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Abstract 
Over the past decade, short-wave infrared (SWIR) spectroscopy has made significant advances in detecting geochemical variations in 
minerals like white mica, alunite, and chlorite for exploring hydrothermal ore deposits. These variations provide valuable clues, indicating 
changes in temperature, pH, and fluid oxidation state towards the mineralized center. However, small calibration differences among devices 
challenge data integration. This study evaluates the 2200 nm Al-OH absorption feature in four white mica SWIR spectroscopy databases 
collected by TerraSpec™ and OreXpress™ from samples at the Grasshopper porphyry prospect. It evaluates three normalization 
methodologies: rescaling, mean normalization, and Z-score, yielding p-values for successful data merging of up to 0.75. Findings suggest 
effective normalization methods across devices, reducing biases from uncalibrated spectrometers. This research offers a methodology to 
correct SWIR database biases, facilitating accurate data integration across instruments for vectoring analysis. 
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Evaluación de métodos de normalización aplicados a bases de datos 
minerales de Espectrografía de Infrarrojo Cercano (SWIR) provenientes 

de múltiples instrumentos y para análisis de vectores de exploración 
 

Resumen 
Durante la última década, la espectroscopía de infrarrojo de onda corta (SWIR) ha experimentado avances significativos en la detección 
de variaciones geoquímicas en minerales como la mica blanca, la alunita y la clorita para explorar depósitos de minerales hidrotermales. 
Estas variaciones proporcionan pistas valiosas, indicando cambios en la temperatura, el pH y el estado de oxidación del fluido hacia el 
centro mineralizado. Sin embargo, las pequeñas diferencias de calibración entre dispositivos representan un desafío para la integración de 
datos. Este estudio evalúa la característica de absorción del Al-OH a 2200 nm en cuatro bases de datos de espectroscopía SWIR de mica 
blanca recopiladas por TerraSpec™ y OreXpress™ a partir de muestras en el prospecto de pórfido Grasshopper. Se analizan tres 
metodologías de normalización: reescalado, normalización de la media y variable centrada reducida, obteniendo valores de p para la fusión 
exitosa de datos de hasta 0.75. Los hallazgos sugieren métodos de normalización efectivos entre dispositivos, reduciendo sesgos de 
espectrómetros no calibrados. Esta investigación ofrece una metodología para corregir sesgos de la base de datos SWIR, facilitando la 
integración precisa de datos entre instrumentos para análisis de vectores. 
 
Palabras clave: Espectroscopía de reflectancia; SWIR; Mica blanca; normalización de bases de datos. 

 
 
 

1 Introduction 
 
The use of shortwave infrared (SWIR) spectroscopy to 

identify changes in the geochemistry of alteration minerals 
that can be used as markers for the search for hydrothermal 
ore deposits has made major strides in the last ten years 
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[1,2]. SWIR spectroscopy is a technique that collects 
reflectance spectra in the range of 1300-2500 nm caused 
by vibrational process of molecular bonds such as OH, 
H2O, NH4, CO3, Al- OH, Mg-OH, and Fe-OH [3]. These 
bonds have a distinctive absorption feature and are usually 
present in the structure of alteration minerals including  
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Figure 1. This image presents behavior plots of reflectance spectra for white 
mica, alunite, and chlorite, corrected using hull quotient. White mica is 
characterized by a distinctive Al-OH absorption feature at 2200 nm. Alunite 
exhibits a significant OH and H2O absorption feature at 1480 nm. In contrast, 
chlorite shows distinct dips for the Fe-OH absorption feature at 2250 nm and 
the Mg-OH feature at 2340 nm. These plots are valuable for identifying and 
distinguishing these minerals in geological studies. 
Source: authors. 

 
 

phyllosilicates, hydroxylated silicates, sulphates, and carbonates 
(Fig. 1) [4]. Studies of the variation of the spectral absorption 
features indicate changes in the mineral chemistry as a function of 
physicochemical conditions under which they were formed [5]. 

In the context of porphyry deposits, the study of the 
spectral variations in hydrothermal minerals such as white 
mica, alunite, and chlorite has provided relevant vectoring 
information towards the mineralized center produced by 
changes in temperature, pH, and/or oxidation state of the 
fluids [6-8]. For example, at the Copper Cliff porphyry Cu 
deposit in Montana, the wavelength position of the Al-OH 
spectral absorption feature at ~2200 nm in white micas 
proved effectiveness in the identification of two distinct 
phyllic alteration events: 1) an early green-colored 
expression associated with Fe-bearing micas and high grades 
of hypogene copper mineralization characterized by longer 
Al-OH absorption wavelengths (2206-2210 nm) at the 
deposit center, and 2) a later barren expression characterized 
by Fe-poor bearing white-colored micas and shorter Al-OH 
absorption wavelengths (2197-2206 nm). The difference in 
the location of the white mica Al-OH absorption feature 
between both phyllic alteration styles is principally 
controlled by chemical variations in the octahedral site within 
the white mica structure and attributed to redox changes in 
the system, where the early event was formed by oxidized 

magmatic fluids and the latest by more reduced fluids [8]. 
Likewise, for alunite the wavelength position of the OH 

absorption feature at ~1480 nm has reported systematic 
trends in the range of 1478-1482 nm, with the longest 
wavelengths towards the intrusive center at the Lepanto 
lithocap in Philippines [6]. This increase in the wavelength 
position of the OH absorption feature in alunite is associated 
with a higher content of Na and lower K, following the 
Na/(Na+K) relationship which is related to a higher 
formation temperature (Chang et al., 2011). For chlorite, the 
Fe-OH absorption feature around 2250 nm and the Mg-OH 
located near 2340 nm showed systematic decreases from 
2254 nm to 2249 nm and from 2343 nm to 2332 nm towards 
the center of the Batu Hijau Cu-Au porphyry system in 
Indonesia. The shifts in the wavelength position of the Fe-
OH and Mg-OH absorption features correlate with variations 
in the content of Fe2+ and Mg2+ in octahedral site of the 
chlorite and linked to fluid temperature [9]. 

The successful application of SWIR spectroscopy as a 
vectoring tool is based on the instrument precision. However, 
during data collection most exploration projects may use 
multiple SWIR instruments with different calibration 
settings. As a result, in cases when no inter-instrument 
calibration is performed, variability of the value of a spectral 
feature among SWIR instruments has been identified and the 
application of data for vector analysis is often difficult [5,10-
11]. This issue opens the possibility to develop a 
methodology to compare, quantify and correct the SWIR 
databases biases for an accurate integration of data from 
multiple instruments, which is the focus of the present work. 

 
2 Materials and methods 

 
2.1 Study case 

 
To evaluate the different normalization approaches 

mentioned above, we have selected four SWIR databases taken 
from the work conducted by Uribe-Mogollon and Maher (2020) 
[11] at the Grasshoper porphyry prospect in Montana (Fig. 2). 
The spectral data correspond to white micas from a suite of 
eighty-five rock samples presenting distinctive phyllic alteration 
events and collected with two SWIR devices (1) OreXpressTM, 
manufactured by Spectral Evolution, and (2) TerraSpecTM 4 Hi-
Res Mineral Spectrometer, manufactured by Analytical Spectral 
Devices. For ensuring data reproducibility, it was employed in 
this research a measurement methodology for OreXpress™ and 
TerraSpec™ devices with a 20-mm probe window, conducting 
50 repeat measurements on six samples under identical 
conditions. Additionally, the remaining samples underwent 10 
repeat measurements, contributing to the overall reliability of the 
study. Detailed information regarding the methodology and 
context of the samples can be found in the cited source.   

The four databases in this study are: 1) OreXpressTM 
13MAR2018 (number of samples=85), 2) TerraSpecTM 
14FEB2018 (number of samples =35), 3) TerraSpecTM 
25FEB2018 (number of samples =85), and 4) TerraSpecTM 
13MAR2018 (number of samples =85).  

All databases present the same number of samples (85 
samples), except for TerraSpecTM 14FEB2018 where only a 
sub-suite of 35 samples was measured.
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Figure 2. Location of the Grasshopper Porphyry prospect in Montana. In 
color red is signaled the boundaries of the porphyr. 
Source: adapted from Uribe-Mogollon and Maher (2020). 

 
 

2.2 Phyton script: data arrangement, visualization plots 
and statistical tables 

 
The spectral data of each sample consists of a CSV file 

containing the reflectance percentage of each wavelength 
in the range of 1300 to 2500 nm. Since the wavelength 
position of the white mica Al-OH spectral absorption 
feature is at ~2200 nm, a Python script was built to extract 
it in each sample in all databases. This would be the 
wavelength position where the reflectance percentage is 
closer to 0%. In addition to the extraction of the spectral 
feature, the Python script creates frequency tables, 
histograms, and Kernel density estimation (KDE) plots to 
visualize the distribution of the data in each database, and 
a statistical table with parameters such as the mean, 
median, standard deviations, quantiles, minimum, and 
maximum values. All the above products are essential to 
the selection of the database of reference and the 
normalization method to be applied. 

It is noteworthy that KDE is preferred for a better 
representation of the distribution of the data [13-15], and 
it is used in this study to compare between the reference 
database and the normalized databases. The advantage of 
KDE is that, contrary to histograms, the shape of the data 
is not lost by the placement of bins, as kernels are centered 
on each data point. For more information about the KDE 
calculation and bandwidth selection please refer to 
Appendix A. 

 
 

2.3 Application of statistical methods 
 
Statistical normalization refers to data transformation 

processes in which databases on different value ranges are 
adjusted to one in reference, or changes in the probability 
of distribution are made to align the databases to one in 
reference. The following are the statistical normalization 
methods used in this study. 

 
2.3.1. Rescaling normalization 

 
Also known as min-max normalization, this method 

consists in the range normalization of independent variables, 
adjusting the minimum and maximum values in a database to 
one in reference. It is expressed as the eq. (1) [12]: 

 

𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =
(𝑥𝑥 − 𝑦𝑦) ∗ (𝑏𝑏 − 𝑛𝑛)

(𝑛𝑛 − 𝑦𝑦) + 𝑛𝑛, (1) 

 
where the value of a data point in the initial database is 

represented by (x), the mini-mum and maximum values 
from the reference database are represented by (a) and (b) 
respectively, and the initial database minimum and 
maximum value are correspondingly represented by (y) 
and (z). 

 
2.3.2. Mean normalization 

 
The mean normalization method allows the 

transformation and fit of a database to one in reference by 
using a conjunction of its means. It is expressed in the eq. 
(2) [12]: 

 

𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  𝜇𝜇𝑅𝑅 + (𝑋𝑋 − 𝜇𝜇𝑖𝑖), (2) 

 
where the value of a data point in the initial database is 

represented by (x), the mean value from the reference 
database is represented by (μR), and the initial database 
mean value is represented by (μi). 

 
2.3.3. Z-score normalization 

 
Also known as a standard score, this normalization 

technique allows the standardization of the standard 
deviation in relation to the mean of the reference database. 
It is expressed in the eq. (3) [12]: 

 

𝑥𝑥(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =  μ𝑅𝑅 + (𝑋𝑋 − μ𝑖𝑖) ∗  𝜎𝜎𝑅𝑅/𝜎𝜎𝑖𝑖 , (3) 

 
where the value of a data point in the initial database is 

represented by (x), the mean value from the reference 
database is represented by (μR), the initial database mean 
value is represented by (μi), and the standard deviation 
from the reference database and the initial database is 
represented by (σR) and (σi) respectively.



Paredes et al / BOLETÍN DE CIENCIAS DE LA TIERRA, 56  Julio - Diciembre, 2024 

50 

Table 1.  
Descriptive statistics for the SWIR databases from Grasshopper. 

Statistical 
parameter 

TerraspecTM 
14FEB2018 

TerraspecTM 
25FEB2018 

TerraspecTM 
13MAR2018 OreXpressTM 

Count 35.0 85.0 85.0 85.0 
Ave 2202.1 2201.6 2201.5 2203.6 

Median 2202.0 2201.0 2201.0 2203.0 
Min 2197.0 2194.0 2194.0 2197.0 
Max 2207.0 2208.0 2208.0 2210.0 

StdDev 2.9 3.9 4.0 3.7 
Q1 2199.0 2198.0 2198.0 2200.0 
Q3 2205.0 2205.0 2205.0 2207.0 

Source: the authors. 
 

3 Results 
 

3.1 Descriptive statistics 

Table 1 shows the descriptive statistics for each of the SWIR 
databases from the Grasshopper prospect. TerraSpecTM 
25FEB2018 and TerraSpecTM 13MAR2018 present almost 
identical statistical parameters. However, the average and median 
values of these are 2 nm lower than OreXpressTM. The minimum 
and maximum values for the TerraSpecTM 25FEB2018 and 
TerraSpecTM 13MAR2018 are 2194 and 2208 nm respectively, 
whereas for the OreXpressTM these are 2197 and 2210 nm. 

TerraSpecTM 14FEB2018 has an average and median 
values of 2202 nm, which is 1 nm longer than TerraSpecTM 
25FEB2018 and TerraSpecTM 13MAR2018, and 1 nm shorter 
than OreXpressTM. The minimum value for TerraSpecTM 
14FEB2018 and OreXpressTM is 2197 nm. However, the 
maximum value for the TerraSpecTM 14FEB2018 is 2207, 
which is 3 nm shorter than OreXpressTM. 

In terms of the standard deviation, it is observed that 
TerraSpecTM 14FEB2018 has the lowest value (2.9) among 
all SWIR databases, but it also has the lowest number of 
samples (n=35). The best standard deviation between the 
databases presenting equal number of samples (n=85) is 
found in the OreXpressTM (3.7). Therefore, this has been 
selected as the database of reference to use in the 
normalization methods. Fig. 3 shows the histograms of all 
TerraSpecTM databases plotted against the OreXpressTM, and 
Fig. 4 shows all databases plotted as KDE density functions.  

 
3.2 Normalization methods 

 
Fig. 5 shows each TerraSpecTM database normalized to the 

reference OreXpressTM database using, (A) rescaling 
normalization, (B) mean normalization, and (C) z-score 
normalization. The descriptive statistical parameters of the 
normalized database are shown in Tables 2, 3, and 4. After the 
application of the rescaling normalization method, Fig. 5-A and 
Table 2 present the TerraSpecTM databases with the respectively 
normalized 2197 nm and 2210 nm minimum and maximum 
values of the OreX-pressTM database. For the mean 
normalization method, it can be observed in Fig. 5-B and Table 
3 that all the TerraSpecTM databases means coincide with the 
OreXpressTM (2203.6 nm) mean. Finally, Fig. 5-C and Table 4 
show the z-score normalization where all TerraSpecTM databases 
present a standard deviation of 3.7 and a mean value of 2203.6 
nm like the OreXpressTM database.

Figure 3. This Figure displays histograms illustrating the minimum wavelength 
positions for each TerraSpec™ sampling dataset on specific dates, comparing 
them to the minimums from the OreXpress™ dataset. The Figure contrasts the 
OreXpress™ database (shown in grey) with three TerraSpec™ datasets: (A) 
TerraSpec™ 25FEB2018 (depicted in blue), (B) TerraSpec™ 13MAR2018 (in 
yellow), and (C) TerraSpec™ 14FEB2018 (in orange). Notably, there is a 
consistent 2 nm difference observed between the two devices. 
Source: authors. 
 
 

Figure 4. Graph presenting the KDE distribution for each database from the 
Grasshopper porphyric prospect. In the Figure is compared the OreXpress™ 
database (grey) against TerraSpec™ 25FEB2018 (blue), TerraSpec™13MAR2018 
(yellow), and TerraSpec™ 14FEB2018 (orange). It can also be observed the 
generalized 2 nm discrepancy between both devices. 
Source: authors. 

 

3.3 Method viability determination 
 

Results of the K-S two sample test are presented in Table 5 as a 
comparison between each TerraSpecTM database versus 
OreXpressTM database. In this table is presented the null and 
alternative hypothesis validity between each normalization method 
applied to each sampling date from the TerraSpecTM databases 
referenced to the OreXpressTM database. The acceptance of these 
hypotheses is established by the (p) value, which is an equivalence 
for the maximum difference between the cumulative distributions 
and the sample size. With the establishment of a 0.05 acceptance 
value (α) (this value is commonly used in the scientific community 
for this type of test), its determined that both databases have similar 
probability of distribution when the (p) value is equal to or larger 
than alpha (α) (H0: p≥a).
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Figure 5. KDE plots of all TerraSpec™ databases from the Grasshopper porphyric 
prospect normalized to the reference OreXpress™ database by: (A) mean 
normalization with a dotted line representing the normalized mean value; (B) 
rescaling normalization with dotted lines representing the minimum and maximum 
values selected as normalization reference; and (C) z-score normalization with a grey 
area representing the normalized standard variation value. 
Source: authors. 

Table 2.  
Statistical parameters after rescaling normalization. 

Statistical 
parameter 

TerraspecTM 
14FEB2018 

rescaling 

TerraspecTM 
25FEB2018 

rescaling 

TerraspecTM 
13MAR2018 

rescaling 

OreXpressTM 
rescaling 

Count 35.0 85.0 85.0 85.0 
Ave 2203.6 2204.1 2204.0 2203.6 

Median 2203.5 2203.5 2203.5 2203.0 
Min 2197.0 2197.0 2197.0 2197.0 
Max 2210.0 2210.0 2210.0 2210.0 

StdDev 3.8 3.6 3.7 3.7 
Q1 2199.6 2200.7 2200.7 2200.0 
Q3 2207.4 2207.2 2207.2 2207.0 

Source: the authors. 
 

Table 3.  
Statistical parameters after mean normalization. 

Statistical 
parameter 

TerraspecTM 
14FEB2018  
mean norm. 

TerraspecTM 
25FEB2018  
mean norm. 

TerraspecTM 
13MAR2018 
mean norm. 

OreXpressTM 
mean norm. 

Count 35.0 85.0 85.0 85.0 
Ave 2203.6 2203.6 2203.6 2203.6 

Median 2203.5 2203.0 2203.1 2203.0 
Min 2197.0 2196.5 2196.6 2197.0 
Max 2210.0 2209.5 2209.6 2210.0 

StdDev 3.8 3.6 3.7 3.7 
Q1 2199.6 2200.2 2200.3 2200.0 
Q3 2207.4 2206.7 2206.8 2207.0 

Source: the authors. 
 
Table 4.  
Statistical parameters after z-score normalization. 

Statistical 
parameter 

TerraspecTM 
14FEB2018  

z-score norm. 

TerraspecTM 
25FEB2018 

z-score norm. 

TerraspecTM 
13MAR2018 
z-score norm. 

OreXpressTM 
z-score 
norm. 

Count 35.0 85.0 85.0 85.0 
Ave 2203.6 2203.6 2203.6 2203.6 

Median 2203.5 2203.0 2203.1 2203.0 
Min 2197.1 2196.4 2196.5 2197.0 
Max 2209.8 2209.6 2209.6 2210.0 

StdDev 3.7 3.7 3.7 3.7 
Q1 2199.6 2200.2 2200.2 2200.0 
Q3 2207.3 2206.8 2206.8 2207.0 

Source: the authors. 

Table 5.  
Comparison between the statistical results from the application of the K-S two simple 
test to each TerraSpecTM sampling date database versus OreXpressTM database. 

P-Value 

OreXpress TM  
vs 

TerraspecTM 

14FEB2018  

OreXpress TM  
vs 

TerraspecTM 
25FEB2018 

OreXpress TM  
vs 

TerraspecTM 
13MAR2018 

Non-
normalized data 0.038 0.017 0.017 

Rescaling 
norm. 0.705 0.366 0.366 

Mean norm. 0.705 0.366 0.477 
Z-score norm. 0.705 0.366 0.477 

Source: the authors. 
 
 
The pre-normalization TerraSpecTM 25FEB and 13MAR 

database dates present (p) values results of 0.017 in the 
comparison against OreXpressTM database, and for 
TerraSpecTM 14FEB this result is 0.038 in comparison to 
OreXpressTM database. After the application of the 
normalization methods the test presents a (p) value of 0.366 
in all the normalization methods for TerraSpecTM 25FEB vs 
OreXpressTM, and in the TerraSpecTM 13MAR for the 
rescaling method. The z-score and mean normalization 
methods result in a (p) value of 0.477 in the TerraSpecTM 
13MAR compared to the OreXpressTM database. In all the 
normalization methods the TerraSpecTM 14FEB obtained 
(p) values of 0.705. 

 
4 Discussion 

 
Fig. 6 presents a graphical summary of the transformation 

methods in the form of boxplots. In these plots, the general 
statistical behavior can be observed by looking at the 
minimum, maximum, median, and mean values (shown as 
white dots). In Fig. 6-A, it is possible to observe the non-
normalized data, where the disparity is evidenced in the mean 
values. For example, the OreXpressTM database mean 
deviates from the TerraSpecTM 14FEB database by 1.5 nm, 
and from the TerraSpecTM 25FEB database by 2.0 nm. 

 

 
Figure 6. Boxplots from the Grashopper porphyric prospect presenting: (A) 
non-normalized data, (B) data after the mean normalization method, (C) data 
after rescaling normalization method, and (D) data after z-score 
normalization method. In blue TerraSpec™ 25FEB, yellow TerraSpec™ 
13MAR, orange TerraSpec™ 14FEB, and grey OreXpress™. 
Source: authors. 
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In Fig. 6-B, it is presented the TerraSpecTM databases 
transformation by the rescaling normalization method. In this 
case, we used the OreXpressTM 2197 nm minimum and 
2210 nm maximum values as reference. TerraSpecTM 
25FEB and TerraSpecTM 13MAR initially had 2194 nm as 
minimum value and 2208 nm as maximum value. In the same 
way, for TerraSpecTM 14FEB these values initially were 
2197 nm and 2207 nm, respectively. By adjusting the range 
of the databases with respect to the OreXpressTM, it was 
observed that the mean values of the TerraSpecTM databases 
changed. The mean value adjustment is approximately 0.5 
nm or 67% for the TerraSpecTM 25FEB and TerraSpecTM 
13MAR databases in comparison to the OreXpressTM 
database. For TerraSpecTM 14FEB, the mean value changed 
from 2201 nm to 2203.6 nm, by extending the maximum 
value to 2210 nm.   

The mean normalization method is shown in Fig. 6-C, 
where all the TerraSpecTM databases mean, values were set 
to the OreXpressTM database 2203 nm mean value. By 
transforming the means, it is observed a displacement in the 
minimum and maximum values. For example, the initial 
TerraSpecTM 25FEB which had a 2194 nm minimum and a 
2208 nm maximum values were converted to 2196.5 and 
2209.5 nm, respectively. The positive shift corresponds to ~2 
nm of difference between the original and reference mean 
values. This same shift is observed in the other databases. 

The z-score normalization is observed in Fig. 6-D. This 
method places the OreXpressTM 2203.6 nm mean value and 
3.7 nm standard deviation value for reference in all the 
TerraSpecTM databases. As a consequence, there is an 
approximate difference of 0.1 nm in the minimum and 
maximum values for all normalized TerraSpecTM databases. 
In Fig. 5-C, the darker gray area that goes between 2199.9 
and 2207.3 nm represents one standard deviation from the 
mean value, equivalent to 63% of the TerraSpecTM 
datapoints. 

In general, similar results are observed in the application 
of the z-score and mean normalization methods. It can be 
noted a successful data adaptation after the application of the 
normalization methods, being in general the highest value for 
improvement for the TerraSpecTM 14FEB2018 and the 
lowest for the TerraSpecTM 25FEB2018. However, the 
rescaling normalization method is less reliable as it presents 
bigger differences in the distribution of the accumulated 
database values. This is especially visible in the gap at the 
“tails” in comparison of the mean normalization method (Fig. 
7). In addition, the K-S two sample test supports that the 
mean and z-score normalization methods are the most 
reliable (Table 5).  

Comparing TerraSpecTM 14FEB2018 database results in 
the Fig. 6 is noticeable how the database gets excessively 
deformed consequence of application of these normalization 
methods in a database which its wavelength range of 
distribution has a large difference in comparison to the base 
normalization database (in this case TerraSpecTM 
14FEB2018 is 23,1% shorter than OreExpressTM). Thus, as 
the method reshapes the database to be contained in the base 
normalization database it is not recommended the application 
of the normalization method in this type of databases. 

 

 
Figure 7. Low-to-high plot of variation comparing the sequence numbers 
from the wavelength position from the Grashopper porphyric prospect 
database after: (A) rescaling normalization method, and (B) mean 
normalization method. Each sample was assigned a sequential number. 
Source: authors. 

 
 

5 Conclusion 
 
The proposed goal of this research of developing a 

methodology that allows the normalization of databases from 
different uncalibrated spectrometers was achieved. It was 
developed a Python scrip that filters and organizes SWIR 
databases according to the desired absorption feature range 
and presents the results in visually convenient figures and 
tables with common statistical parameters. It was applied and 
discussed the rescaling normalization method, mean 
normalization method, and the z-score normalization 
method. In general, the most reliable methods to normalize 
are the mean normalization and z-score methods, because 
these unify the mean value and re-solve efficiently the data 
deviation as presented in the methods discussion. Having 
both the highest (p) values in the K-S two sample test and 
presenting the lowest relative deformation in the wavelength 
position variation comparison between databases. It is 
expected that the findings of this work will have a great 
impact in the mineral exploration industry by allowing better 
processing of SWIR databases and providing a tool that 
permits the creation of a normalized and more robust 
composite that is useful during the interpretation process of 
SWIR data as vectoring analysis. Future works should focus 
on the practical application of this methodology, in addition 
to other ab-sorption features and minerals. 
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Appendix A 
 

Kernel density estimation method calculation 
 
Kernel is a non-parametric estimation technique which 

uses a weighting function to produce a continuous setting as 
a probability density function from a random variable. It 
produces a function for each datapoint that satisfies eq. (A1- 
A2): 

 

a) Normalization: ∫ 𝐾𝐾(𝑢𝑢)𝑛𝑛𝑢𝑢 = 1;∞
−∞  (A1) 

b) Symmetry: K(-u) = K(u) for all values of u. (A2) 

 
The normalization of the kernel (K) parameters allows the 

construction of the kernel density estimation (KDE) function, 
and the symmetry is to ensure that the average of the KDE is 
the same as the original data sample. 

With the weighting obtained for each datapoint, it is 
calculated the density of the probability with the eq. (A3) 
[12]. 

 

f̂h(x) =
1
n�Kh(x − xi)

n

i=1

=
1

nh�K �
x − xi

h
� ,

n

i=1

 (A3) 

 
Where the density distribution (f̂) is the final function, the 

kernel (K) is a window function, the bandwidth (h) is the 
smoothing parameter of the function, and the number of 
datapoints (n) is determined by the data sample. 

The bandwidth for the KDE selected is 0.5 as it reduces the 
mean integrated squared error. It was obtained using the rule-of-
thumb [12] bandwidth estimator at the OreXpress™ dataset, 
resulting as an average of the application in the Gaussian-like 
distribution shapes produced by the dataset division by its mean 
and choosing the one with the lowest value. 

The result is a function that estimates the probability 
density of the initial variables, allowing smoothing the data 
and providing the probability shape of each dataset. 
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