Publicado
Analysis and comparison of Fourier and Wavelet transforms: application to the study of seismic source parameters of the 2001 Arequipa Earthquake
Análisis y comparación de las transformadas de Fourier y Wavelet: aplicación para el estudio de parámetros de la fuente sísmica del Terremoto de Arequipa del 2001
DOI:
https://doi.org/10.15446/rbct.n58.118962Palabras clave:
Fourier Transform (FFT), Wavelet Transform (WT), radiated energy, source parameters, Arequipa earthquake (en)Transformada de Fourier (FFT), Transformada Wavelet (WT), energía radiada, parámetros fuente, terremoto de Arequipa (es)
Descargas
This study focuses on the characterization of the June 23, 2001, Arequipa earthquake by applying the Fourier Transform (FFT) and Wavelet Transform (WT) together to estimate source parameters and radiated energy, aiming to improve seismic risk management in southern Peru. FFT results showed seismic moments ranging from 3.55×10¹⁶ to 1.41×10¹⁸ N·m, stress drops between 0.46 and 3.99 MPa, and fracture radii from 0.61 to 1.94 km. WT enabled the estimation of dominant frequencies between 0.18–0.24 Hz, radiated energy ranging from 24.52 to 32.19 J, and rupture durations from 40.02 to 105.98 s. The combined use of FFT and WT allowed for a more detailed characterization of the 2001 Arequipa earthquake. FFT proved effective for spectral analysis of source parameters, while WT provided accurate estimates of radiated energy and rupture duration—key factors for enhancing seismic risk assessment in the region.
Este estudio se centra en la caracterización del terremoto de Arequipa del 23 de junio de 2001, aplicando conjuntamente la Transformada de Fourier (FFT) y la Transformada Wavelet (WT) para estimar los parámetros de fuente y la energía radiada, con el objetivo de mejorar la gestión del riesgo sísmico en el sur de Perú. Los resultados de FFT mostraron momentos sísmicos entre 3.55×10¹⁶ y 1.41×10¹⁸ N·m, caídas de estrés entre 0.46 y 3.99 MPa, y radios de fractura de 0.61 a 1.94 km. La WT permitió estimar frecuencias dominantes entre 0.18–0.24 Hz, energía radiada entre 24.52 y 32.19 J, y duraciones de ruptura entre 40.02 y 105.98 s. El uso combinado de FFT y WT permitió una caracterización más detallada del terremoto de 2001. La FFT resultó eficaz para el análisis espectral de los parámetros de fuente, mientras que la WT proporcionó estimaciones precisas de la energía radiada y la duración de la ruptura, factores clave para mejorar la evaluación del riesgo sísmico en la región.
Referencias
[1] Gurley, K., and Kareem, A., Applications of wavelet transforms in earthquake, wind, and ocean engineering. Eng Struct. 21(2), pp. 149–167, 1999. DOI: https://doi.org/10.1016/S0141-0296(98)00085-5.
[2] Sinha, S., Routh, P., Anno, P., and Castagna, J., Spectral decomposition of seismic data using continuous wavelet transform. Geophysics, 70(6), art. 27113, 2005. DOI: https://doi.org/10.1190/1.2127113
[3] Rajbhandari, R., Acharya, I.P., and Adhikari, B.R., Application of wavelet transform for seismic wave analysis in Kathmandu. Geoenvironmental Disasters. 6(1), pp. 1–10, 2019. DOI: https://doi.org/10.1186/s40677-019-0134-8.
[4] Hao, J., and Yao, Z., Determination of regional earthquake source parameters in the wavelet domain. Sci China Earth Sci. 55(5), pp. 802–810, 2012. DOI: https://doi.org/10.1007/s11430-011-4341-8.
[5] Longchamp, G., Clares, R, González, J., and Leyva, M., Seismic source parameters of earthquakes located on the eastern fault, in a sector southeast of Santiago de Cuba province. XI Congr Cubano Geol Simp Riesgo Geol Seismic. 2015.
[6] Cichowicz, A., and Birch, D., Estimation of seismic source parameters. Council for Geoscience, SIM 11-02-01, 2012.
[7] Flórez, C., and Lozano, C., Analysis and processing of signals from seismogenic sources near San José de Cúcuta, Colombia. 2016. DOI: https://doi.org/10.22463/0122820X.569.
[8] Archuleta, R., Cranswick, C., Mueller, C., and Spudich, P., Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence. J. Geophys Res. 87(B6), pp. 4595–4607, 1982. DOI: https://doi.org/10.1029/JB087iB06p04595.
[9] Kanamori, H., and Anderson, L., Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am. 65(5), pp. 1073–1095, 1975. DOI: https://doi.org/10.1785/BSSA0650051073.
[10] Delgado, M., Determination of seismic source parameters from spectral analysis: applied to the aftershocks of the 2001 Arequipa earthquake. Universidad Nacional de San Agustín, [online]. 2018. Available at: https://repositorio.unsa.edu.pe/handle/UNSA/7045.
[11] Hancco, J., Determination of seismic source parameters through spectral analysis of aftershocks from the January 14, 2018, Lomas earthquake in Arequipa. Universidad Nacional de San Agustín, [online]. 2022. Available at: http://hdl.handle.net/20.500.12773/15610.
[12] Ocola, L., Coseismic subsidence in southern Peru: Mw 8.4 earthquake of June 23, 2001. Adv Geosci. 14, pp. 79–83, 2008. DOI: https://doi.org/10.5194/adgeo-14-79-2008.
[13] Legrand, D., Delouis, B., Dorbath, L., David, C., Campos, J., Marquéz, L., Thompson, J., and Comte, D., Source parameters of the Mw = 6.3 aromatic crustal earthquake of July 24, 2001 (northern Chile) and its aftershock sequence. J South Am Earth Sci. 24(1), pp. 58–68, 2007. DOI: https://doi.org/10.1016/j.jsames.2007.02.004.
[14] Malasavage, N., and Wartman, J., Spatial analysis of the damage distribution from the 2001 southern Peru earthquake. Geotech Earth Eng Soil Dyn IV., 2008. DOI: https://doi.org/10.1061/40975(318)24.
[15] Kuroiwa, J., Sustainable cities, a regional seismic scenario, and the Arequipa, Peru earthquake of June 23, 2001, 2002. DOI: https://doi.org/10.1061/ASCE1527-698820023:4158.
[16] Tavera, H., and Antayhua, Y., Parameters of the Arequipa earthquake of June 23, 2001, and three major aftershocks deduced from spectral analysis of body waves. Inst Geofísico Perú (IGP), Cent Nac Datos Geofís (CNDG), pp. 99–104. 2002. DOI: https://doi.org/10.1023/A:1015698621075
[17] Fourier, J.B.J., Théorie analytique de la chaleur. Firmin Didot, Paris, 1822.
[18] Unser, M., Fast Gabor-like continuous wavelet transforms with windowed Fourier transforms. IEEE Signal Process Lett. 1(5), pp. 76–79, 1994. DOI: https://doi.org/10.1109/97.294384.
[19] Adhikari, B., Dahal, S., Karki, M., Mishra, R., Dahal, R., Sasmal, S,. and Klausner, V., Application of Wavelet for seismic wave analysis in the Kathmandu Valley after the 2015 Gorkha earthquake, Nepal. Geoenviron Disasters. 7(1), art. 0134-8, 2020. DOI: https://doi.org/10.1186/s40677-019-0134-8.
[20] Daubechies, I., Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992. DOI: https://doi.org/10.1137/1.9781611970104.
[21] Chen, J., Wald, D., and Helmberger, D., Source description of the 1999 Hector Mine earthquake, California, Part I: Wavelet domain inversion theory and resolution analysis. Bull Seismol Soc Am. 92(4), pp. 1192–1207, 2002. DOI: https://doi.org/10.1785/0120000916.
[22] Jindal, M., Priya, G., Jothilakshmi, R., Chithra, S., Ramasamy, V., and Kumar, D., Comprehensive study of Fourier and Wavelet transforms: features and applications, 2023. DOI: https://doi.org/10.5281/zenodo.7766175.
[23] Li, H., Yi, T., Gu, M., and Huo, L., Evaluation of earthquake-induced structural damage using wavelet transform. Prog Nat Sci. 19(4), pp. 461–470, 2009. DOI: https://doi.org/10.1016/j.pnsc.2008.09.002.
[24] Chik, Z., Islam, T., Rosyidi, S.A., Sanusi, H., Taha, M.R., and Mustafa, M.M., Comparing the performance of Fourier decomposition and wavelet decomposition for seismic signal analysis. Eur J Sci Res. 32(3), pp. 314–328, 2009.
[25] Helffrich, G., Wookey, J., and Bastow, I., The seismic analysis code: a primer and user’s guide. Cambridge University Press, Cambridge, 2013. DOI: https://doi.org/10.1017/CBO9781139547260.
[26] Boudouridis, A., and Zesta, E., Comparison of Fourier and Wavelet techniques in determining geomagnetic field line resonances. J Geophys Res. 112, art. 11922, 2007. DOI: https://doi.org/10.1029/2006JA011922.
[27] Thorsten, B., and Sedl, D., Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform. Ann Geophys. 42(3), art. 3733, 1999. DOI: https://doi.org/10.4401/ag-3733
[28] Brune, J.B.J., Tectonic stress and spectra of shear waves from earthquakes. J Geophys Res. 75(26), pp. 4997–5009, 1970. DOI: https://doi.org/10.1029/JB075i026p04997.
[29] Hu, X.G., Liu, L., Hinderer, J., Hsu, H., and Sun, H., Analysis of atmospheric pressure effects in the long-period seismic modal band using wavelet filters. Phys Earth Planet Inter. 154(1), pp. 70–84, 2006. DOI: https://doi.org/10.1016/j.pepi.2005.09.003.
[30] Lockwood, O., and Kanamori, H., Wavelet analysis of seismograms from the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning. Geochem Geophys Geosyst. 7(9), art. 1272, 2006. DOI: https://doi.org/10.1029/2006GC001272.
[31] Mamadou, S., Michail, K., Holschneider, M., Scherbaum, F., and Adler, F., Characterization of seismic wave polarization attributes using continuous wavelet transforms. Geophysics. 71(3), art. 94511, 2006. DOI: https://doi.org/10.1190/1.2194511
[32] Hartzell, S., and Liu, P.C., Calculation of earthquake rupture histories using a hybrid global search algorithm. Bull Seismol Soc Am. 86(2), pp. 525–538, 1996.
[33] McNamara, D.E., and Buland, R.P., Ambient noise levels in the continental United States. Bull Seismol Soc Am. 94(4), pp. 1517–1527, 2004. DOI: https://doi.org/10.1785/012003001
[34] Iliescu, V., Seismic signal enhancement using time-frequency transforms. Master’s thesis. University of Calgary, Calgary, [online]. 2002. Available at: https://ucalgary.scholaris.ca. DOI: https://doi.org/10.11575/PRISM/15751.
[35] Salmon, M.W., Short, S.A., and Kennedy, R.P., Strong motion duration and earthquake magnitude relationships (No. UCRL-CR-117769). Lawrence Livermore National Lab. 1992. DOI: https://doi.org/10.1007/s10009-008-0033-1.
[36] Bessissi, Z., Terbeche, M., and Ghezali, B., Application of wavelets to the analysis of time series of DORIS station coordinates. Comptes Rendus Geosci. 341(6), pp. 446–461, 2009. DOI: https://doi.org/10.1016/j.crte.2009.03.010.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Boletín de Ciencias de la Tierra

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista. Al asumir los derechos patrimoniales del artículo, no podrá reproducirse parcial o totalmente en ningún medio impreso o digital sin permiso expreso del mismo.







