
Publicado
Biogenic production and their sedimentary record: a review
Producción biogénica y su registro sedimentario: una revisión
DOI:
https://doi.org/10.15446/rbct.n55.110363Palabras clave:
sedimentology; biogenic materials; biogenic production; fossil record; nomenclature; biogenic-descriptive classifications (en)sedimentología; materiales biogénicos; producción biogénica; registro fósil; nomenclatura; clasificaciones biogénicas-descriptivas (es)
Descargas
The recognized biogenic production corresponds to corporal materials, and ethological structures (ichnofossils). Ethological structures include bioturbation, bioerosion, and biogenic granule-classification structures. Biogenic materials and structures traditionally include biogenic aggregates (such as fecal pellets or castings and coprolite grapstones); bioturbation structures or ichno-structures (burrows, tracks, trails, and root penetration structures); biogenic granulo-classification or biostratification structures (algal and bacterial stromatolites of graded bedding of biogenic origin); bioerosion structures (borings, scrapings, and bitings); and biolitites (e.g., reef structures). This paper presents a new classification system for biogenic materials applicable to the fossil record. It summarizes our efforts to standardize terminology, use new and existing terms, correct any contradictions in some terms, and facilitate teaching and learning processes related to this subject. In our proposal, biogenic production is used for any materials or structures produced, built, modified, or used by living organisms. Biogenic production includes the following five groups: direct production (corporal, biodeposition, bioexhudation, and bioclaustration materials and structures); bio-modified materials and structures (predation, bioerosion, and bioturbation); bio-built materials and structures (biofoodcaches, bioconstructions, and biostratification structures); microbial induced materials and structures; and biotools. All types of biogenic production have examples in the sedimentary record.
La producción biogénica reconocida por diferentes autores corresponde a materiales y estructuras corporales, y a las estructuras etológicas (icnofósiles). Las estructuras etológicas incluyen las estructuras de bioperturbacion, las estructuras de bioerosión y las estructuras sedimentarias de bioestratificación. Tradicionalmente, las estructuras biogénicas incluyen los agregados biogénicos (tales como gránulos o castings fecales y agregados de coprolitos); estructuras de bioturbación (icnoestructuras: madrigueras, huellas, rastros, y estructuras de penetración de raíces); estructuras biogénicas de granuclasificación o bioestratificación (estromatolitos de algas y de bacterias, laminaciones de origen biogénico); estructuras de bioerosión (perforaciones, huellas de alimentación); y biolititos (p.ej., arrecifes). Este documento presenta un nuevo sistema de clasificación de los materiales biogénicos aplicable al registro fósil. Esta propuesta resume nuestros esfuerzos para estandarizar la nomenclatura, utilizando términos nuevos y existentes, corregir cualquier contradicción en algunos términos, y facilitar los procesos de enseñanza y aprendizaje relacionados con este tópico. En nuestra propuesta, la producción biogénica se utiliza para cualquier tipo de material o estructura que los organismos producen, construyen, modifican o utilizan a lo largo de su existencia. Incluye los siguientes cinco grupos: producción directa (materiales y estructuras corporales, de biodeposición, bioexudación y bioclaustración); materiales y estructuras bio-modificados (depredación, bioerosión y bioturbación); materiales y estructuras de bioconstruccion (biofoodcaches, bioconstrucciones y sedimentos biogénicos); materiales y estructuras inducidos por microorganismos; y bioherramientas. Todos los tipos de producción biogénica tienen ejemplos en el registro sedimentario.
Referencias
Friedman, G.M. and Sanders, J.E., Principles of Sedimentology. New York: John Wiley and Sons, 1978.
Boggs, S., Principles of sedimentology and stratigraphy. Fourth edition. New Jersey: Prentice Hall, 2006.
Selley, R.C., Cocks, R.L., Plimer, I.R., and McCall, J. Eds., Encyclopedia of Geology [Online]. Amsterdam: Elsevier, 2005. Available at: https://www.sciencedirect.com/referencework/9780081029091/encyclopedia-of-geology
Flügel, E., Microfacies of carbonate rocks: analysis, interpretation and application [Online]. London: Springer, 2004. Available at: https://link.springer.com/book/10.1007/978-3-642-03796-2
Frey, R.W., Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Petrology, 43(1), pp. 6–19, 1973. Available at: https://archives.datapages.com/data/sepm/journals/v42-46/data/043/043001/0006.htm
Frey, R.W., and Pemberton, S.G., Biogenic structures in outcrops and cores. I. approaches to ichnology. Bulletin of Canadian Petroleum Geology, [Online]. 33(1), pp. 72–115, 1985. Available at: https://archives.datapages.com/data/cspg/data/033/033001/0072.htm
Curran, H.A., Biogenic structures. Their use in interpreting depositional environments [Online]. Soc. Econ. Paleontol. Mineral., Special publication 35, 1985. Available at: https://pubs.geoscienceworld.org/sepm/books/book/1090/Biogenic-StructuresTheir-Use-in-Interpreting
Boucot, A.J., Evolutionary paleobiology of behavior and coevolution [Online]. Amsterdam: Elsevier, 1990. Available at: https://www.sciencedirect.com/book/9780444880345/evolutionary-paleobiology-of-behavior-and-coevolution
Pemberton, S.G., Biogenic sedimentary structure, in: Middleton, G.V., Church, M.J., Coniglio, M., Hardie, L.A., Longstaffe, F.J. (eds). Encyclopedia of sediments and sedimentary rocks. Encyclopedia of Earth Sciences Series. Dordrecht [Online] Springer, 2003, pp. 77–83. DOI: https://doi.org/10.1007/978-1-4020-3609-5_29 DOI: https://doi.org/10.1007/978-1-4020-3609-5_29
Gámez, J.A., y Liñan, E., Revisión de la terminología icnológica en español. Revista Española de Paleontología [Online]. 11(2), pp. 155–176, 1996. Available at: https://www.researchgate.net/publication/264947918_Revision_de_la_terminologia_icnologica_en_Espanol
Kidwell, S.M., Fürsich, F.T., and Aigner, T., Conceptual framework for the analysis and classification of fossil concentrations. Palaios [Online]. 1(3), pp. 228–238, 1986. DOI: https://doi.org/10.2307/3514687 DOI: https://doi.org/10.2307/3514687
Fernández, S., Fernández, Y., and Alcalá, L., Accumulation: taphonomic concept and other palaeontological uses. Current Topics on Taphonomy and Fossilization, 2002, pp. 37–47.
Folk, R.L., Petrology of sedimentary rocks. Austin Texas: Hemphill's book store, 1974.
Dunham, R.J., Classification of carbonate rocks according to depositional texture, in W.E. Ham (ed.). Classification of Carbonate Rocks. Tulsa: AAPG [Online]. 1962, pp. 108–121. DOI: https://doi.org/10.1306/M1357 DOI: https://doi.org/10.1306/M1357
Fernández-López, S.R., Tafonomía y fosilización, en Meléndez, B. (Ed.), Tratado de Paleontología, Tomo I. Madrid: Consejo Superior de Investigaciones Científicas, 1999, pp. 51-107, 438-441.
Cruz-Guevara, L.E., and Cruz-Ceballos, L.F., Biogenic materials a sedimentary view, proposal for a new structure for classifying and naming of biogenic sedimentary deposits and rocks. XVI Geological Colombian Congress, Santa Marta-Colombia, pp. 383–386, 2017.
Aigner, T., Hagdorn, H., and Mundlos, R., Biohermal, biostromal, and storm-generated coquinas in the Upper Muschelkalk. Neues Jahrbuch für Geolgie und Paläontologie-Abhandlungen, 157(1), pp. 42–52, 1978. DOI: https://doi.org/10.1127/njgpa/157/1978/42
Tucker, M.E., and Wright, V.P., Carbonate sedimentology [Online]. Oxford: Blackwell Scientific Publications, 1990. DOI: https://doi.org/10.1002/9781444314175 DOI: https://doi.org/10.1002/9781444314175
Seilacher, A., Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geolgie und Paläontologie-Abhandlungen, 96, pp. 421–452, 1953.
Gámez, J.A., and Liñan, E., Ethological structures: another approach to Ichnology. International Geological Congress, Oslo, 2008.
Barbour, E.H., Is Daemonelix a burrow? A reply to Dr, Theodor Fuchs. Paper in the Earth and Atmospheric Sciences. The American Naturalist [Online]. 29 (342), pp. 517–527, 1895. DOI: https://doi.org/10.1086/276171 DOI: https://doi.org/10.1086/276171
Soergel, W., Die Fährten der Chirotheria, eine paläontologische Studie. Gustav Fischer, Jena, 1925.
Lessertisseur, J., Sur un bilobite nouveau du Gotlandien de L’Ennedi (Tchad, AEF.), Cruziana ancora. Bulletin de la Societe Geologique de France [Online]. 6, pp. 43–47, 1956. DOI: https://doi.org/10.2113/gssgfbull.S6-VI.1-3.43 DOI: https://doi.org/10.2113/gssgfbull.S6-VI.1-3.43
Kuhn, O., Die Fährten der vorzeitlichen Amphibien und Reptilien. Bamberg, Meisenbach, 1958.
Seilacher, A., Sedimentological classification and nomenclature of trace fossils. Sedimentology [Online]. 3, pp. 253–256, 1964. DOI: https://doi.org/10.1111/j.1365-3091.1964.tb00464.x DOI: https://doi.org/10.1111/j.1365-3091.1964.tb00464.x
Seilacher, A., Trace fossils analysis. Geological Magazine. 145(2), 2007.
Bromley, R.G., Trace Fossils. Biology, Taphonomy and Applications [Online]. London: Chapman and Hall, 1996. DOI: https://doi.org/10.4324/9780203059890 DOI: https://doi.org/10.4324/9780203059890
Vialov, O.S., The classification of the fossil traces of life. Proceedings of the 24th International Geological Congress, Montreal, Section 7 (Palaeontology), 1972, pp. 639–644.
Vallon, L.H., Digestichnia (Vialov, 1972): an almost forgotten ethological class for trace fossils, in: A.P. Hunt, J. Milan, S.G. Lucas, J.A. Spielmann. Eds., Vertebrate coprolites. New Mexico Museum of Natural History and Science Bulletin, 57, 2012, pp. 131–135.
Tapanila, L., Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia [Online]. 38(2), pp. 89–99, 2005. DOI: https://doi.org/10.1080/00241160510013123 DOI: https://doi.org/10.1080/00241160510013123
Zucol, A., Microfitolitos: I. Antecedentes y terminología. Ameghiniana [Online]. 29(4), pp. 353–362, 1992. Available at: https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/2122
Zucol, A., Microfitolitos: II. Análisis de las clasificaciones. Ameghiniana [Online]. 32(3), pp. 243–248, 1995. Available at: https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/2276
Rassam, G.N., Gravesteijn, J., and Potenza, R., Eds., Multilingual Thesaurus of geosciences. Pergamon Press, 2013.
Barthel, K.W., Swinburne, N.H.M., and Conway-Morris, S., Eds., Solnhofen: a study in Mesozoic Palaeontology. Cambridge University Press, 1990.
Waloszek, D., and Muller, K.J., Cambrian ‘Orsten´-type preserved Arthropods and the Phylogeny of Crustacea, in The Systematics Association Special Volume Series book series (SASS, vol. 55) Proc. 18th Int. Congr. Zoology, 2003, pp. 69–87.
Maas, A., Braun, A., Dong, X., Donoghue, P.C., Muller, K.J., Olempska, E., et. al., The ‘Orsten’—More than a Cambrian Konservat-Lagerstatten yielding exceptional preservation. Palaeoworld [Online], 15(3-4), pp. 266–282, 2006. DOI: https://doi.org/10.1016/j.palwor.2006.10.005 DOI: https://doi.org/10.1016/j.palwor.2006.10.005
Caron, J.B., Gaines, R.R., Aria, C., Mangano, M.G., and Streng, M., A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications [Online]. 5(3210), 2014. DOI: https://doi.org/10.1038/ncomms4210 DOI: https://doi.org/10.1038/ncomms4210
Zelenitsky, D.K., Therrien, F., Joyce, W.G. and Brinkman, D.B., First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles. Biology letters [Online]. 4(6), pp. 715–718, 2008. DOI: https://doi.org/10.1098/rsbl.2008.0395 DOI: https://doi.org/10.1098/rsbl.2008.0395
Etches, S., Clarke, J., and Callomon, J., Ammonite eggs and ammonitellae from the Kimmeridge Clay Formation (Upper Jurassic) of Dorset, England. Lethaia [Online]. 42(2), pp. 204–217, 2009. DOI: https://doi.org/10.1111/j.1502-3931.2008.00133.x DOI: https://doi.org/10.1111/j.1502-3931.2008.00133.x
Hirsch, K.F., The fossil record of vertebrate eggs, in: S.K. Donovan, Ed., The Palaeobiology of trace fossils. Baltimore. The Johns Hopkins University Press, 1994, pp. 269–294.
Tokaryk, T.T., and Storer, J., Dinosaur eggshell fragments from Saskatchewan, and evaluation of potential distance of eggshell transport. Journal of Vertebrate Paleontology, 11(3), 58, 1991.
Sankey, J.T., Late Cretaceous dinosaurs, eggs, babies, fires, and drought in Big Bend National Park, Texas. Journal of Vertebrate Paleontology Abstracts of Papers, 25(3), 109, 2005.
Collinson, M., Manchester, S.R., Wilde, V., and Hayes, P., Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bulletin of Geosciences [Online]. 85(1), pp. 155–162, 2010. DOI: https://doi.org/10.3140/bull.geosci.1155 DOI: https://doi.org/10.3140/bull.geosci.1155
Mehmood, T., Nadeem, F., Bilal, M., Meer, B., Meer, K., and Qamar, S.A., Chapter 25 - Biological treatment of pharmaceutical wastes, in: P. Singh, P. Verma, R. Singh, A. Ahamad, and A.C.S. Batalhão, Eds., Waste management and resource recycling in the developing world [Online]. Elsevier, 2003, pp. 577–600. DOI: https://doi.org/10.1016/B978-0-323-90463-6.00023-3. DOI: https://doi.org/10.1016/B978-0-323-90463-6.00023-3
Bomfleur, B., Kerp, H., Taylor, T.N., and Taylor, E.L., Triassic leech cocoon from Antarctica contains fossil bell animal. PNAS [Online]. 109(51), pp. 20971–20974, 2012. DOI: https://doi.org/10.1073/pnas.1218879109 DOI: https://doi.org/10.1073/pnas.1218879109
Senter, P.J., Cells and soft tissues in fossil bone: a review of preservation mechanisms, with corrections of misconceptions. Palaeontologia Electronica [Online]. 25(3), art.34, 2022. DOI: https://doi.org/10.26879/1248 DOI: https://doi.org/10.26879/1248
Zaton, M., and Broda, K., First record of soft tissue preservation in the upper Devonian of Poland. PLOS ONE [Online]. 10(11), e0142619, 2015. DOI: https://doi.org/10.1371/journal.pone.0142619 DOI: https://doi.org/10.1371/journal.pone.0142619
Armitage, M.H., Soft bone material from a brow horn of a Triceratops horridus from Hell Creek Formation, Montana. Creation Research Society Quarterly, 51, pp. 248–258, 2015.
Bailleul, A.M., Zheng, W., Horner, J.R., Hall, B.K., Holliday, C.M., and Schweitzer, M.H., Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage. National Science Review [Online]. 7(4), pp. 815–822, 2020. DOI: https://doi.org/10.1093/nsr/nwz206 DOI: https://doi.org/10.1093/nsr/nwz206
Lukeneder, P., and Lukeneder, A., Mineralized belemnoid cephalic cartilage from the late Triassic Polzberg Konservat-Lagerstätte (Austria). PLOS ONE [Online]. 17(4), e0264595, 2022. DOI: https://doi.org/10.1371/journal.pone.0264595 DOI: https://doi.org/10.1371/journal.pone.0264595
Kjaer, K.H., Pedersen, M.W., De-Sanctis, B., De-Cahsan, B., Korneliussen, T.S., Michelsen, C.S., et. al., A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature [Online]. 612, pp. 283–309, 2022. DOI: https://doi.org/10.1038/s41586-022-05453-y DOI: https://doi.org/10.1038/s41586-022-05453-y
Rosendahl, W., and Döppe, D., Trace fossils from bears in caves of Germany and Austria. Scientific Annals, School of Geology [Online]. Special, 98, pp. 241–249, 2006. Available at: http://geonet.geo.auth.gr/12icbs/proceedings/rosendahl_doppes.pdf
Hunt, A.P., and Lucas, S.G., Classification of vertebrate coprolites and related trace fossils, in: A.P. Hunt et al., (eds.)., Vertebrate Coprolites. New Mexico Museum of Natural History and Science, Bulletin, 57, pp. 137–146, 2012.
Kauffman, E.G., Giant fossil inoceramid bivalve pearls, pp. 66–68, in: A.J. Boucot. Ed., Evolutionary Paleobiology of Behavior and Coevolution. Amsterdam: Elsevier, 1990.
Zwaan, J.C., and Groenenboom, P., Natural Pearls from Edible ‘True Oysters’ in Zeeland, The Netherlands. The Journal of Gemmology [Online]. 34(2), pp. 150–155, 2014. DOI: http://doi.org/10.15506/JoG.2014.34.2.150 DOI: https://doi.org/10.15506/JoG.2014.34.2.150
Wings, O., A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52, pp. 1–16, 2007.
Agassiz, L., Neue Entdeckungen über fossile Fische. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, pp. 675–677, 1833.
Přikryl, T., Košťák, M., Mazuch, M., and Mikuláš, R., Evidence for fish predation on a coleoid cephalopod from the Lower Jurassic Posidonia Shale of Germany. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen [Online]. 263(1), pp. 25–33, 2012. DOI: https://doi.org/10.1127/0077-7749/2012/0206 DOI: https://doi.org/10.1127/0077-7749/2012/0206
Knaust, D., Invertebrate coprolites and cololites revised. Papers in Palaeontology [Online]. 6(3), pp. 1–39, 2020. DOI: https://doi.org/10.1002/spp2.1297 DOI: https://doi.org/10.1002/spp2.1297
Northwood, C., Early Triassic coprolites from Australia and their palaeobiological significance. Palaeontology [Online]. 48 (1), pp. 49–68, 2005. DOI: https://doi.org/10.1111/j.1475-4983.2004.00432.x DOI: https://doi.org/10.1111/j.1475-4983.2004.00432.x
Moore, H.B., The faecal pellets of the Anomura. Proceedings of the Royal Society of Edinburgh Proc. [Online]. 52, pp. 296–309, 1932. https://doi.org/10.1017/S0370164600019544 DOI: https://doi.org/10.1017/S0370164600019544
Wang, M., Zhou, Z., and Sullivan, C., A fish-eating Enantiornithine Bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Current Biology [Online]. 26(9), pp. 1170–1176, 2016. DOI: https://doi.org/10.1016/j.cub.2016.02.055 DOI: https://doi.org/10.1016/j.cub.2016.02.055
Hattin, D.E., Fossilized regurgitate from Smoky Hill Member of Niobrara Chalk (Upper Cretaceous) of Kansas, USA. Cretaceous Research [Online]. 17(4), pp. 443–450, 1996. DOI: https://doi.org/10.1006/cres.1996.0027 DOI: https://doi.org/10.1006/cres.1996.0027
Lang, J.D., Carrie A., and Gowaty, P.A., Observations of fecal sac disposal by Eastern Bluebirds. The Condor. Bulletin of the Cooper Ornithological Club [Online]. 104(1), pp. 205–207, 2002. DOI: https://doi.org/10.1093/condor/104.1.205 DOI: https://doi.org/10.1093/condor/104.1.205
García, J.L., and Pujana, R.R., Silicified termite coprolites in Mesquite-Like Wood from the Miocene of La Rioja, Argentina. Special Issue Conceptual Advances in Fossil Plant Biology. International Journal of Plant Sciences [Online]. 174(3), pp. 585–591, 2013. DOI: https://doi.org/10.1086/668226 DOI: https://doi.org/10.1086/668226
Hunt, A.P., Late Pennsylvanian coprolites from the Kinney Brick Quarry, central New Mexico, with notes on the classification and utility of coprolites. New Mexico Bureau Mines Min. Resour. Bulletin., 138, pp. 221–229, 1992.
Shelton, C.D., A new method to determine volume of bromalites: Morphometrics of Lower Permian (Archer City Formation) heteropolar bromalites. Swiss Journal of Palaeontology [Online]. 132, pp. 221–238, 2013. DOI: https://doi.org/10.1007/s13358-013-0057-z DOI: https://doi.org/10.1007/s13358-013-0057-z
Hansen, B.B., Milàn, J., Clemmensen, L.B., Adolfssen, J.S., Estrup, E.J., Klein, N., et. al., Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions, in Mesozoic Biotas of Scandinavia and its Arctic Territories. London, Geological Society, London, [Online]. Special Publications, 434, pp. 49–69, 2015. DOI: https://doi.org/10.1144/SP434.12 DOI: https://doi.org/10.1144/SP434.12
Hoffmann, R., Stevens, K., Keupp, H., Simonsen, S., and Schweigert, G., Regurgitalites- a window into the trophic ecology of fossil cephalopods. Journal of the Geological Society [Online]. 177 (1), pp. 82–102, 2020. DOI: https://doi.org/10.1144/jgs2019-117 DOI: https://doi.org/10.1144/jgs2019-117
McAllister J., Preliminary description of the coprolitic remains from Hamilton quarry, Kansas. Kansas Geol Survey Guidebook, in: Kelley, P.H., Kowalewski, M., and Hansen, T.A,. Predator-Prey Interactions in the Fossil Record. New York, Springer, 1988, pp. 195–202.
Myhrvold, N.P., A call to search for fossilised gastric pellets. Historical Biology [Online]. 24(5), pp. 505-517, 2011. DOI: https://doi.org/10.1080/08912963.2011.631703 DOI: https://doi.org/10.1080/08912963.2011.631703
Broughton, J.M., Cannon, V.I., and Arnold, S., The taphonomy of owl-deposited fish remains and the origin of the Homestead cave ichthyofauna. Journal of taphonomy, 4 (2), pp. 69–95, 2006.
Sehnal, F., and Sutherland, T., Silks produced by insect labial glands. Prion [Online]. 2(4), pp. 145–153, 2008. DOI: https://doi.org/10.4161/pri.2.4.7489. DOI: https://doi.org/10.4161/pri.2.4.7489
Mcloughlin, S., Bomfleur, B., and Mörs, T., The weird world of fossil worm cocoons. Deposits Magazine, 46, pp. 15–17, 2016.
Wong, S., Oldest animal sperm found inside fossilized worm cocoon. Nature [Online]. 2015. DOI: https://doi.org/10.1038/nature.2015.17976 DOI: https://doi.org/10.1038/nature.2015.17976
Greenwalt, D., Blood to molecules: the fossil record of blood and Its constituents. in: K. De Baets, and J.W. Huntley, Eds., The evolution and fossil record of parasitism. Cham [Online]. Springer, Topics in Geobiology, 50, 2021, pp. 377–416. DOI: https://doi.org/10.1007/978-3-030-52233-9_12 DOI: https://doi.org/10.1007/978-3-030-52233-9_12
Sadowski, E.M., and Hofmann, C.C., The largest amber-preserved flower revisited. Scientific Report [Online]. pp. 13–17, 2023. DOI: https://doi.org/10.1038/s41598–022-24549-z DOI: https://doi.org/10.1038/s41598-022-24549-z
Hofreiter, M., Betancourt, J.L., Sbriller, A.P., Markgraf, V., and McDonald, H.G., Phylogeny, diet, and habitat of an extinct ground sloth from Cuchillo Cura, Neuquen Province, southwest Argentina. Quaternary Res [Online]. 59, pp. 364–378, 2003. DOI: https://doi.org/10.1016/S0033-5894(03)00030-9 DOI: https://doi.org/10.1016/S0033-5894(03)00030-9
Willerslev, E., Hansen, A.J., Binladen, J., Brand, T.B., Gilbert, M.T., Shapiro, B., et. al., Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science [Online]. 300, pp. 791–795, 2003. DOI: https://doi.org/10.1126/science.1084114 DOI: https://doi.org/10.1126/science.1084114
Palmer, T.J., and Wilson, M.A., Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology [Online]. 31, pp. 939–949, 1988. Avilable at: https://www.palass.org/publications/palaeontology-journal/archive/31/4/article_pp939-949
Cónsole-Gonella, C., and Marquillas, R.A., Bioclaustration trace fossils in epeiric shallow marine stromatolites, the Cretaceous-Palaeogene Yacoraite Formation, Northwestern Argentina. Lethaia [Online]. 47, pp. 107–119, 2014. DOI: https://doi.org/10.1111/let.12043 DOI: https://doi.org/10.1111/let.12043
Bromley, R.G., Borings as trace fossils and Entobia cretacea Portlock, as an example, in: T.P. Crimes, and J.C. Harper, Eds., Trace fossils, Geological Journal Special Issues, 3, 1970, pp. 49–90.
Ekdale, A.A., Bromley, R.G., and Pemberton, S.G., Ichnology: trace Fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course [Online]. 15, 317, Tulsa, 1984. DOI: https://doi.org/10.2110/scn.84.15 DOI: https://doi.org/10.2110/scn.84.15
Bromley, R.G., A stratigraphy of marine bioerosion, Macllroy, D Geological Society, London, Special Publications [Online]. 228, 2014, pp. 455–479. DOI: https://doi.org/10.1144/gsl.sp.2004.228.01.20 DOI: https://doi.org/10.1144/GSL.SP.2004.228.01.20
Stiner, M.C., Food procurement and transport by human and non-human predators. Journal of Archaeological Science [Online]. 18, pp. 455–482, 1991. DOI: https://doi.org/10.1016/0305-4403(91)90038-Q DOI: https://doi.org/10.1016/0305-4403(91)90038-Q
Moncel, M.H., Brugal, J.P., Prucca, A., and Lhomme, G., Mixed occupation during the Middle Palaeolithic: case study of a small pit-cave-site of Les Pêcheurs (Ardèche, south-eastern France). Journal of Anthropological Archaeology [Online] 27(3), pp. 382–398, 2008. DOI: https://doi.org/10.1016/j.jaa.2008.03.005 DOI: https://doi.org/10.1016/j.jaa.2008.03.005
Diedrich, C.G., Periodical use of the Balve Cave (NW Germany) as a Late Pleistocene Crocuta crocuta spelaea (Goldfuss 1823) den: hyena occupations and bone accumulations vs. human Middle Palaeolithic activity. Quaternary International [Online]. 233(2), pp. 171–184, 2011. DOI: https://doi.org/10.1016/j.quaint.2010.02.027 DOI: https://doi.org/10.1016/j.quaint.2010.02.027
Enloe, J.G., Middle Palaeolithic cave taphonomy: discerning humans from hyenas at Arcy-sur-Cure, France. International Journal of Osteoarchaeology [Online]. 22, pp. 591–602, 2012. DOI: https://doi.org/10.1002/oa.1276 DOI: https://doi.org/10.1002/oa.1276
Samper-Carro, S.C., and Martínez-Moreno, J., Who let the hyenas out? Taphonomic analysis of the faunal assemblage from GL-1 of Cova del Gegant (Sitges, Spain). Quaternary International [Online]. 330, pp. 19–35, 2014. DOI: https://doi.org/10.1016/j.quaint.2013.10.052 DOI: https://doi.org/10.1016/j.quaint.2013.10.052
Zatoń, M., and Salomon, M., Durophagous predation on middle Jurassic molluscs, as evidenced from shell fragmentation. Palaeontology [Online]. 51(1), pp. 63–70, 2008. DOI: https://doi.org/10.1111/j.1475-4983.2007.00736.x DOI: https://doi.org/10.1111/j.1475-4983.2007.00736.x
Bishop, G.A., Crab Bitten by a Fish from the Upper Cretaceous Pierre Shale of South Dakota. GSA Bulletin [Online]. 83(12), 3823–3826, 1972. DOI: https://doi.org/10.1130/0016-7606(1972)83[3823:CBBAFF]2.0.CO;2
Sutherland, J.I., Miocene petrified wood and associated borings and termite faecal pellets from Hukatere Peninsula, Kaipara Harbour, North Auckland, New Zealand. Journal of the Royal Society of New Zealand [Online]. 33(1), pp. 395–414, 2010. DOI: https://doi.org/10.1080/03014223.2003.9517736 DOI: https://doi.org/10.1080/03014223.2003.9517736
Klompmaker, A., Karasawa, H., Portell, RW., Fraaije, RH., and Ando, Y., An overview of predation evidence found on fossil decapod crustaceans with new examples of drill holes attributed to gastropods and octopods. Palaios [Online]. 28(9), pp. 599–613, 2013. DOI: https://doi.org/10.2110/palo.2013.p13-026r DOI: https://doi.org/10.2110/palo.2013.p13-026r
Walker, S.E., and Brett, C.E., Post-Paleozoic patterns in marine predation: was there a Mesozoic and Cenozoic marine predatory revolution? In: M. Kowalewski, M. and P.H. Kelley, Eds., The Paleontological Society, papers the fossil record of predation. [Online] 8, 2002. DOI: https://doi.org/10.1017/S108933260000108X DOI: https://doi.org/10.1017/S108933260000108X
Liñan, E., and Gámez, J.A., Introducción a la paleontología. Zubia, 14, pp. 65–77, 1996.
Neumann, A.C., Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona Lampa. Limnology and Oceanography [Online]. 11(1), pp. 92–108, 1966. DOI: https://doi.org/10.4319/lo.1966.11.1.0092 DOI: https://doi.org/10.4319/lo.1966.11.1.0092
Martinell, J., Interacción organismos/sustrato duro: la bioerosión y sus implicaciones, en: Aguirre, E., Ed., Paleontología. Consejo superior de investigaciones científicas, Madrid, 1989, 205–222.
Häntzschel, W., and Frey, R.W., Bioturbation, in: Fairbridge, R.W., and Bourgeois, J., Eds., The Encyclopedia of Sedimentology. Stroudsburg: Dowden, Hutchinson y Ross, 1978, pp. 68–71.
Kenrick, P., and Strullu-Derrien, C., The origin and early evolution of roots. Plant Physiol [Online]. 166(2), pp. 570–580, 2014. DOI: https://doi.org/10.1104%2Fpp.114.244517 DOI: https://doi.org/10.1104/pp.114.244517
Howard, J.D., and Frey, R.W., Estuaries of the Georgia coast, U.S.A.: Sedimentology and biology, II. Regional animal-sediment characteristics of Georgia estuaries. Senckenbergiana Maritima, 7, pp. 237–256, 1975.
Kim, J.Y., Kim, K.S., Lockley, M.G., and Seo, S.J., Dinosaur skin impressions from the Cretaceous of Korea: new insights into modes of preservation. Palaeogeography, Palaeoclimatology Palaeoecology [Online]. 293(1-2), pp. 167–174, 2010. DOI: https://doi.org/10.1016/j.palaeo.2010.05.012 DOI: https://doi.org/10.1016/j.palaeo.2010.05.012
Paik, I.S., Kim, H.J., Lee, H., and Kim, S., A large and distinct skin impression on the cast of a sauropod dinosaur footprint from Early Cretaceous floodplain deposits, Korea. Scientific Reports [Online], 7, 16339, 2017. DOI: https://doi.org/10.1038/s41598-017-16576-y DOI: https://doi.org/10.1038/s41598-017-16576-y
Baales, M., and Berg, A.V., Tierfährten in der allerødzeitlichen Vulkanasche des Laacher See–Vulkans bei Mertloch, Kreis Mayen-Koblenz (Animal tracks in the Allød period volcanic ash of the Laacher See volcano near Mertloch, Mayen-Koblenz district). Archäologisches Korrespondenzblatt, 27, pp. 1–12, 1997.
Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W.E., Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research [Online]. 71(5), pp. 649–656, 2001. DOI: https://doi.org/10.1306/2DC4095D-0E47-11D7-8643000102C1865D DOI: https://doi.org/10.1306/2DC4095D-0E47-11D7-8643000102C1865D
Noffke, N., Microbially induced sedimentary structures, in: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. 2014. DOI: https://doi.org/10.1007/978-3-642-27833-4_1004-4 DOI: https://doi.org/10.1007/978-3-642-27833-4_1004-4
Donaldson, D., and Simpson, S., Chomatichnus, a new ichnogenus and other trace fossils from the Wegber Quarry. Liverpool and Manchester Geological Journal [Online] 3(1), pp. 73–81, 1962. DOI: https://doi.org/10.1002/gj.3350030106 DOI: https://doi.org/10.1002/gj.3350030106
Frey, R.W., and Pemberton, S.G., Trace fossils facies models. In: R.G. Walker, Ed., Facies models. Toronto: Geological Association of Canada Publications. Geoscience Canada Reprint Series, 1984, pp. 189–207.
Frey, R.W., and Wheatcroft, R.A., Organism-substrate relations and their impact on sedimentary petrology. J. Geol. Educ. [Online]. 37(4), pp. 261–279, 1989. DOI: https://doi.org/10.5408/0022-1368-37.4.261 DOI: https://doi.org/10.5408/0022-1368-37.4.261
Chin, K., Pearson, D., and Ekdale, A.A., Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the End-Cretaceous mass extinction. PLOS ONE [Online]. 8(8), e70920, 2013. DOI: https://doi.org/10.1371/journal.pone.0070920 DOI: https://doi.org/10.1371/journal.pone.0070920
Moore, D.G., and Scruton, P.C., Minor internal structures of some recent unconsolidated sediments. Bulletin of the American Association of Petroleum Geologist. 41(12), pp. 2723–2751, 1957. DOI: https://doi.org/10.1306/0BDA59DB-16BD-11D7-8645000102C1865D DOI: https://doi.org/10.1306/0BDA59DB-16BD-11D7-8645000102C1865D
Crime, T.P., The stratigraphical significance of trace fossils, in Harper, J.C., Eds., The study of trace fossils. Springer, Berlin, Heidelberg.1970. DOI: https://doi.org/10.1007/978-3-642-65923-2_7 DOI: https://doi.org/10.1007/978-3-642-65923-2_7
Frey, R.W., Ed., The study of trace fossils: a synthesis of principles, problems, and procedures in Ichnology [Online]. Berlin: Springer-Verlag, 1975. Available at: https://link.springer.com/book/10.1007/978-3-642-65923-2
Knaust, D., Bromley, R.G., Eds., Trace Fossils as indicators of sedimentary environments. Developments in Sedimentology Volume 64. Amsterdam: Elsevier, 2012.
Buatois, L.A., Wisshak, M., Wilson, M.A., and Mangano, M.G., Categories of architectural designs in trace fossils: a measure of ichnodisparity [Online]. Earth-Science Reviews, 164, pp. 102–181, 2017. DOI: https://doi.org/10.1016/j.earscirev.2016.08.009 DOI: https://doi.org/10.1016/j.earscirev.2016.08.009
Gee, C.T., Sander, P.M., and Petzelberger, B.E., A Miocene rodent nut cache in coastal dunes of the Lower Rhine embayment, Germany. Palaeontology [Online]. 46(6), pp. 1133–1149, 2003. DOI: https://doi.org/10.1046/j.0031-0239.2003.00337.x DOI: https://doi.org/10.1046/j.0031-0239.2003.00337.x
Voorhies, M-R., A new genus and species of fossil kangaroo rat and Its burrow. Journal of Mammalogy [Online] 56(1), pp. 160–176, 1975. DOI: https://doi.org/10.2307/1379614 DOI: https://doi.org/10.2307/1379614
Voorhies, M-R., Vertebrate burrows, in: Frey. R.W., Ed., The study of trace fossils [Online]. Berlin, Springer. 1975 pp. 325–350. DOI: https://doi.org/10.1007/978-3-642-65923-2_15 DOI: https://doi.org/10.1007/978-3-642-65923-2_15
Collinson, M.E., and Hooker, J.J., Fossil evidence of interactions between plants and plant-eating mammals. Philosophical Transactions of the Royal Society, 333(1267), pp. 197–207, 1991. DOI: https://doi.org/10.1098/rstb.1991.0068 DOI: https://doi.org/10.1098/rstb.1991.0068
Collinson, M.E., Plants and animal diets, in: Jones, T. and Rowe, N., Eds., Fossil plants and spores: modern techniques. London, The Geological Society of London, 1999, pp. 316–319.
Cantil, L.F., Sánchez, M.V., Bellosi, E.S., González, M.G., Sarzetti, L.C., and Genise, J.F., Coprinisphaera akatanka sp. nov.: The first fossil brood ball attributable to necrophagous dung beetles associated with an Early Pleistocene environmental stress in the Pampean region (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology [Online] 386, pp. 541–554, 2013. DOI: https://doi.org/10.1016/j.palaeo.2013.06.021 DOI: https://doi.org/10.1016/j.palaeo.2013.06.021
Fenton, C.L., and Fenton, M.A., Trilobite “nests” and feeding burrows. The American Midland Naturalist [Online] 18(3), pp. 446–451, 1937. DOI: https://doi.org/10.2307/2420585 DOI: https://doi.org/10.2307/2420585
Tschinkel, W.R., Subterranean ant nests: trace fossils past and future? Palaeogeography, Palaeoclimatology, Palaeoecology [Online]. 192(1-4), pp. 321–333, 2003. DOI: https://doi.org/10.1016/S0031-0182(02)00690-9 DOI: https://doi.org/10.1016/S0031-0182(02)00690-9
Genise. J.F., Sciutto, J.C., Laza, J.H., Gonzalez, M.G., and Bellosi, E.S., Fossil bee nests, coleopteran pupal chambers and tuffaceous palaeosols from the Late Cretaceous Laguna Palacios Formation, central Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology [Online]. 177(3-4), pp. 215–235, 2002. DOI: https://doi.org/10.1016/S0031-0182(01)00333-9 DOI: https://doi.org/10.1016/S0031-0182(01)00333-9
Hasiotis, S.T., Complex ichnofossils of solitary and social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology [Online]. 192(1-4), pp. 259–320, 2003. DOI: https://doi.org/10.1016/S0031-0182(02)00689-2 DOI: https://doi.org/10.1016/S0031-0182(02)00689-2
Reisz, R.R., Evans, D.C., Sues, H.D., and Scott, D., Embryonic skeletal anatomy of the sauropodomorph dinosaur Massospondylus from the Lower Jurassic of South Africa. Journal of Vertebrate Paleontology [Online]. 30(6), pp. 1653–1665, 2010. DOI: https://doi.org/10.1080/02724634.2010.521604 DOI: https://doi.org/10.1080/02724634.2010.521604
Arche, A., Ed., Sedimentología, del proceso físico a la cuenca sedimentaria. Madrid: CSIC, 2010.
Button, A., Algal stromatolites of early Proterozoic, Wolkberg Group, Transvaal Sequence. Journal of Sedimentary Research [Online]. 43(1), pp. 160–167, 1973. DOI: https://doi.org/10.1306/74D7270C-2B21-11D7-8648000102C1865D DOI: https://doi.org/10.1306/74D7270C-2B21-11D7-8648000102C1865D
Gebelein, C.D., Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. Jour. Sedimentary Petrology [Online]. 39(1), pp. 49–69, 1969. DOI: https://doi.org/10.1306/74D71BE0-2B21-11D7-8648000102C1865D DOI: https://doi.org/10.1306/74D71BE0-2B21-11D7-8648000102C1865D
Hofmann, H.J., Grey, K., Hickman, A.H., and Thorpe, R.I., Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. GSA Bulletin 111(8), pp. 1256-1262, 1999. DOI: https://doi.org/10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2
Logan, B.W., Rezak, R., and Ginsburg, R.N., Classification and environmental significance of algal stromatolites. The Journal of Geology [Online]. 72(1), pp. 68–83, 1964. DOI: https://doi.org/10.1086/626965 DOI: https://doi.org/10.1086/626965
Darby, D.G., and Ojakangas, J., Gastroliths from an Upper Cretaceous Plesiosaur. Journal of Paleontology, 54(3), pp. 548–556, 1980.
Cerda, I., Gastroliths in an ornithopod dinosaur. Acta Palaeontologica Polonica [Online]. 53(2), pp. 351–355, 2008. DOI: https://doi.org/10.4202/app.2008.0213 DOI: https://doi.org/10.4202/app.2008.0213
Sanders, F., Manley, K., and Carpenter, K., Gastroliths from the Lower Cretaceous sauropod Cedarosaurus weiskopfae, in: D. Tanke, K. Carpenter, (eds.), Mesozoic vertebrate life. New Research Inspired by the Paleontology of Philip J. Currie. Indiana University Press, 2001, pp. 166–180.
Taylor, M.A., Stomach Stones for Feeding or Buoyancy? The Occurrence and Function of Gastroliths in Marine Tetrapods. Philosophical Transactions: Biological Sciences [Online]. 341(1296), pp. 163–175, 1993. DOI: https://doi.org/10.1098/rstb.1993.0100 DOI: https://doi.org/10.1098/rstb.1993.0100
Luquet, G., Dauphin, Y., Percot, A., Salomé, M., Ziegler, A., Fernández, M.S., et. al., Calcium deposits in the Crayfish, Cherax quadricarinatus: microstructure versus elemental distribution. Microscopy and microanalysis [Online], 22(1), pp. 22–38, 2016. DOI: https://doi.org/10.1017/S1431927615015767 DOI: https://doi.org/10.1017/S1431927615015767
Ponce, J.J., Carmona, N., y Montana, A.O., Atlas de estructuras sedimentarias inorgánicas y biogénicas. Descripción, análisis e interpretación a partir de afloramientos, testigos corona y registros de imágenes de pozo. Editado por Fundación YPF, Buenos Aires, 2018.
Tisato, N., Torriani, S., Monteux, S., Sauro, F., Waele, J., Tavagna, M., et al., Microbial mediation of complex subterranean mineral structures. Scientific Reports [Online]. 5, 15525, 2015. DOI: https://doi.org/10.1038/srep15525 DOI: https://doi.org/10.1038/srep15525
Sánchez, M., Fernández-Remolar, D., Amils, R., Sánchez-Navas, A., Schmid, T., Martin-Uriz, P.S., et al., Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Scientific Report [Online]. 4, art.4767, 2014. DOI: https://doi.org/10.1038/srep04767 DOI: https://doi.org/10.1038/srep04767
Raff, E.C., Schollaert, K.L., Nelson, D.E., and Raff, R.A., Embryo fossilization is a biological process mediated by microbial biofilms. PNAS Biological Sciences [Online]. 105(49), pp. 19360–19365, 2008. DOI: https://doi.org/10.1073/pnas.0810106105 DOI: https://doi.org/10.1073/pnas.0810106105
Bertling, M., Buatois, L.A., Knaust, D., Laing, B., Mángano, M.G., Meyer, N., et al., Names for trace fossils 2.0: theory and practice in ichnotaxonomy. Lethaia [Online] 55(3), pp. 1-19, 2022. DOI: https://doi.org/10.18261/let.55.3.3 DOI: https://doi.org/10.18261/let.55.3.3
Burne, R.V., and Moore, L.S., Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios [Online]. 2(3), pp. 241–254, 1987. DOI: https://doi.org/10.2307/3514674 DOI: https://doi.org/10.2307/3514674
Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W., et. al., Atlas of microbial mat features preserved within the Siliciclastic Rock record. Amsterdam: Elsevier, 2007.
Krumbein, W.E., Brehm, U., Gerdes, G., Gorbushina, A.A., Levit, G., and Palinska, K.A., Biofilm, Biodictyon, Biomat Microbialites, Oolites, Stromatolites, Geophysiology, Global Mechanism, Parahistology, in: W.E. Krumbein, D.M. Paterson, and G.A. Zavarzin, Eds., Fossil and Recent Biofilms: a natural history of life [online] on Earth. Kluwer Academic. 2003, pp. 1–28. DOI: https://doi.org/10.1007/978-94-017-0193-8_1 DOI: https://doi.org/10.1007/978-94-017-0193-8_1
Schmid, D.U., Mikrobolithe und Mikroinkrustierer aus dem Oberjura. Profil, 9, pp. 101–251, 1996.
Laval. B., Cady, S., Pollack, J., McKay, C., Bird, J., Grotzinger, J., et al., Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature [Online]. 407(6804), pp. 626–629, 2000. DOI: https://doi.org/10.1038/35036579 DOI: https://doi.org/10.1038/35036579
Chagas, A., Webb, G., Burne, R., and Southam, G., Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth–Science Reviews, 162, pp. 338–363, 2016. DOI: https://doi.org/10.1016/j.earscirev.2016.09.012 DOI: https://doi.org/10.1016/j.earscirev.2016.09.012
Folk, R.L., SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. Journal of Sedimentary Research [Online]. 63(5), pp. 990–999, 1993. DOI: https://doi.org/10.1306/D4267C67-2B26-11D7-8648000102C1865D DOI: https://doi.org/10.1306/D4267C67-2B26-11D7-8648000102C1865D
Hoffmann, T.D., Reeksting, B.J., and Gebhard, S., Bacteria-induced mineral precipitation: a mechanistic review. Microbiology [Online]. 167(4), pp. 1–13, 2021. DOI: https://doi.org/10.1099/mic.0.001049 DOI: https://doi.org/10.1099/mic.0.001049
Mehta, A.P., Torma, A.E., and Murr, L.E., Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi. Biotechnology and Bioengineering [Online]. 21(5), pp. 875–885, 1979. DOI: https://doi.org/10.1002/bit.260210510 DOI: https://doi.org/10.1002/bit.260210510
Inagaki, F., Motomura, Y., and Ogata, S., Microbial silica deposition in geothermal hot waters. Applied Microbiology Biotechnoly [Online]. 60, pp. 605–611, 2003. DOI: https://doi.org/10.1007/s00253-002-1100-y DOI: https://doi.org/10.1007/s00253-002-1100-y
Kenward, P.A., Goldstein, R.H., González, L.A., and Roberts, J.A., Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methalogenic Archaea. Geobiology [Online], 7(5), pp. 556–565, 2009. DOI: https://doi.org/10.1111/j.1472-4669.2009.00210.x DOI: https://doi.org/10.1111/j.1472-4669.2009.00210.x
García, M.A., Sanz, M.E., De los Rios, M.A., and Ascaso, C., Microbial dolomite in freshwater carbonate deposits. Sedimentology [Online]. 61(1), pp. 41–55, 2014. DOI: https://doi.org/10.1111/sed.12047 DOI: https://doi.org/10.1111/sed.12047
Harvey, A.S., Harvey, R.M., and Merton, E., The distribution, significance and vulnerability of Australian rhodolith beds: a review. Marine and Freshwater Research [Online] 68(3), pp. 411–428, 2016. DOI: https://doi.org/10.1071/MF15434 DOI: https://doi.org/10.1071/MF15434
Harris, P.T., Tsuji, Y., Marshall, J.F., Davies, P.J., Honda, N., and Matsuda, H., Sand and rhodolith-gravel entrainment on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. Marine Geology [Online], 129(3-4), pp. 313–330, 1996. DOI: https://doi.org/10.1016/0025-3227(96)83350-0 DOI: https://doi.org/10.1016/0025-3227(96)83350-0
Tully, B., and Heidelberg, J.F., Microbial communities associated with ferromanganese nodules and the surrounding sediments. Frontiers in Microbiology [Online]. 4, 161, pp.1–10, 2013. DOI: https://doi.org/10.3389/fmicb.2013.00161 DOI: https://doi.org/10.3389/fmicb.2013.00161
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Luis Enrique Cruz Guevara, Luis Felipe Cruz-Ceballos, Gladys Marcela Avendaño-Sanchez. (2024). General classification and nomenclature of sedimentary deposits and rocks, a review. Earth Sciences Research Journal, 28(2), p.183. https://doi.org/10.15446/esrj.v28n2.111383.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2024 Boletín de Ciencias de la Tierra

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista. Al asumir los derechos patrimoniales del artículo, no podrá reproducirse parcial o totalmente en ningún medio impreso o digital sin permiso expreso del mismo.