
Publicado
Análisis de procedencia de la Formación Tena en el río Anzu, Puyo – Ecuador
Provenance analysis of the Tena Formation in the Anzu River, Puyo – Ecuador
DOI:
https://doi.org/10.15446/rbct.n55.112656Palabras clave:
geoquímica; petrografía; minerales pesados; formación Tena; zona subandina (es)geochemistry; petrography; heavy minerals; Tena formation; subandean zone (en)
Descargas
La mega secuencia sedimentaria del Cretácico Superior de la cuenca Oriente en Ecuador se compone por las formaciones Hollín, Napo y Tena, que ha sido ampliamente estudiada debido a su interés económico en la industria petrolera. No obstante, la escasa información acerca de las características petrográficas y geoquímicas de las rocas fuente de la Formación Tena en el centro y sur de la zona Subandina ha generado incertidumbre en el modelo de evolución geológica regional, particularmente en el intervalo Maastrichtiano a Paleoceno. La sección del río Anzu, al noroeste de Puyo, proporciona la oportunidad de analizar la procedencia de la Formación Tena, exhibiendo de forma completa y continua su secuencia estratigráfica. Con el propósito de definir la fuente detrítica de la Formación Tena, esta investigación detalla la litoestratigrafía, petrografía, geoquímica y asociación de minerales pesados en la sección del río Anzu. El análisis petrográfico revela que las areniscas de la Formación Tena son litoareniscas feldespáticas, arcosas líticas y sublitarenitas, originadas a partir de fuentes sedimentarias ricas en cuarzo, con influencia ígnea y metamórfica. Las asociaciones de minerales pesados, junto con las concentraciones de elementos mayores, traza y tierras raras, indican que estas areniscas provienen principalmente de provincias sedimentarias recicladas, con influencia de provincias ígneas ácidas y metamórficas. Estas fuentes estarían vinculadas a regiones andinas que exhumaron y asimilaron bloques o cuñas tectónicas de la cuenca Oriente durante el inicio de la orogenia Andina a finales del Cretácico Superior e inicio del Paleoceno; la erosión de estos bloques controló el detrito disponible para la sedimentación de la Formación Tena en la zona de estudio.
The Upper Cretaceous sedimentary mega-sequence of the Oriente Basin (Ecuador) is composed of the Hollín, Napo, and Tena formations, which have been extensively studied due to their economic interest in the oil industry. However, the limited information regarding the petrographic and geochemical characteristics of the source rocks of the Tena Formation in the central and southern Subandean zone has generated uncertainty in the regional geological evolution model, particularly in the Maastrichtian to Paleocene interval. The Anzu River section, northwest of Puyo, provides the opportunity to analyze the provenance of the Tena Formation, exhibiting its stratigraphic sequence fully and continuously. With the purpose of defining the detrital source of the Tena Formation, this research details the lithostratigraphy, petrography, geochemistry, and heavy mineral association in the Anzu River section. Petrographic analysis reveals that the sandstones of the Tena Formation are lithic feldspathic arenites, lithic arkoses, and sub-litharenites, originating from sedimentary sources rich in quartz, with igneous and metamorphic influence. The associations of heavy minerals and concentrations of major, trace, and rare earth elements indicate that these sandstones mainly come from recycled sedimentary provinces, with influence from acidic igneous and metamorphic provinces. These sources would be linked to Andean regions that exhumed and assimilated tectonic blocks or wedges from the Oriente Basin during the onset of the Andean orogeny in the late Upper Cretaceous and early Paleocene; the erosion of these blocks controlled the detritus available for the sedimentation of the Tena Formation in the study area.
Referencias
Bhatia, M. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), pp. 611-627. 1983. DOI: https://doi.org/10.1086/628815 DOI: https://doi.org/10.1086/628815
Fralick, P.W., and Kronberg, B.I. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113(1-2), pp. 111-124. 1997. DOI: https://doi.org/10.1016/S0037-0738(97)00049-3 DOI: https://doi.org/10.1016/S0037-0738(97)00049-3
Etemad-Saeed, N.A., Hosseini-Barzi, M.A., and Armstrong-Altrin, J. S. Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. Journal of African Earth Sciences, 61(2), pp.142-159. 2011. DOI: https://doi.org/10.1016/j.jafrearsci.2011.06.003 DOI: https://doi.org/10.1016/j.jafrearsci.2011.06.003
McLennan, S.M., Hemming, S., McDaniel, D. K., and Hanson, G. N. Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers Geological Society of America, pp. 21-21. 1993. DOI: https://doi.org/10.1130/SPE284-p21 DOI: https://doi.org/10.1130/SPE284-p21
Nagarajan, R., Armstrong-Altrin, J.S., Kessler, F.L., and Jong, J. Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of clastic sediments from the Neogene Lambir and Sibuti Formations, northwest Borneo. In Mazumder R. Sediment provenance, 1 ed., Oxford, United Kingdom, Elsevier. 2017. pp. 123-153. DOI: https://doi.org/10.1016/B978-0-12-803386-9.00007-1 DOI: https://doi.org/10.1016/B978-0-12-803386-9.00007-1
Ogbahon, O.A., and Olujinmi, O.B. Geochemistry of Maastrichtian clastic sedimentary rocks from Western flank of Anambra Basin, Nigeria: Implications for provenance, tectonic setting, paleoclimate and depositional paleoenvironment. International Journal of Geosciences. 10(1), pp. 91-118. 2019. DOI: https://doi.org/10.4236/ijg.2019.101007 DOI: https://doi.org/10.4236/ijg.2019.101007
Bhatia, M., and Crook, K. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology. 92(2), pp. 181-193. 1986. DOI: https://doi.org/10.1007/BF00375292 DOI: https://doi.org/10.1007/BF00375292
Taylor, S.R., and McLennan, S. M. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford. 1985. Available at: https://www.osti.gov/biblio/6582885
Vallejo, C., Spikings, R.A., Horton, B. K., Luzieux, L., Romero, C., Winkler, W., and Thomsen, T. B. Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment. In Horton B. K., and Folguera A. Andean tectonics. Elsevier. 2019. pp. 209-236. DOI: https://doi.org/10.1016/B978-0-12-816009-1.00010-1 DOI: https://doi.org/10.1016/B978-0-12-816009-1.00010-1
Spikings, R., Paul, A., Vallejo, C., and Reyes, P. Constraints on the ages of the crystalline basement and Palaeozoic cover exposed in the Cordillera real, Ecuador: 40Ar/39Ar analyses and detrital zircon U/Pb geochronology. Gondwana Research, 90(1), pp. 77-101. 2021. DOI: https://doi.org/10.1016/j.gr.2020.10.009 DOI: https://doi.org/10.1016/j.gr.2020.10.009
Winkler, W., Villagómez, D., Spikings, R., Abegglen, P., and Egüez, A. The Chota basin and its significance for the inception and tectonic setting of the inter-Andean depression in Ecuador. Journal of South American Earth Sciences. 19(1), pp. 5-19. 2005. DOI: https://doi.org/10.1016/j.jsames.2004.06.006 DOI: https://doi.org/10.1016/j.jsames.2004.06.006
Gramal, A.A., Carranco, A.F., Romero C.C., Pulupa V.R., Calderón R.D., and Toainga S. Evidencias de canibalización de secuencias Cretácicas y Paleógenas de la Cuenca Oriente en la cuña orogénica de los Andes ecuatorianos. Boletín de Geología. 43(3), pp. 15-34. 2021. DOI: https://doi.org/10.18273/revbol.v43n3-2021001 DOI: https://doi.org/10.18273/revbol.v43n3-2021001
Tschopp, H.J. Oil explorations in the Oriente of Ecuador, 1938–1950. AAPG Bulletin, 37(10), pp. 2303-2347. 1953. DOI: https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D DOI: https://doi.org/10.1306/5CEADD94-16BB-11D7-8645000102C1865D
Dashwood, M.F., and Abbotts, I.L. Aspects of the petroleum geology of the Oriente Basin, Ecuador. Geological Society, London, Special Publications, 50(1), pp. 89-117. 1990. DOI: https://doi.org/10.1144/GSL.SP.1990.050.01.06 DOI: https://doi.org/10.1144/GSL.SP.1990.050.01.06
Gutiérrez, E.G., Horton, B.K., Vallejo, C., Jackson, L.J., and George, S.W. Provenance, and geochronological insights into Late Cretaceous-Cenozoic foreland basin development in the Subandean Zone and Oriente Basin of Ecuador. In Horton B. K., and Folguera A. Andean Tectonics. Elsevier. 2019. pp. 237-268. DOI: https://doi.org/10.1016/B978-0-12-816009-1.00011-3 DOI: https://doi.org/10.1016/B978-0-12-816009-1.00011-3
Vallejo, C., Romero, C., Horton, B.K., Spikings, R.A., Gaibor, J., Winkler, W., Thomsen J.J.E., and Mariño, E. Jurassic to Early Paleogene sedimentation in the Amazon region of Ecuador: Implications for the paleogeographic evolution of northwestern South America. Global and Planetary Change. 204(2021), 103555, pp. 1-26. 2021. DOI: https://doi.org/10.1016/j.gloplacha.2021.103555 DOI: https://doi.org/10.1016/j.gloplacha.2021.103555
Jaillard, E., Caron, M., Dhondt, A., Ordoñez, M., Andrade, R., Bengtson, P., Bulot L., Cappetta H., Davila C., Diaz R., Huacho J., Huaman C., Jimenez D., Jimenez N., Montenegro J., Neraudeau D., Rivadeneira M., Toro J., Villagomez R., and Zambrano I. Síntesis estratigráfica y sedimentológica del Cretáceo y Paleógeno de la cuenca Oriental del Ecuador, Orstom-Petroproduccion eds, pp. 164. 1997.
Romero, C.W., Gramal, A.B., Carranco, F.R., and Toainga, S. D. Asociación de facies: la clave para la identificación de la Formación Hollín en la región sur oriental del Ecuador. GeoLatitud, 2(1), pp. 9-23. 2019. Available: https://geolatitud.geoenergia.gob.ec/ojs/ojs/index.php/GeoLatitud/article/view/31/65
Vallejo, C., Hochuli, P.A., Winkler, W., and Von Salis, K. Palynological and sequence stratigraphic analysis of the Napo Group in the Pungarayacu 30 well, Sub-Andean Zone, Ecuador. Cretaceous Research. 23(6), pp. 845-859. 2002. DOI: https://doi.org/10.1006/cres.2002.1028 DOI: https://doi.org/10.1006/cres.2002.1028
Christophoul, F., Baby, P., and Davila, C. Discrimination of eustatic and tectonic influences in the Ecuadorian Oriente Basin from Aptian to Oligocene times. Proceedings of International Symposium on Andean Geodynamics (ISAG), Göttingen, Alemania, pp. 168 – 171. 1999. Available at: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers09-03/010022660.pdf
Roddaz M., Hermoza W., Mora A., Baby P., Parra M., Christophoul F., Brusset S. and Espurt N. Cenozoic sedimentary evolution of the Amazonian foreland basin system. In Horton C., and Wesselingh F. P. Amazonia, landscape and species evolution: a look into the past, 5th ed., 2010. pp. 61-88. DOI: https://doi.org/10.1002/9781444306408.ch5 DOI: https://doi.org/10.1002/9781444306408.ch5
Instituto de Investigación Geológico y Energético – IIGE. Mapa geológico de la hoja de Baños, escala 1:100 000, Ministerio de Energía y Minas de Ecuador, Quito-Ecuador, 2023.
Romero, C.W., Escobar, V.L., Calderón, D., Gramal, A.B., Menéndez, B.E., Gallardo, O.A., y Velez, T.S. La evolución de abanicos aluviales documentada en el registro estratigráfico de la Formación Tiyuyacu. Revista Científica GeoLatitud, 4(1), pp. 38-50. 2021. Available at: https://geolatitud.geoenergia.gob.ec/ojs/ojs/index.php/GeoLatitud/article/view/103/86
Shanmugam, G., Poffenberger, M., and Toro Alava, J. Tide-dominated estuarine facies in the Hollin and Napo (" T" and" U") formations (Cretaceous), Sacha field, Oriente basin, Ecuador. AAPG bulletin, 84(5), pp. 652-682. 2000. DOI: https://doi.org/10.1306/C9EBCE7D-1735-11D7-8645000102C1865D DOI: https://doi.org/10.1306/C9EBCE7D-1735-11D7-8645000102C1865D
Brookfield, M.E., Hemmings, D.P., & Van Straaten, P. Paleoenvironments and origin of the sedimentary phosphorites of the Napo Formation (Late Cretaceous, Oriente Basin, Ecuador). Journal of South American Earth Sciences, 28(2), pp. 180-192. 2009. DOI: https://doi.org/10.1016/j.jsames.2009.02.004 DOI: https://doi.org/10.1016/j.jsames.2009.02.004
Angulo-Romero, E., Beate, B., y Romero-Cóndor, C. Zonificación del gradiente geotérmico en la cuenca Oriente de Ecuador a partir de temperatura de fondo de pozos. Boletín de Geología. 45(1), pp. 119-139. 2023. DOI: https://doi.org/10.18273/revbol.v45n1-2023006 DOI: https://doi.org/10.18273/revbol.v45n1-2023006
Instituto Nacional de Investigación Geológico Minero – INIGEMM. Mapa Geológico del Ecuador, escala 1.1 000 000. Ministerio de energía y recursos naturales no renovables de Ecuador. Quito-Ecuador. 2017.
Romero, C.W., Romero, E.D.C., Montesdeoca, M.V.R., Calero, M.E.N., Carrillo, M. V. M., y Gramal, A. B. Reconstruyendo el pasado del planeta: El registro estratigráfico y sedimentológico de la Formación Tena en la carretera Tiwintza–Puerto Morona. Revista Científica GeoLatitud, 2(2), pp. 2-13. 2019. Available at: https://geolatitud.geoenergia.gob.ec/ojs/ojs/index.php/GeoLatitud/article/view/40/71
Luzieux, L. D. A., Heller, F., Spikings, R., Vallejo, C. F., and Winkler, W. Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1 N and 3 S: Paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters, 249(3-4), pp. 400-414. 2006. DOI: https://doi.org/10.1016/j.epsl.2006.07.008 DOI: https://doi.org/10.1016/j.epsl.2006.07.008
Christophoul, F., Baby, P., and Dávila, C. Stratigraphic responses to a major tectonic event in a foreland basin: the Ecuadorian Oriente Basin from Eocene to Oligocene times. Tectonophysics, 345(1-4), pp. 281-298. 2002. DOI: https://doi.org/10.1016/S0040-1951(01)00217-7 DOI: https://doi.org/10.1016/S0040-1951(01)00217-7
Folk, R.L. Petrology of sedimentary rocks. Hemphill Publishing Company. 1980
Greensmith, J. Petrology of the sedimentary rocks. Springer Science & Business Media. 2012
Balaram, V., and Subramanyam, K. Sample Preparation for Geochemical Analysis: Strategies and Significance. Advances in Sample Preparation. 32(2), pp. 15-32. 2022. DOI: https://doi.org/10.1016/j.sampre.2022.100010 DOI: https://doi.org/10.1016/j.sampre.2022.100010
Kumar, V., Kumar, S., Kumar, N., & Bangroo, P.N. Separation and pre-concentration of rare earth elements in geological materials using used green tea leaves and their determination by ICP-OES. Journal of the Indian Chemical Society. 90(11). pp. 2147-2151. 2013. DOI: https://doi.org/10.13140/RG.2.1.2672.5843
Pinto, F. G., Junior, R.E., and Saint'Pierre, T.D. Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Analytical letters. 45(12). Pp. 1537-1556. 2012. DOI: https://doi.org/10.1080/00032719.2012.677778 DOI: https://doi.org/10.1080/00032719.2012.677778
Janoušek, V., Moyen, J.F., Martin, H., Erban, V., & Farrow, C. Geochemical modelling of igneous processes: principles and recipes in R language. Springer. Pp. 257. 2015. DOI: https://doi.org/10.1007/978-3-662-46792-3 DOI: https://doi.org/10.1007/978-3-662-46792-3
Mange, M.A., & Maurer, H. Heavy minerals in colour. Springer Science & Business Media. 2012
Morton, A.C., Herries, R., & Fanning, M. Correlation of Triassic sandstones in the Strathmore Field, west of Shetland, using heavy mineral provenance signatures. Developments in Sedimentology. 58(1), pp. 1037-1072. 2007. DOI: https://doi.org/10.1016/S0070-4571(07)58041-6 DOI: https://doi.org/10.1016/S0070-4571(07)58041-6
Folk, R.L., Andrews, P.B., and Lewis, D.W. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand journal of geology and geophysics, 13(4), pp. 937-968. 1970. DOI: https://doi.org/10.1080/00288306.1970.10418211 DOI: https://doi.org/10.1080/00288306.1970.10418211
Nesbitt, H.W., and Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et cosmochimica acta. 48(7), pp. 1523-1534. 1984. DOI: https://doi.org/10.1016/0016-7037(84)90408-3 DOI: https://doi.org/10.1016/0016-7037(84)90408-3
Rudnick, R.L., and Fountain, D.M. Nature, and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics. 33(3), pp. 267-309. 1995. DOI: https://doi.org/10.1029/95RG01302 DOI: https://doi.org/10.1029/95RG01302
Sun, L., Gui, H., and Chen, S. Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: implications for provenance, weathering, and tectonic setting. Geochemistry. 72(3), pp. 253-260. 2012. DOI: https://doi.org/10.1016/j.chemer.2011.11.006 DOI: https://doi.org/10.1016/j.chemer.2011.11.006
Mongelli, G., Critelli, S., Perri, F., Sonnino, M., and Perrone, V. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochemical Journal. 40(2), pp. 197-209. 2006. DOI: https://doi.org/10.2343/geochemj.40.197 DOI: https://doi.org/10.2343/geochemj.40.197
Herron, M. M. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research. 58(5), pp. 820-829. 1988. DOI: https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D DOI: https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D
Pettijohn, F. J., Potter, P. E., Siever, R., Pettijohn, F. J., Potter, P. E., and Siever, R. Production and provenance of sand. In Pettijohn F. J., Potter P. E., Siever R. Sand and Sandstone. Springer Study Edition. 1972. pp. 294-326. DOI: https://doi.org/10.1007/978-1-4615-9974-6_8 DOI: https://doi.org/10.1007/978-1-4615-9974-6_8
Wang, X., Zhang, F., Li, S., Dou, L., Liu, Y., Ren, X., ... & Zhao, W. The architectural surfaces characteristics of sandy braided river reservoirs, case study in Gudong Oil Field, China. Geofluids. pp.1-12. 2021. DOI: https://doi.org/10.1155/2021/8821711 DOI: https://doi.org/10.1155/2021/8821711
De Almeida, R. P., Marconato, A., Freitas, B. T., and Turra, B. B. The ancestors of meandering rivers. Geology. 44(3), pp. 203-206. 2016. DOI: https://doi.org/10.1130/G37534.1 DOI: https://doi.org/10.1130/G37534.1
Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavek, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. and Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society. America Bull. 94(2), pp.222-235. 1983. DOI: https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
Tschopp, H.J., Rod E. A., Haus H. I., and Ludueña K.P. Petrographic report of samples collected in the Pastaza formations and tertiary cycles of the Ecuadorian Amazon. In Haus H. I. Geological exploration work in Latin America. Geological chart communications of the Americas. 1949. Pp.135.
Instituto Ecuatoriano de Minería - INEMIN. Reporte del mapa geológico de Tena, escala 1:50 000. Ministerio de Minas del Ecuador. Quito-Ecuador. 1989. Pp.15
Morán-Coello, H., y Moyano-Bohórquez, F. Corte geológico de las formaciones cretácico-terciarias en el frente de cabalgamiento andino entre Morona y Santiago. Bachelor's thesis, Tesis de Geología, Escuela Superior Politécnica del Litoral. Guayaquil – Ecuador. 1998. Available at: https://www.dspace.espol.edu.ec/handle/123456789/3374
Villalva Ojeda, R.C. Modelo geológico de la arenisca Tena basal en la cuenca Oriente. Bachelor's tesis, Tesis de Geologia, Escuela Politecnica Nacional. Quito-Ecuador. 2006.
Ruiz, G., Seward, D., Winkler, W., and Spikings, R. Detrital provenance and exhumation in the ecuadorian subandean zone: a key region leading to the understanding of Andean geodynamics. In 5th International Symposium on Andean Geodynamics-ISAG, Toulouse, Extended Abstract Volume. 2002. pp. 565-568
Roser, B.P., and Korsch, R.J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology. 67(1-2), pp. 119-139. 1988. DOI: https://doi.org/10.1016/0009-2541(88)90010-1 DOI: https://doi.org/10.1016/0009-2541(88)90010-1
Morton, A.C., and Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology. 90(3-4), pp. 241-256. 1994. DOI: https://doi.org/10.1016/0037-0738(94)90041-8 DOI: https://doi.org/10.1016/0037-0738(94)90041-8
Tsikouras, B., Pe-Piper, G., Piper, D.J., and Schaffer, M. Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sedimentary Geology. 237(3-4), pp. 150-165. 2011. DOI: https://doi.org/10.1016/j.sedgeo.2011.02.011 DOI: https://doi.org/10.1016/j.sedgeo.2011.02.011
Knox, R.W.O.B., Franks, S.G., and Cocker, J.D. Stratigraphic evolution of heavy-mineral provenance signatures in the sandstones of the Wajid Group (Cambrian to Permian), southwestern Saudi Arabia. GeoArabia. 12(4), pp. 65-96. 2007. DOI: https://doi.org/10.2113/geoarabia120465 DOI: https://doi.org/10.2113/geoarabia120465
Yerino, L.N., and Maynard, J. B. Petrography of modern marine sands from the Peru‐Chile Trench and adjacent areas. Sedimentology. 31(1), pp. 83-89. 1984. DOI: https://doi.org/10.1111/j.1365-3091.1984.tb00724.x DOI: https://doi.org/10.1111/j.1365-3091.1984.tb00724.x
Bhatia, M.R. Plate tectonics and geochemical composition of sandstones: a reply. The Journal of Geology. 93(1), pp. 85-87. 1985. DOI: https://doi.org/10.1086/628922 DOI: https://doi.org/10.1086/628922
Ratcliffe, K.T., Morton, A.C., Ritcey, D.H., and Evenchick, C.A. Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools in the Bowser and Sustut basins, British Columbia, Canada. Bulletin of Canadian Petroleum Geology. 55(4), pp. 320-336. 2007. DOI: https://doi.org/10.2113/gscpgbull.55.4.320 DOI: https://doi.org/10.2113/gscpgbull.55.4.320
Suttner, L.J., and Dutta, P.K. Alluvial sandstone composition and paleoclimate, framework mineralogy. Journal of Sedimentary Petrology. 56 (3), pp. 329–345. 1986. DOI: https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D DOI: https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D
Spikings, R.A., Winkler, W., Hughes, R.A., & Handler, R. Thermochronology of allochthonous terranes in Ecuador: Unravelling the accretionary and post-accretionary history of the Northern Andes. Tectonophysics, 399(1-4), pp. 195-220. 2005. DOI: https://doi.org/10.1016/j.tecto.2004.12.023 DOI: https://doi.org/10.1016/j.tecto.2004.12.023
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Carolina Cornejo, Corina Campos, Oswaldo Guzmán. (2025). Soft-sediment deformation structures induced by seismic activity in the Upper Cretaceous Tena Formation - Oriente basin of Ecuador. Journal of South American Earth Sciences, 153, p.105365. https://doi.org/10.1016/j.jsames.2025.105365.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2024 Boletín de Ciencias de la Tierra

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista. Al asumir los derechos patrimoniales del artículo, no podrá reproducirse parcial o totalmente en ningún medio impreso o digital sin permiso expreso del mismo.