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Abstract

In this work we calculate some estimations of the
gravitomagnetic clock effect, taking into consideration not
only the rotating gravitational field of the central mass,
but also the spin of the test particle, obtaining values
for ∆t = t+ − t− = 2.5212079035 × 10−8s. We use
the formulation of Mathisson-Papapetrou-Dixon equations
(MPD) for this problem in a Kerr metric. In order to
compare our numerical results with previous works, we
consider initially only the equatorial plane and also apply
the Mathisson-Pirani supplementary spin condition for the
spinning test particle.
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Resumen

En este trabajo nosotros calculamos algunas estimaciones
del efecto reloj gravitomagnético, tomando en consideración
no sólo el campo rotacional de la masa central, sino
también el esṕın de la part́ıcula de prueba, obteniendo
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valores de ∆t = t+ − t− = 2.5212079035 × 10−8s.
Nosotros usamos la formulación de las ecuaciones de
Mathisson-Papapetrou-Dixon para este problema en una
métrica de Kerr. Para comparar nuestros resultados
numéricos con trabajos previos, nosotros consideramos
inicialmente solo el plano ecuatorial y aplicamos también la
condición suplementaria de esṕın de Mathisson-Pirani para
la part́ıcula de prueba con esṕın.

Palabras clave: Part́ıculas de prueba con esṕın, Métrica de Kerr,

Trayectoŕıas de part́ıculas, Ecuaciones de Mathisson-Papapetrou-Dixon,

Solución numérica.

Introduction

In the last decades, important advances have been made in the
study of the gravitomagnetic clock effect. Beginning with the
seminal work by Cohen and Mashhoon [1]. In which they presented
the influence of the gravitomagnetic field to the proper time of
an arbitrary clock about a rotating massive body. In their paper,
Cohen and Mashhoon, also showed the possibility of measuring
this effect. In this work, we present a theoretical value for the
gravitomagnetic clock effect of a spinning test particle orbiting
around a rotating massive body.
According with the literature, we find different complementary ways
that study the phenomena in regard to the gravitomagnetism clock
effect. The first way take two family of observers. The first is the
family of static observer (or threading observers) with four-velocity
m = M−1∂t and world lines along the time coordinate lines. The
second famili is the ZAMO’s (or slicing observers) with four-velocity
n = N−1

(
∂t −Nφ∂φ

)
and world lines orthogonal to the time

coordinate hypersurfaces [2–4]. They obtain, in the threading point
of view, the local spatial angular direction as

dt = Mφ →
dt

dφ
= Mφ = ζ−1

(th) (1)

which gives an inverse angular velocity or the change with respect
to angle of the time coordinate. Since is angular velocity, Bini
et al. integrate the coordinate time for one complete revolution
both in a direction and in opposite direction [2]. Then the physical
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components of the velocities are related to the coordinate angular
velocity.

This group study the case when the particle has spin. They
take the Frenet-Serret frame (FS) associated to worldline of the
test particle and calculates with help of the angular velocity the
evolution equation of the spin tensor in terms of the FS intrinsic
frame [5, 6]. The work of this group considers the MPD equations
and their su-pplementary conditions for the spin and give their
answer in terms of angular velocity.

The second group integrates around a closed contour. They take
the time for this loop when the test particle rotates in clockwise
and the test particle in opposite sense [1, 7].

A third group deduces the radial geodesic equation from the line
element in the exterior field of a rotating black hole. With
this equation yields the solution and calculate the inverse of the
azimuthal component of four velocity. Then they introduce the
first order correction to the angular velocity

Ω ≡
(
dϕ

dt

)
0

(1 + SΩ∗) , (2)

and obtain the differentiate between prograde and retrograde orbits
and integrate from zero to 2π. The clock effect is the difference of
theses two orbits [8–10].

The fourth group takes some elements of electromagnetism and
does an analogy between Maxwell equations and Einstein linealized
equations [11–19]. Finally the group that makes a geometric
treatment of the gravitomagnetic clock Effect [20, 21].

According with other papers that work the MPD equations, the
novelty of our work is that we calculate numerically the full set
of MPD equations for the case of a spinning test particle in a
Kerr metric. Secondly, we take the spin without restrictions in its
velocity and spin orientation. In the paper by Kyrian and Semerák
the third example is refered to the particular case when the spin is
orthogonal to the equatorial plane in a Kerr metric [22].

In this paper, our aim, it is not only describing the trajectories of
spinning test particles, but also to study the clock effect. Therefore,
we calculate numerically the trajectory both in a sense and in
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the other for a circular orbit. We measure the delay time for
three situations: two spinless test particles are traveling in the
same circular orbit, two spinning test particles with its spin value
orthogonal to equatorial plane and two spinning test particles
without restrictions in its spin orientation.

In this paper, we use the set of Mathisson-Papapetrou-Dixon
equations presented by Plyatsko, R. et al. [23] and extend this
approach, considering the spin of the particle without restrictions
in its orientation, while Plyatsko et al. only take a constant
value for the spin in its magnitude and orientation; we allow
both to be varied, using the full set of MPD equations and the
Mathisson-Pirani (MP) supplementary spin condition.

In the literature, one can find different conditions to fix the center
of mass, leading to different kinematical behaviours of the test
particles. One of the features of the MPD equations is the freedom
to define the representating worldline to which uα is tangente
vector. Therefore the worldline can be determined from physical
conside-rations. The first condition is the Mathisson-Pirani
condition (MP, 1937):

uαS
αβ = 0 (3)

in this condition the reference worldline is the center of mass as
measured in the rest frame of the observer of velocity uα [24, 25].
This condition does not fix a unique worldline and uα is uniquely
defined by pα and Sαβ. If one uses this condition, the trajectory of
the spinning test particle is represented by helical motions. Costa
et al. [26] explain that these motions are physically possible. We
use this condition when working with the MPD equations in the
case of a spinning test particle orbiting a rotating massive body.
The second condition is is presented by Corinaldesi and Papapetrou
(CP, 1951) which is given by

Si0 = 0, (4)

which depends on coordinates. For this condition, the worldline is
straight and its tangent uα is parallel to the four momentum pµ

[22].
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The third condition is introduced by Tulczyjew and Dixon (TD,
1959) and written which is given by

pαS
αβ = 0 (5)

where

pσ = muσ + uλ
DSσλ

ds
(6)

is the four momentum. This condition implies that the worldline is
straight and its tangent uα is parallel to pα and the spin is constant
[27]. This condition is cova-riant and guarantees the existence and
uniqueness of the respective worldline [28].
The fourth is given by Newton and Wigner (NW) which is a
combination of the TD and MP conditions

Sαβζα = 0 (7)

with ζα := pα+Muα and uα being a timelike vector. This condition
provides an implicit relation between the four-momentum and the
wordline´s tangent vector.
The fifth condition is called Ohashi-Kyrian-Semerak (OKS, 2003):

wαS
αβ = 0 (8)

where wα is some time-like four vector which parallely transports
along the representative worldline [22]:

wαw
α = −1, ẇα = 0. (9)

For the study of spinning test particles, we use the equations of
motion for a spinning test particle in a gravitational field without
any restrictions to its velocity and spin orientation [23]. In this
paper, we use the MPD equations presented by Plyatsko, R. et
al. [23]. They yield the full set of Mathisson-Papapetrou-Dixon
equations (MPD equations) for spinning test particles in the Kerr
gravitational field [23], where they integrate nume-rically the MPD
equations for the particular case of the Schwarzschild metric.

For the scope of this work, we will take the MPD equations of
motion for a Kerr metric, and additionally we will include the
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spin of the test particle. This calculation has been made with the
Mathisson-Pirani supplementary condition; the trajectories have
been obtained by numerical integration, using the Runge-Kutta
algorithm [29].

Presently, there exists an interest in the study of the effects of
the spin on the trajectory of test particles in rotating gravitational
fields [30]. The importance of this topic increases when dealing with
phenomena of astrophysics such as accretion discs in rotating black
holes, gravitomagnetics effects [8] or gravitational waves induced by
spinning particles orbiting a rotating black hole [31, 32]. The new
features of the spin-gravity coupling for highly relativistic fermions
are considered in [33] and [34].

The motion of particles in a gravitational field is given by the
geodesic equation. The solution to this equation depends on the
particular conditions of the problem, such as the rotation and spin
of the test particle, among o-thers; therefore there are different
methods for its solution [35, 36].

Basically, we take two cases in motion of test particles in a
gravitational field of a rotating massive body. The first case
describes the trajectory of a spinless test particle, and the second
one the trajectory of a spinning test particle in a massive rotating
body. In the case of the spinless test particles, some authors yield
the set of equations of motion for test particles orbiting around
a rotating massive body. The equations of motion are considered
both in the equatorial plane [37–39], and in the non-equatorial plane
[38, 40, 41] (Kheng, L., Perng, S., and Sze Jackson, T.: Massive
Particle Orbits Around Kerr Black Holes. Unpublished). For the
study of test particles in a rotating field, some authors have solved
for particular cases the equations of motion both for spinless and
for spinning test particles of circular orbits in the equatorial plane
of a Kerr metric [20, 31, 37, 42–46].

With the aim of proving the equations of motion with which we
worked, solve numerically the set of equations of motion obtained
via MPD equations both for the spinless particles and for spinning
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particles in the equatorial plane and will compare our results with
works that involve astronomy, especially the study of spinning test
particles around a rotating central source. We take the same initial
conditions in the two cases for describing the trajectory of both a
spinless particle and a spinning particle in the field of a rotating
massive body. Then, we compare the Cartesian coordinates (x, y, z)
for the trajectory of two particles that travel in the same orbit but
in opposite directions.

For the numerical solution, we give the full set of MPD equations
explicitly, while that Kyrian and Semerak only name them. Also,
we give the complete numerical solution. Kyrian and Semerák
integrate with a step of M/100 = 1× 10−2 while we integrate with
a step of n = 2−22 = 2.384185× 10−7. In the majority of cases, the
solutions are partial because it is impossible to solve analytically a
set of eleven coupled differential equations. The recurrent case that
they solve is a spinning test particle in the equatorial plane and its
spin value is constant in the time (S⊥ =constant).

This work is organized as follows. In Section 2 we give a brief
introduction to the MPD equations that work the set of equations
of motion for test particles, both spinless and spinning in a
rotating gravitational field. From the MPD equations, we yield
the equations of motion for spinless and spinning test particles.
Also, we will give the set of the MPD equations given by Plyatsko
et al.[23] in schematic form to work the equations of motion in a
Kerr metric. In Section 3 and 4, we present the gravitomagnetic
clock effect via the MPD equations for spinless and spinning test
particles. Then, in Section 5, we perform integration and the
respective numerical comparison of the coordinate time (t) for
spinless and spinning test particles in the equatorial plane. Finally
we make a numerical comparison of the trajectory in Cartesian
coordinates for two particles that travel in the same orbit, but in
opposite directions. In the last section, conclusions and some future
works. We shall use geometrized units; Greek indices run from 1 to
4 and Latin indices run from 1 to 3. The metric signature (-,-,-,+)
is chosen.
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Introduction to the Mathisson-Papapetrou-Dixon
equations

In general the MPD equations [24, 27, 47, 48] describe the dynamics
of extended bodies in the general theory of relativity which includes
any gravitational background. These equations of motion for a
spinning test particle are obtained in terms of an expansion that
depends on the derivatives of the metric and the multipole moments
of the energy-momentum tensor (T µν) [27] which describes the
motion of an extended body. In this work, we will take a body
small enough to be able to neglect higher multipoles. According to
this restriction the MPD equations are given by

D

ds

(
muλ + uλ

DSλµ

ds

)
= −1

2
uπSρσRλ

πρσ, (10)

D

ds
Sµν + uµuσ

DSνσ

ds
− uνuσ

DSµσ

ds
= 0, (11)

where the covariant derivative is given by D/ds , the antisymmetric
tensor Sµν , Rλ

πρσ is the curvature tensor, and uµ = dzµ/ds
is the particle´s four-velocity. We do not have the evolution
equation for uµ and it is necessary to single out the center of
mass which determines the world line as a representing path and
specifies a point about which the momentum and spin of the
particle are calculated. The worldline can be determined from
physical considerations [49]. In general, two conditions are typically
imposed: The Mathisson-Pirani supplementary condition (MP)
uσS

µσ = 0 [24, 25] and the Tulczyjew-Dixon condition pσS
µσ = 0

[27]. We found that if we contract the equation

DSαβ

ds
= 2P [αuβ], (12)

with the four velocity uα, we obtain

P β = muβ − uα
DSαβ

ds
, (13)

where m ≡ −Pαuα. Given the MP condition, the four momentum
is not para-llel to its four velocity uβ; therefore, it is said to possess
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“hidden momentum”. This last equation can be written as

P β = muβ + Sαβaα, (14)

where aα = Duα/ds is the acceleration. This acceleration results
from an interchange between the momentum muβ and hidden
momentum Sαβaα. These variations cancel out at every instant,
keeping the total momentum constant [75]. The above equation
can be expressed as

P β = P β
kin + P β

hid, (15)

where P β
kin = muβ is the kinetic momentum associated with the

motion of the centroid and the component P β
hid = Sαβaα is the

hidden momentum. In this case, if the observer were in the center
of mass, he would see its centroid at rest then we would have a
helical solution.
To obtain the set of MPD equations, we take the MP condition
which has three independent relationships between Sµσ and uσ. By
this condition Si4 is given by

Si4 =
uk
u4

Ski (16)

with this expression we can use the independent components Sik.
Sometimes for the representation of the spin value, it is more
convenient to use the vector spin, which in our case is given by

Si =
1

2u4

√
−gεiklSkl (17)

where εikl is the spatial Lévi-Cività symbol.
When the space-time admits a Killing vector ξυ, there exists a
property that includes the covariant derivative and the spin tensor,
which gives a constant and is given by [50]

pνξν +
1

2
ξν,µS

νµ = constant, (18)

where pν is the linear momentum, ξν,µ is the covariant derivative
of the Killing vector, and Sνµ is the spin tensor of the particle.
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In the case of the Kerr metric, one has two Killing vectors, owing
to its stationary and axisymmetric nature. In consequence, Eq.
(18) yields two constants of motion: the total energy E and the
component z of the angular momentum J [51].

MPD equations for a spinning test particle in a metric of
a rotating body

Given that the spinning test body is small enough compare with
the characteristic length, this body can be considered as a test
particle. In this section, the equations of motion (Eqs. 10 and
11) of the test particle are firstly introduced in the case when the
particle is orbiting in an axisymmetric and stationary spacetime.
Then, we specify the equations of motion for the case of a spinning
test particle for a Kerr metric.
According to R.M. Plyatsko et al. [23], the full set of the exact
MPD equations of motion for a spinning test particle in the Kerr
field, if the MP condition (3) is taken into account, obtain a general
scheme for the set of equations of motion for a spinning test particle
in a rotating field. Plyatsko et al. [23] use a set of dimensionless
quantities y i to achive this. In particular, the Boyer-Lindquist
coordinates are represented by

y1 =
r

M
, y2 = θ, y3 = ϕ, y4 =

t

M
(19)

the corresponding four-velocity are given by

y5 = u1, y6 = Mu2, y7 = Mu3, y8 = u4 (20)

and the spatial spin components by [52]

y9 =
S1

mM
, y10 =

S2

mM2
, y11 =

S3

mM2
. (21)

where M is the mass parameter of the Kerr spacetime. m is the
mass of a spinning particle, a constant of motion for the MP SSC
and implies that

dm

dτ
= 0 (22)
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In addition, they introduce the dimensionless quantities

x =
s

M
, Ê =

E

m
, Ĵ =

Jz
mM

. (23)

representing the proper time s and the constants of motion: Energy
(E) and the angular momentum in the z direction (Jz).
The set of the MPD equations for a spinning particle in the Kerr
field is given by eleven equations. The first four equations are

ẏ1 = y5, ẏ2 = y6, ẏ3 = y7, ẏ4 = y8, (24)

where the dot denotes the usual derivative with respect to x.
The fifth equation is given by contracting the spatial part of
equation (10) with Si (λ = 1, 2, 3). The result is multiplied by
S1,S2, S3 and with the MP condition (3) we have the relationships
[53]:

Si4 =
uk
u4

Ski and Si =
1

2u4

√
−gεiklSkl, (25)

then we obtain

mSi
Dui

ds
= −1

2
uπSρσSjR

j
πρσ (26)

which can be written as

y9ẏ5 + y10ẏ6 + y11ẏ7 = A− y9Q1 − y10Q2 − y11Q3, (27)

where

Qi = Γiµνu
µuν , A =

uπ√
−g

u4ε
iρσSiSjR

j
πρσ. (28)

where g is the determinant of the metric gµν .
The sixth equation is given by

uν
Duν

ds
= 0 (29)

which can be written as

p1ẏ5 + p2ẏ6 + p3ẏ7 + p4ẏ8 = −p1Q1 − p2Q2 − p3Q3 − p4Q4, (30)
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where

pα = gαµu
α. (31)

The seventh equation is given by

E = p4 −
1

2
g4µ,νS

µν (32)

which can be written as

c1ẏ5 + c2ẏ6 + c3ẏ7 = C − c1Q1 − c2Q2 − c3Q3 + Ê (33)

where

c1 = −dg11g22g44u
2S3 − d

(
g2

34 − g33g44

)
g11u

3S2

c2 = dg11g22g44u
1S3 + d

(
g2

34 − g33g44

)
g22u

3S1

c3 = d
(
g2

34 − g33g44

)
g11u

1S2 − d
(
g2

34 − g33g44

)
g22u

2S1

C = g44u
4 − dg44u

4g43,2S1

+ d
(
g44u

4g43,1 − g33u
3g44,1

)
S2 + dg22u

2g44,1S3 (34)

with

d =
1√
−g

(35)

where g is the determinant of the metric gµν and the values of
g11, g22, g33, ... are the components of the metric gµν .

The eighth equation is given by

Jz = −p3 +
1

2
g3µ,νS

µν (36)

which can be written as

d1ẏ5 + d2ẏ6 + d3ẏ8 = D − d1Q1 − d2Q2 − d3Q4 − Ĵ (37)
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where

d1 = −dg11g22g34u
2S3 + dg11g33g34u

3S2

+ dg11g
2
34u

4S2 − dg11g33g44u
4S2

d2 = −dg11g22g34u
1S3 − dg22g33g34u

3S1

− dg22g
2
34u

4S1 + dg22g33g44u
4S1

d3 = −dg11g
2
34u

1S2 + dg22g
2
34u

2S1

+ dg22g33g44u
2S1 − dg11g33g34u

1S2

D = g33u
3 − dg22u

2g34,2S1

+ d
(
g44u

4g33,1 + g11u
1g34,1 − g33u

3g34,1

)
S2

− dg11u
1g34,1S3. (38)

Finally, the last three equations are given by

u4Ṡi + 2
(
u̇[4ui] − uπuρΓρπ[4ui]

)
Sku

k + 2SnΓnπ[4ui]u
π = 0 (39)

which give the derivatives of the three spatial components of the
spin vector (Ṡi): ẏ9, ẏ10 and ẏ11. The full set of the exact MPD
equations for the case of a spinning test particle in a Kerr metric
under the Pirani condition (3) is in the appendix of [23].
After achieving a system of equations of motion for spinning test
particles, we solve them numerically. We use the fourth-order
Runge Kutta method for obtaining the Cartesian coordinates of
the trajectories (x, y, z). For our numerical calculations, we take
the parameters both of the central mass and the test particle such as
the radio, the energy, the angular momentum and the components
of the four velocity (uµ). We calculate the full orbit in Cartesian
coordinates (x, y, z) of a test particle around a rotating massive
body for both spinless and spinning test particles. Then, we make
a comparison of the time that a test particle takes to do a lap in
the two cases.

Equations of motion for a spinning test particle orbiting a
massive rotating body

In the last section, we obtained the general scheme for the set of
equations of motion of a spinning test particle in the gravitational
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field of a rotating body [54]. Now, we consider the case for the
equatorial plane, which is given by the following set of equations:

r′[s] =
dr

ds
; θ′[s] =

dθ

ds
= 0; ϕ′[s] =

dϕ

ds
; t́[s] =

dt

ds
(40)

where s is the proper time.
For our numerical calculation, we separate from the full set of
equations each one of the functions for the four velocity vector
(dxµ/ds) and the differentials for the spatial components of spin
vector (Si). Finally from the eleven differential equations, we obtain
the trajectories of the spinning test particle orbiting around the
rotating central mass (M). We perform our numerical integration
as follow: In the first one, we perform the integration along the
direction of the rotation axis of the massive body, and the second
one in its opposite sense. The value of the components from
initial four velocity vector is obtained by replacing the values of
the constants of motion (E and J), the Carter´s constant (Q) and
the radio in the Carter´s equations [35]

Σṫ = a
(
J − aE sin2 θ

)
+

(r2 + a2) [E (r2 + a2 − aJ)]

∆
,

Σṙ2 = ±R = ±
{

[E (r2 + a2)∓ aJ ]
2

−∆
[
r2 +Q+ (J ∓ aE)2] } ,

Σθ̇2 = ±Θ = ±
{
Q− cos2 θ

[
a2
(
1− E2

)
+

J2

sin2 θ

]}
, (41)

Σφ̇ =
J

sin2 θ
− aE +

a

∆

[
E
(
r2 + a2

)
− aJ

]
, (42)

where J , E and Q are constants and

Σ := r2 + a2 cos2 θ,

∆ := r2 + a2 − 2Mr,

M and a = J/M are the mass and specific angular momentum for
the mass unit of the central source.
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The Carter’s constant (Q) is a conserved quantity of the particle
in free fall around a rotating massive body. This quantity affects
the latitudinal motion of the particle and is related to the angular
momentum in the θ direction. From (41), one analyzes that in the
equatorial plane, the relation between Q and the motion in θ is
given by

Σθ̇2 = Q. (43)

When Q = 0 corresponds to equatorial orbits and for the case when
Q 6= 0, one has non-equatorial orbits.

MPD equations for a spinless test particle in a Kerr
metric

The traditional form of MP equations is given by the Eq (10)
[24] and for our problem, we consider the motion of a spinning
test particle in equatorial circular orbits (θ = π/2) of the rotating
source. For this case, we take [55]

u1 = 0, u2 = 0, u3 = const, u4 = const (44)

when the spin is perpendicular to this plane and the MP condition
(3), with

S1 ≡ Sr = 0, S2 ≡ Sθ 6= 0, S3 ≡ Sϕ = 0. (45)

The equation is given by

−y3
1y

2
7 − 2αy7y8 + y2

8 − 3αε0y
2
7 + 3ε0y7y8 − 3αε0y

2
8y
−2
1

+3αε0y
2
1y

4
7 − αε0

(
1− 2

y1

)
y4

8y
−3
1 + α

(
y6

1 − 3y5
1

)
y3

7y8y
−3
1

+αε0

(
3y3

1 − 11y2
1

)
y2

7y
2
8y
−3
1 + ε0

(
−y3

1 + 3y2
1

)
y7y

3
8y
−3
1 = 0 (46)

where y1 = r/M , y7 = Mu3, y8 = u4, ε0 = |S0| /mr and α = a/M .
When the particle does not have spin (ε0 = 0), the set of equations
(10) with the dimensionless quantities y i (19) and (20) is given by

−y3
1y

2
7 − 2αy7y8 + y2

8 = 0 (47)



Numerical solution of Mathisson-Papapetrou-Dixon... 75

In addition to Eq. (47), we take the condition uµu
µ = 1 and obtain

−y2
1y

2
7 + 4α

y7y8

y1

+

(
1− 2M

y1

)
y2

8 = 1 (48)

We solve the system of equations (47) and (48) for the case of a
circular orbit and obtain the values of y7 = Mu3 and y8 = u4 in
the equatorial plane.

Gravitomagnetic effects for spinning test particles

In the study of the gravitomagnetic effects, we find the
gravitomagnetic force is the gravitational counterpart to the
Lorentz force in electromagnetics. Hence, there is an analogy
between classical electromagnetism and general relativity such
as the possibility that the motion of mass could generate the
analogous of a magnetic field. [56]. In general relativity, the
gravitomagnetic field is caused by mass current and has interesting
physical properties which explain phenomena such as the precession
of gyroscopes or the delay time for test particles in rotating fields
[57].
In this section, we describe some phenomena of the trajectories from
the spin vector, represented by a gyroscope, with the help of the
gravitomagnetic effects such as the clock effect, Thomas precession,
Lense-Thirring effect or Sagnac effect [43, 58, 59].
The first effect that we take is the Lense - Thirring effect which
has the consequence that moving matter should somehow drag with
itself nearby bo-dies. We can do an analogy of this dragging of mass
current with a magnetic field produced by a charge in motion. With
this analogy, we set up two spinning test particles orbiting in an
equatorial plane of a rotating gravitational field. Then, we compare
the trajectories of these two spinning test particles that travel in
opposite directions in the same circular orbit. We found that one of
the particles arrived before the other one. The delay time is due not
only to the dragging of the frame system, but also to the angular
motion of the spinning test particle [8]. On the other hand, the
rotating massive body induces rotation and causes the precession
of the axis of a gyroscope which creates a gravitomagnetic field.
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The form of the figure is the same, either that the spinning particle
orbits in the direction of the central mass or in opposite direction,
but they are out of phase in the space.

Gravitomagnetic clock effect for spinning test particles

In the scond half of the nineteenth century, Holzmüller [60] and
Tisserand [61] with the help of works in electrodynamics, postuled
a gravitomagnetic component for the gravitational influence of the
Sun on the motion of planets. The general relativistic effect of
the rotation of the Sun with regard to the planetary orbits was
calculated by de Sitter [62] and later by Lense and Thirring [63].
After, Ciufolini described the Lense-Thirring precession of satellites
such as LAGEOS and LAGEOS II around the rotating Earth [64].
Then NASA launched a satellite around of the Earth. This satellite
was orbiting in the polar plane and carried four gyroscopes whose
aim was to measure the drag of inertial systems produced by mass
current when the Earth is rotating and to measure the geodesic
effect given by curvature of the gravitational field around the Earth
[65]. This experiment was called Gravity Probe B.

There is a phenomenon called the gravitomagnetic clock effect
which consists in a difference in the time which is taken by
two test particles to travel around a rotating massive body in
opposite directions in the equatorial plane [8]. This effect involves
the difference in periods of two test particles moving in opposite
directions on the same orbit. Let τ+ (τ−) be the proper period that
it takes for a test particle to complete a lap around a rotating mass
on a prograde (retrograde) orbit. In the literature, the majority of
works that study the clock effect consider the difference of periods
for spinless test particles. In this paper, we study the clock effect
for two spinning test particles orbiting around to a rotating body
in the equatorial plane.

To check our results, we review the papers regarding
gravitomagnetic clock effect [66] and compare their results with
ours. The delay time given by the clock effect is t+ − t− = 4πa/c,
where a = J/Mc is the angular momentum density of the central
mass. Tartaglia has studied the geometrical aspects of this
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phenomenon [20, 67], and Faruque yields the equation of the
gravitomagnetic clock effect with spinning test particles as [8]

t+ − t− = 4πa− 6πS0, (49)

where S0 is the magnitude of the spin.
In true units this relation is given by

t+ − t− =
4πJM
Mc2

− 6πJ

mc2
, (50)

where the first relation of the right could be used to measure J/M
directly for an astronomical body; in the case of the Earth t+−t− '
10−7s, while for the Sun t+ − t− ' 10−5s [18].

Numerical comparison for spinless and spinning test
particle via MPD equations

We take the set of MPD equations for a spinning test particle in a
Kerr me-tric given in the second section. This set is composed
of eleven coupled di-fferential equations. We input the initial
conditions in geometrized units as: E = 0.951906, r = 10, a = 1,
M = 1, Carter´s constant: Q = 0.000008 and angular momentum:
J = 3.426929. With these initial values, we obtain the four-vector
velocity (dxµ/ds) with the Carter´s equations (41 - 42). The spatial
components of vector spin (Si) are used to obtain the integration
limits. For our case, the spin components are: S1 = 10−12, S2 = 0.1,
S3 = 0.1. Then, we integrate the set of eleven equations, which were
presented in the section 2.1, with the fourth-order Runge-Kutta
method [29] with a step size of 2.384185× 10−7, while Kyrian and
Semerák integrate with a step of M/100 = 1× 10−2 [22]. With this
code, we get the Cartesian coordinates for a circular orbit when
the spinning test particle travels in the same direction of rotation
of the central source (a) and when it orbits in opposite sense. We
register the coordinate time (t = x4) that the test particle takes to
do a lap in each sense of rotation. Finally, we take the delay time
in these two laps and obtained in non-geometrized units

∆tspinning = t+ − t− = 2.5212079035× 10−8s. (51)
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Our numerical result is in according with previous works [8, 43, 68],
made of an analytic via. In this result, we found that the clock effect
is reduced by the presence of the spin in the test particle. Both
Mashhoon [43] and Faruque [9] develop an approximation method
for studying the influence of spin on the motion of spinning test
particles [69], while we use an integration method of the full set of
MPD equations in order to obtain the value of the coordinate time
(t).

This delay time is due to the drag of the inertial frames with respect
to infinity and is called the Lense-Thirring effect [70]. In the case of
the spinning test particles, there is not only a difference in the time
given by the Lense-Thirring effect, but also by a coupling between
the angular momentum of the central body with the spin of the
particle [71]. The features change if the test particle rotates in
one direction or the other; therefore, the period is different for one
direction and for the other, and for whether or not the particle has
spin.

Results of the spin vector

In regard to the spin tensor (Sµν), sometimes, for the numerical
calculation, it is more convenient the spin vector (Si) which is given
by the relationship (25). For our numerical calculations, we take
the case when the spin is orthogonal to the equatorial plane, that
is, S1 = 0, S2 6= 0 and S3 = 0. In this case, we present our
main results with two graphs. For the case (S2 6= 0), the spin has
a tiny nutation (Figure 1). The first graph shows the motion of
the spin vector in Boyer-Lindquist coordinates (S1, S2, S3). Since
both the radius (S1) and the azimuth angle are constant the spin
vector describes an oscillating movement with a maximum height
of 2×10−14. This oscillation is very short compared with the radius
(r = 10) of the circle that describes the trajectory.

If we draw at the same time the orbital motion and the spin
motion, we obtain an ascending and descending movement within
an enveloping sinusoidal wave (Figure 2). This movement is
called ”bobbing” [73]. Moreover, this ascendant and descendent
movement is due to the supplementary spin condition that we take
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Partial section of the particle trajectory

Particle’s trajectory
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Figure 1: The bobbing of the spinning test particle with the Pirani condition
(geometrized units)

to be the MP condition (Sµνuν = 0), where uν is the center of mass
four velocity. In this situation, the center of mass is measured in
its proper frame (that is, the frame is at rest). This phenomenon
is due to the shifting of the center of mass, and in addition, the
momentum of the particle not being parallel to its four-velocity
in general. There is a “hidden momentum” that produces this
nutation. In an analogy with the electric (E) and magnetic (B)
fields, there would be a E×B drift, that is, the motion is des-cribed
by helical motions [74]. Costa et al. describe this physical situation
due to the MP supplementary condition [75]. In the case that we are
studying, the world tube is formed by all possible centroids which
are determined by the MP spin supplementary condition. The size
of this tube is the minimum size of a classical spinning particle
without violating the laws of Special Relativity. Additionally,
this world tube contains all the helical solutions within a radius
R = S/M . The electromagnetic analogue of the hidden momentum

is −→µ ×
−→
E which describes the bobbing of a magnetic dipole orbiting

a cylindrical charge. Let the line charge be along the z axis, the
−→
E

the electric field it and a charged test particle with magnetic dipole
moment −→µ orbiting it. The particle will have a hidden momentum−→
P hid = −→µ ×

−→
E and oscillates between positive and negative values

along the z axis with ascendant and descendent movements in order
to keep the total momentum constant. According with other papers
that use the MPD equations, the novelty of our work is that we
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Trajectory of the spinning  test particle 
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Figure 2: The spinning test particle with the Pirani condition has a helical
trajectory (geometrized units)

calculate numerically the full set of MPD equations for the case
of a spinning test particle in a Kerr metric. Secondly, we take
the spin without restrictions in its velocity and spin orientation.
In the paper by Kyrian and Semerák the third example that they
work, refers to the particular case when the spin is orthogonal to
the equatorial plane in a Kerr metric [22]. On the other hand, our
interest it is not only in to describe the trajectories of spinning
test particles, but also to study the gravitomagnetic clock effect
via the MPD equations. Therefore, we calculate numerically both
trajectories, i.e., in the same and in the opposite way, in the case
of a circular orbit. We measure the delay time for three different
situations, namely, for the spinless test particle, traveling one way
and the opposite, and for the spinning test particle for two different
spin configuration. Regarding the spin configuration for the first,
the spin has its value orthogonal to the equatorial plane of the
trajectory, and for the second, the spin has no restrictions. For the
numerical solution, we give the full set of MPD equations explicitly,
while that Kyrian and Semerak only name them. Also, we give the
complete numerical solution. In the majority of cases, the solutions
are partial because it is impossible to solve analytically a set of
eleven coupled differential equations. The recurrent case that they
solve is a spinning test particle in the equatorial plane and its spin
value is constant in the time (S⊥ = constant) [43].
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Conclusions

In this paper, we take the Mathisson-Papapetrou-Dixon (MPD)
equations yielded by Plyatsko et al. and apply them to the case of
a spinning test particle orbiting around a rotating massive body in
an equatorial plane. In addition, we yield a scheme for the eleven
equations of the full set of equations of motion when the particle
is orbiting any gravitational field. In the second part, we calculate
the numerical solution of the trajectories in Cartesian coordinates
(x, y, z) of the spinning test particles orbiting in a Kerr metric
and compare the time of two circular orbits in the equatorial plane
for two test particles that travel in the same orbit but in opposite
directions. There is a delay time for a fixed observer relative to
the distant stars. This phenomenon is called clock effect. For the
case of the spinning test particles, this delay time is given not only
by the angular momentum from the central mass, but also by the
couple between the angular momentum from the massive rotating
body and the parallel component of the spin of the test particle. In
the MPD equations, this couple is given by the contraction between
the components of the Riemman tensor (Rµ

νρσ) and the spin tensor
(Sρσ).

On the other hand, we obtained the graphs that describe both the
orbital motion and the motion of the spin vector freely rotating
in the polar component (S2 6= 0). With this kind of motion,
we make an analogy with the bobbing of a magnetic dipole in a
electromagnetic field.

In the future, we will work on the set of equations of motion of a
test particle both spinless and spinning for spherical orbits, that is,
with constant radius and in non-equatorial planes in a Kerr metric.
In addition, we are interested in relating these equations with the
Michelson - Morley type experiments.
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