Diagrama de excentricidad de una zapata circular rígida según la zona de compresión

Publicado

2024-06-12

Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión

Comparative study for minimum areas in contact with the ground of rectangular and circular isolated footings working partially under compression

DOI:

https://doi.org/10.15446/rbct.n55.111624

Palabras clave:

áreas mínimas; zapatas aisladas rectangulares; zapatas aisladas circulares; distribución lineal de la presión del suelo; superficie de contacto trabaja parcialmente bajo compresión (es)
minimum areas; rectangular isolated footings; circular isolated footings; linear ground pressure distribution; contact surface works partially under compression (en)

Descargas

Autores/as

Este trabajo presenta un estudio comparativo para áreas mínimas en contacto con el terreno de ZAR (zapatas aisladas rectangulares) y ZAC (zapatas aisladas circulares) que trabajan total MA (Modelo Actual) o parcialmente NM (Nuevo Modelo) a compresión. La metodología se describe utilizando las ecuaciones desarrolladas por el mismo autor para ZAR y ZAC. Principales hallazgos: las ZAR bajo flexión uniaxial tienen menos área que las ZAC en el MA y en el NM; El NM presenta menor área que el MA para ZAR y ZAC bajo flexión biaxial en todos los casos; El NM para ZAC muestra menos área que las ZAR, cuando los momentos son iguales y la relación de la carga axial dividida por el momento es 0.75 o mayor, cuando el momento más pequeño dividido por el momento más grande está entre 0.50 y 0.75, y la carga axial es mayor que el momento más grande. Por ello, se recomienda realizar un estudio previo para elegir el tipo de zapata.

This paper presents a comparative study for minimum areas in contact with the ground of RIF (rectangular isolated footings) y CIF (circular isolated footings) that work totally CM (Current model) or partially NM (New model) under compression. Methodology is described using the equations developed by the same author for RIF y CIF. Main findings: RIF under uniaxial bending have less area than CIF in the CM and in the NM; NM presents less area than CM for RIF y CIF under biaxial bending in all cases; NM for CIF shows less area than RIF, when the moments are equals and the relation of the axial load divided by the moment is 0.75 or greater, when the smallest moment divided by the largest moment is between 0.50 and 0.75, and the axial load is greater than the largest moment. Therefore, it is recommended to carry out a previous study to choose the type of footing.

Referencias

Luévanos-Rojas, A., Minimum cost design for rectangular isolated footings taking into account that the column is located in any part of the footing, Buildings, 13, art. 2269, 2023. DOI: https://doi.org/10.3390/buildings13092269 DOI: https://doi.org/10.3390/buildings13092269

Vela-Moreno, V.B., Luévanos-Rojas, A., López-Chavarría, S., Medina-Elizondo, M., Sandoval-Rivas, R., and Martinez-Aguilar, C., Optimal area for rectangular isolated footings considering that contact surface works partially to compression, Structural Engineering and Mechanics, 84(4), pp. 561-573, 2022. DOI: https://doi.org/10.12989/sem.2022.84.4.561

Luévanos-Rojas, A., A mathematical model for dimensioning of footings square, International Review of Civil Engineering, 3(4), pp. 346-350, 2012.

Luévanos-Rojas, A., A mathematical model for dimensioning of footings rectangular, ICIC Express Letters Part B: Application, 4(2), pp. 269-274, 2013.

Luévanos-Rojas, A., A mathematical model for the dimensioning of circular footings, Far East Journal of Mathematical Sciences, 71(2), pp. 357-367, 2012.

Luévanos-Rojas, A., A mathematical model for the dimensioning of combined footings of rectangular shape, Revista Técnica de la Facultad de Ingeniería Universidad, [online]. 39(1), pp. 3-9, 2016. Available at: https://produccioncientificaluz.org/index.php/tecnica/article/view/21090/20946

Luévanos-Rojas, A., A new mathematical model for dimensioning of the boundary trapezoidal combined footings, International Journal of Innovative Computing, Information and Control, [online]. 11(4), pp. 1269-1279, 2015. Available at: http://www.ijicic.org/ijicic-110411.pdf

López-Chavarría, S., Luévanos-Rojas, A. and Medina-Elizondo, M., Optimal dimensioning for the corner combined footings, Advances in Computational Design, 2(2), 169-183, 2017. DOI: https://doi.org/10.12989/acd.2017.2.2.169 DOI: https://doi.org/10.12989/acd.2017.2.2.169

Aguilera-Mancilla, G., Luévanos-Rojas, A., López-Chavarría, S., and Medina-Elizondo, M., Modeling for the strap combined footings Part I: optimal dimensioning, Steel and Composite Structures, 30(2), pp. 97-108, 2019. DOI: https://doi.org/10.12989/scs.2019.30.2.097

Luévanos-Rojas, A., López-Chavarría, S., and Medina-Elizondo, M., A new model for T-shaped combined footings Part I: optimal dimensioning, Geomechanics and Engineering, 14(1), pp. 51-60, 2018. DOI: https://doi.org/10.12989/gae.2018.14.1.051

Peck, R.B., Hanson, W.E. and Thornburn, T.H., Foundation Engineering. 2nd ed., John Willy & Sons, USA, 1974.

Teng, W.C., Foundation Design. Prentice-Hall Inc., USA, 1979.

Young, W.C., and Budynas, R.G. Roark's Formulas for Stress and Strain, 7th ed., McGraw-Hill, USA, 2002.

Highter, W.H., and Anders, J.C., Dimensioning footings subjected to eccentric loads, Journal of Geotechnical Engineering, 111(5), pp. 659-665, 1985. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:5(659) DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:5(659)

Gonzalez-Garcia, A.J., Carga crítica en cimientos superficiales continuos, Ingeniería e Investigación, 4(2), pp. 3-10, 1987. DOI: https://doi.org/10.15446/ing.investig.n14.19553 DOI: https://doi.org/10.15446/ing.investig.n14.19553

Irles-Más, R., y Irles-Más, F., Alternativa analítica a la determinación de tensiones bajo zapatas rectangulares con flexión biaxial y despegue parcial, Informes de la Construcción, 44(419), pp. 77-89, 1992. DOI: https://doi.org/10.3989/ic.1992.v44.i419.1338 DOI: https://doi.org/10.3989/ic.1992.v44.i419.1338

Rodriguez-Gutierrez, J.A., y Aristizabal-Ochoa, J.D., Presiones en zapatas rígidas de forma arbitraria sometidas a carga axial excéntrica. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil., [en línea]. 4(1), pp. 67-82, 2004. Available at: https://www.scipedia.com/wd/images/2/27/Draft_Content_636675925Rodriguez-Gutierrez_Aristizabal-Ochoa_a.pdf

Camero, H.E. A new method for designing floor slabs on grade due to the difficulty of applying simplified design methods, amongst them being the Portland Cement Association (PCA) and Wire Reinforcement Institute (WRI) methods, Ingeniería e Investigación, 27(1), pp. 93-100, 2007. DOI: https://doi.org/10.15446/ing.investig.v35n2.45603 DOI: https://doi.org/10.15446/ing.investig.v27n1.14786

Chagoyén, E., Negrín, A., Cabrera, M., López, L. and Padrón, N., Diseño óptimo de cimentaciones superficiales rectangulares. Formulación, Revista de la Construcción, 8(2), pp. 60-71, 2009.

Ramu, K. and Madhav, M.R., Response of rigid footing on reinforced granular fill over soft soil, Geomechanics and Engineering, 2(4), pp. 281-302, 2010. DOI: https://doi.org/10.12989/gae.2010.2.4.281 DOI: https://doi.org/10.12989/gae.2010.2.4.281

Özmen, G., Determination of base stresses in rectangular footings under biaxial bending, Teknik Dergi Digest, [online]. 22(4), pp. 1519-1535, 2011. Available at: http://www.imo.org.tr/resimler/dosya_ekler/7b559795bd3f63b_ek.pdf?dergi=472

Smith-Pardo, J.P., Performance-based framework for soil-structure systems using simplified rocking foundation models, Structural Engineering and Mechanics, 40(6), pp. 763-782, 2011. DOI: https://doi.org/10.12989/sem.2011.40.6.763 DOI: https://doi.org/10.12989/sem.2011.40.6.763

Valencia, Y., Camapum, J. y Lara, L., Aplicaciones adicionales de los resultados de pruebas de carga estáticas en el diseño geotécnico de cimentaciones, DYNA, 79(175), pp. 182-190, 2012.

Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D., Rigid spread footings resting on soil subjected to axial load and biaxial bending. I: simplified analytical method, International Journal of Geomechanics, 13(2), pp. 109-119, 2013. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000218 DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000218

Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D., Rigid spread footings resting on soil subjected to axial load and biaxial bending. II: design aids, International Journal of Geomechanics, 13(2), pp. 20-131, 2013. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000210 DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000210

Cunha, P.R., and Albuquerque, P.J.R., Advance of foundation techniques in Brazil since colonial times, DYNA, 81(183), pp. 178-187, 2014. DOI: https://doi.org/10.15446/dyna.v81n183.31435 DOI: https://doi.org/10.15446/dyna.v81n183.31435

Luévanos-Rojas, A., Design of boundary combined footings of rectangular shape using a new model, DYNA, 81(188), pp. 199-208, 2014. DOI: https://doi.org/10.15446/dyna.v81n188.41800 DOI: https://doi.org/10.15446/dyna.v81n188.41800

Hassaan, G.A., Optimal design of machinery shallow foundations with sand soils, International Journal of Research in Engineering and Technology, 3(5), pp. 1-8, 2014.

Momeni, E., Nazir, R., Armaghani, D.J. and Maizir, H., Application of artificial neural network for predicting shaft and tip resistances of concrete piles, Earth Sciences Research Journal, 19(1), pp. 85-95, 2015. DOI: https://doi.org/10.15446/esrj.v19n1.38712 DOI: https://doi.org/10.15446/esrj.v19n1.38712

Camero, H.E., A novel finite element method for designing floor slabs on grade and pavements with loads at edges, Ingeniería e Investigación, 35(2), pp. 15-22, 2015. DOI: https://doi.org/10.15446/ing.investig.v35n2.45603 DOI: https://doi.org/10.15446/ing.investig.v35n2.45603

Kassouf, R., De Carvalho, D., and Rocha-de Albuquerque, P.J., The behavior of a foundation transversally loaded at the top over highly porous and collapsible soil, DYNA, 83(199), pp. 134-139, 2016. DOI: http://dx.doi.org/10.15446/dyna.v83n199.52529 DOI: https://doi.org/10.15446/dyna.v83n199.52529

Luévanos-Rojas, A., López-Chavarría, S., and Medina-Elizondo, M., Optimal design for rectangular isolated footings using the real soil pressure, Ingeniería e Investigación, 37(2), pp. 25-33, 2017. DOI: https://doi.org/10.15446/ing.investig.v37n2.61447 DOI: https://doi.org/10.15446/ing.investig.v37n2.61447

Da Silva, J.L., Aoki, N., and Barbosa-Franco, Y., Use of the order statistics when predicting pile foundation failure probability, DYNA, 84(200), pp. 247-252, 2017. DOI: https://doi.org/10.15446/dyna.v84n200.54867 DOI: https://doi.org/10.15446/dyna.v84n200.54867

Munévar-Peña, M.A., Ramos-Cañón, A.M., and Prada-Sarmiento, L.F. Incorporación de la incertidumbre aleatoria de las propiedades del suelo en la geoestadística. Aplicación al diseño de cimentaciones basado en confiabilidad, Boletín de Ciencias de la Tierra, 44, pp. 38-48, 2018. DOI: https://doi.org/10.15446/rbct.n44.69266 DOI: https://doi.org/10.15446/rbct.n44.69266

Rodrigo-García, J., and Rocha-de Albuquerque, P.J., Model of nonlinear behavior applied to prediction of settlement in deep foundations, DYNA, 85(205), pp. 171-178, 2018. DOI: https://doi.org/10.15446/dyna.v85n205.68523 DOI: https://doi.org/10.15446/dyna.v85n205.68523

López-Chavarría, S., Luévanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R., and Velázquez-Santillán, F., Optimal design for the circular isolated footings, Advances in Computational Design, 4(3), pp. 273-294, 2019. DOI: https://doi.org/10.12989/acd.2019.4.3.273

Liu, B., and Jiang, X., Consolidation and deformation characteristics of soft rock foundation in a hydrological wetland environment, Earth Sciences Research Journal, 24(2), pp. 183-190, 2020. DOI: https://doi.org/10.15446/esrj.v24n2.87920 DOI: https://doi.org/10.15446/esrj.v24n2.87920

Al-Abbas, K.A., Saadoon, S., and Al-Robay, A.A., Experimental study for elastic deformation under isolated footing, Periodicals of Engineering and Natural Sciences, 8(2), pp. 942-948, 2020.

Gnananandarao, T., Khatri, V.N. and Dutta, R.K., Bearing capacity and settlement prediction of multi-edge skirted footings resting on sand, Ingeniería e Investigación, 40(3), pp. 9-21, 2020. DOI: https://doi.org/10.15446/ing.investig.v40n3.83170 DOI: https://doi.org/10.15446/ing.investig.v40n3.83170

Alelvan, G.M., Toro-Rojas, D., Pedron-Rossato, A.C., Reinaldo, R.,L. and Cordão-Neto, M.P., MPM and ALE simulations of large deformations geotechnics instability problems, DYNA, 87(212), pp. 226-235, 2020. DOI: https://doi.org/10.15446/dyna.v87n212.80975 DOI: https://doi.org/10.15446/dyna.v87n212.80975

Lezgy-Nazargah, M., Mamazizi, A., and Khosravi, H., Analysis of shallow footings rested on tensionless foundations using a mixed finite element model, Structural Engineering and Mechanics, 81(3), pp. 379-394, 2020. DOI: https://doi.org/10.12989/sem.2022.81.3.379

Gör, M., Analyzing the bearing capacity of shallow foundations on two-layered soil using two novel cosmology-based optimization techniques, Smart Structures and Systems, 29(3), pp. 513-522, 2022. DOI: https://doi.org/10.12989/sss.2022.29.3.513

Himeur, N., Mamen, B., Benguediab, S., Bouhadra, A., Menasria, A., Bouchouicha, B., Bourada, F., Benguediab, M., and Tounsi, A., Coupled effect of variable Winkler–Pasternak foundations on bending behavior of FG plates exposed to several types of loading, Steel and Composite Structures, 44(3), pp. 339-355, 2022. DOI: https://doi.org/10.12989/scs.2022.44.3.339

Soto-Garcia, S., Luévanos-Rojas, A., Barquero-Cabrero, J.D., López-Chavarría, S., Medina-Elizondo, M., Farias-Montemayor, O.M., and Martinez-Aguilar, C., A New Model for the contact surface with soil of circular isolated footings considering that the contact surface works partially under compression, International Journal of Innovative Computing, Information and Control, [online]. 18(4), pp. 1103-1116, 2022. Available at: http://www.ijicic.org/ijicic-180406.pdf

Cómo citar

APA

Luévanos-Rojas, A., Estrada-Mendoza, B. L. y Juárez-Ramírez, M. (2024). Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión. Boletín de Ciencias de la Tierra, (55), 85–98. https://doi.org/10.15446/rbct.n55.111624

ACM

[1]
Luévanos-Rojas, A., Estrada-Mendoza, B.L. y Juárez-Ramírez, M. 2024. Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión. Boletín de Ciencias de la Tierra. 55 (feb. 2024), 85–98. DOI:https://doi.org/10.15446/rbct.n55.111624.

ACS

(1)
Luévanos-Rojas, A.; Estrada-Mendoza, B. L.; Juárez-Ramírez, M. Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión. Bol. Cienc. Tierra 2024, 85-98.

ABNT

LUÉVANOS-ROJAS, A.; ESTRADA-MENDOZA, B. L.; JUÁREZ-RAMÍREZ, M. Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión. Boletín de Ciencias de la Tierra, [S. l.], n. 55, p. 85–98, 2024. DOI: 10.15446/rbct.n55.111624. Disponível em: https://revistas.unal.edu.co/index.php/rbct/article/view/111624. Acesso em: 17 abr. 2025.

Chicago

Luévanos-Rojas, Arnulfo, Blanca Lucia Estrada-Mendoza, y Mónico Juárez-Ramírez. 2024. «Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión». Boletín De Ciencias De La Tierra, n.º 55 (febrero):85-98. https://doi.org/10.15446/rbct.n55.111624.

Harvard

Luévanos-Rojas, A., Estrada-Mendoza, B. L. y Juárez-Ramírez, M. (2024) «Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión», Boletín de Ciencias de la Tierra, (55), pp. 85–98. doi: 10.15446/rbct.n55.111624.

IEEE

[1]
A. Luévanos-Rojas, B. L. Estrada-Mendoza, y M. Juárez-Ramírez, «Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión», Bol. Cienc. Tierra, n.º 55, pp. 85–98, feb. 2024.

MLA

Luévanos-Rojas, A., B. L. Estrada-Mendoza, y M. Juárez-Ramírez. «Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión». Boletín de Ciencias de la Tierra, n.º 55, febrero de 2024, pp. 85-98, doi:10.15446/rbct.n55.111624.

Turabian

Luévanos-Rojas, Arnulfo, Blanca Lucia Estrada-Mendoza, y Mónico Juárez-Ramírez. «Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión». Boletín de Ciencias de la Tierra, no. 55 (febrero 1, 2024): 85–98. Accedido abril 17, 2025. https://revistas.unal.edu.co/index.php/rbct/article/view/111624.

Vancouver

1.
Luévanos-Rojas A, Estrada-Mendoza BL, Juárez-Ramírez M. Estudio comparativo para áreas mínimas en contacto con el suelo de zapatas aisladas rectangulares y circulares trabajando parcialmente bajo compresión. Bol. Cienc. Tierra [Internet]. 1 de febrero de 2024 [citado 17 de abril de 2025];(55):85-98. Disponible en: https://revistas.unal.edu.co/index.php/rbct/article/view/111624

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

144

Descargas

Los datos de descargas todavía no están disponibles.