k = 2n + i, then, stredQ(xkfji) = xkxixj =
q−1xixkxj = q−1xixjxk,

stredQ(fkjxi) = xjxkxi = xjq
−1xixk = q−1xixjxk;

if j 6= n+i and k 6= 2n+i, then, stredQ(xkfji) = xkxixj = xixkxj =
xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

1 ≤ i ≤ n and n+ 1 ≤ j < k ≤ 2n:

if j = n+ i, then, stredQ(xkfji) = xkqxixj = qxixkxj = qxixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = qxixjxk;
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if j, k 6= n + i, then, stredQ(xkfji) = xkxixj = xixkxj = xixjxk,
stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

if k = n+ i, then, stredQ(xkfji) = xkxixj = qxixkxj = qxixjxk,

stredQ(fkjxi) = xjxkxi = xjqxixk = qxixjxk;

1 ≤ i ≤ n and 2n+ 1 ≤ j < k ≤ 3n,

if j = 2n + i, then, stredQ(xkfji) = xkq
−1xixj = q−1xixkxj =

q−1xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = q−1xixjxk;

if j, k 6= 2n+ 1, then, stredQ(xkfji) = xkxixj = xixkxj = xixjxk,

stredQ(fkjxi) = xjxkxi = xjxixk = xixjxk;

if k = 2n + 1, then, stredQ(xkfji) = xkxixj = q−1xixkxj
= q−1xixjxk,

stredQ(fkjxi) = xjxkxi = xjq
−1xixj = q−1xixjxk;

n+ 1 ≤ i′ := n+ i ≤ 2n and 2n+ i ≤ j < k ≤ 3n:

if j = 2n+1, then, stredQ(xkfji′) = xk(q2xi′xj−q2x2i ) = q2xkxi′xj−
q2xkx

2
i = q2xi′xjxk − q2x2ixk,

stredQ(fkjxi′) = xjxkxi′ = xjxi′xk = (q2xi′xj − q2x2i )xk
= q2xi′xjxk − q2x2ixk;

if j, k 6= 2n+ i, then, stredQ(xkfji′) = xkxi′xj = xi′xkxj = xi′xjxk,

stredQ(fkjxi′) = xjxkxi′ = xjxi′xk = xi′xjxk;

if k = 2n+ i, then, stredQ(xkfji) = xkxi′xj = (q2xi′xk − q2x2i )xj =
q2xi′xjxk − q2x2ixj ,
stredQ(fkjxi) = xjxkxi′ = xj(q

2xi′xk − q2x2i ) = q2xi′xjxk −
q2x2ixj ;

n+ 1 ≤ i′ := n+ i < j ≤ 2n and 2n+ 1 ≤ k ≤ 3n:

if k = 2n+ i, then, stredQ(xkfji′) = xkxi′xj = (q2xi′xk− q2x2i )xj =
q2xi′xjxk − q2x2ixj ,
stredQ(fkjx

′
i) = xjxkxi′ = xj(q

2xi′xk − q2x2i ) = q2xi′xjxk −
q2x2ixj ;

if k 6= 2n + i, 2n + j, then, stredQ(xkfji) = xkxi′xj = xi′xkxj =
xi′xjxk,

stredQ(fkjxi) = xjxkxi′ = xjxi′xk = xi′xjxk;

if k = 2n+ 1, then, stredQ(xkfji) = xkxi′xj = (q2xi′xk − q2x2i )xj =
q2xi′xjxk − q2x2ixj ,
stredQ(fkjxi) = xjxkxi′ = xj(q

2xi′xk − q2x2i ) = q2xi′xjxk −
q2x2ixj .
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As we have seen, stredQ(xkfji) = stredQ(fkjxi), for every 1 ≤
i < j < k ≤ 3n, so {ω1, . . . , ωn, ψ1, . . . , ψn, ψ

∗
1, . . . , ψ

∗
n} form a

k-basis of U. Now, to obtain the Hayashi algebra A−q , we take
the field of the complex numbers and consider the multiplicative
monoid S generated by ω1, . . . , ωn. Since S is a regular Ore set and
the localization S−1U exists, then A−q is S−1U modulo the ideal

generated by ψiψ
∗
i − q2ψ∗iψiω

−2
i , for i = 1, . . . , n (see [20], section

3.8, for localizations in skew PBW extensions).

Non-Hermitian realization of a Lie deformed,
non-canonical Heisenberg algebra

In [6], it was studied the non-Hermitian realization of a Lie
deformed, a non-canonical Heisenberg algebra, considering the case
of operators Aj, Bk which are non-Hermitian (i.e., } = 1)

Aj(1 + iλjk)Bk −Bk(1− iλjk)Aj = iδjk

[Aj , Bk] = 0 (j 6= k)

[Aj , Ak] = [Bj , Bk] = 0, (3.2)

and,

A+
j (1 + iλjk)B+

k −B
+
k (1− iλjk)A+

j = iδjk

[A+
j , B

+
k ] =Â0 (j 6= k),

[A+
j , A

+
k ] = [B+

j , B
+
k ] = 0 (3.3)

where Aj 6= A+
j , Bk 6= B+

k (j, k = 1, 2, 3). If the operators Aj, Bk

are in the form Aj = fj(Nj+1)aj, Bk = a+
k fk(Nk+1), where aj, a

+
j

are leader operators of the usual Heisenberg-Weyl algebra, with Nj

the corresponding number operator (Nj = a+
j aj, Nj | nj〉 = nj|nj〉),

and the structure functions fj(Nj + 1) complex, then it is showed
in [6] that Aj and Bk are given by

Aj =

√
i

1 + iλj

(
[(1− iλj)/(1 + iλj)]

Nj+1 − 1

(1− iλj)/(1 + iλj)− 1

1

Nj + 1

) 1
2

aj

Bk =

√
i

1 + iλk
a+k

(
[(1− iλk)/(1 + iλk)]Nk+1 − 1

(1− iλk)/(1 + iλk)− 1

1

Nk + 1

) 1
2

.
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Next, we show that this algebra is a skew PBW extension of a
field k. Let x1 := B1, x2 := B2, x3 := B3, x4 := A1, x5 := A2,
and x6 := A3. Under these identifications, the relations (3.2) are
equivalent to the following:

x2x1 = x1x2, x3x1 = x1x3, x4x1 =
1− iλ11
1 + iλ11

x1x4 + i,

x5x1 = x1x5, x6x1 = x1x6, x5x2 =
1− iλ22
1 + iλ22

x2x5 + i

x3x2 = x2x3, x4x2 = x2x4, x6x3 =
1− iλ33
1 + iλ33

x3x6 + i

x5x3 = x3x5, x6x2 = x2x6, x4x3 = x3x4

x5x4 = x4x5, x6x4 = x4x6, x6x5 = x5x6.

Then,

stredQ(x3f21) = x3x1x2 = x1x3x2 = x1x2x3

stredQ(f32x1) = x2x3x1 = x2x1x3 = x1x2x3

stredQ(x4f32) = x4x2x3 = x2x4x3 = x2x3x4

stredQ(f43x2) = x3x4x2 = x3x2x4 = x2x3x4

stredQ(x4f21) = x4x1x2 =

(
1− iλ11
1 + iλ11

x1x4 + i

)
x2

=
1− iλ11
1 + iλ11

x1x4x2 + ix2 =
1− iλ11
1 + iλ11

x1x2x4 + ix2

stredQ(f42x1) = x2x4x1 = x2

(
1− iλ11
1 + iλ11

x1x4 + i

)
=Âx2x1

1− iλ11
1 + iλ11

x4 + ix2 =
1− iλ11
1 + iλ11

x1x2x4 + ix2

stredQ(x5f43) = x5x3x4 = x3x5x4 = x3x4x5

stredQ(f54x3) = x4x5x3 = x4x3x5 = x3x4x5

stredQ(x5f32) = x5x2x3 =

(
1− iλ22
1 + iλ22

x2x5 + i

)
x3

=
1− iλ22
1 + iλ22

x2x5x3 + ix3 =
1− iλ22
1 + iλ22

x2x3x5 + ix3

stredQ(f53x2) = x3x5x2 = x3

(
1− iλ22
1 + iλ22

x2x5 + i

)
=

1− iλ22
1 + iλ22

x3x2x5 + ix3 =
1− iλ22
1 + iλ22

x2x3x5 + ix3
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stredQ(x5f21) = x5x1x2 = x1x5x2 = x1

(
1− iλ22
1 + iλ22

x2x5 + i

)
=

1− iλ22
1 + iλ22

x1x2x5 + ix1

stredQ(f52x1) =

(
1− iλ22
1 + iλ22

x2x5 + i

)
x1 =

1− iλ22
1 + iλ22

x2x5x1 + ix1

=Â
1− iλ22
1 + iλ22

x1x2x5 + ix1

stredQ(x6f54) = x6x5x4 = x4x6x5 = x4x5x6

stredQ(f65x4) = x5x6x4 = x5x4x6 = x4x5x6

stredQ(x6f43) = x6x3x4

(
1− iλ33
1 + iλ33

x3x6 + i

)
x4 =

1− iλ33
1 + iλ33

x3x6x4 + ix4

=
1− iλ33
1 + iλ33

x3x4x6 + ix4,

stredQ(f64x3) = x4x6x3 = x4

(
1− iλ33
1 + iλ33

x3x6 + i

)
=

1− iλ33
1 + iλ33

x4x3x6 + ix4

=
1− iλ33
1 + iλ33

x3x4x6 + ix4

stredQ(x6f32) = x6x2x3 = x2x6x3 = x2

(
1− iλ33
1 + iλ33

x3x6 + i

)
=

1− iλ33
1 + iλ33

x2x3x6 + ix2

stredQ(f63x2) =

(
1− iλ33
1 + iλ33

x3x6 + i

)
x2 =

1− iλ33
1 + iλ33

x3x6x2 + ix2

=
1− iλ33
1 + iλ33

x2x3x6 + ix2

stredQ(x6f21) = x6x1x2 = x1x6x2 = x1x2x6

stredQ(f62x1) = x2x6x1 = x2x1x6 = x1x2x6.

Since stredQ(xkfji) = stredQ(fkjxi), for every 1 ≤ i < j < k ≤ 6,
then the elements Ba1

1 , B
a2
2 , B

a3
3 , A

a4
1 , A

a5
2 and Aa63 , ai ∈ N, for every

i, form a basis of the Lie-deformed Heisenberg algebra, and from
(3.2), we can see that this algebra is a skew PBW extension over
the complex numbers.
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Conclusions and future work

In this paper, we have presented a criteria to determine whether
an algebra defined by generators and relations can be expressed
as a skew PBW extension. Nevertheless, since the limited size of
the paper, there are a lot of remarkable algebras of the theoretical
physics which are skew PBW extensions and were not illustrated
here (see [29] for more examples). As a future work, we will
investigate a theory of PBW bases for another kinds of quantum
algebras more general than skew PBW extensions over fields. The
techniques to be used will concern noncommutative differential
geometry (see [27]) with the aim of characterizing algebras arising
in geometries of noncommutative spaces and their interactions with
quantum physics, in the sense of [40], [41], and others.
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