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SUMMARY

Introduction: The lengthy and costly process of drug development can be expedited
through drug repositioning (DR), a strategy that identifies new therapeutic targets
using existing products. Supervised machine learning (SML) models, incorporating
interaction networks, offer a promising approach for DR. This study aims to
systematically review and meta-analyze SML models predicting DR, identifying
key characteristics influencing their performance. Methodology: A systematic
review was conducted to identify SML models that used networks to predict DR,
which were evaluated by comparing their performance through a random-effects
meta-analysis. Results: 19 studies were included in the qualitative synthesis and
17 in the quantitative evaluation, The Random Forest (RF) model emerged as the
predominant classifier (63%), yielding the highest performance in AUC ROC
comparisons (overall value: 0.91, 95% CI: 0.86 — 0.96). Validation efforts in 18
studies confirmed the predictions of the SML models, affirming the proposed
drugs. The incorporation of chemical structure in model training was found to
enhance performance by aiding in prediction discrimination. Conclusion: SML
models can predict DR, the RF model was the most widely used SML model with
the best performance results, which underscores the potential use of FR models for

predicting DR using network form biomedical information.

Keywords: Drug Repositioning, Drug development, Biological Networks, Machine

Learning, Random Forest.
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Random forest machine learning model performs better in predicting drug repositioning

RESUMEN

El modelo de aprendizaje automatico bosque aleatorio presenta
un mejor desempeno para predecir el reposicionamiento de
medicamentos usando redes: Revision sistemdtica y Meta-andlisis

Introduccién: El proceso de investigacion y desarrollo de firmacos se puede
acelerar mediante el reposicionamiento de medicamentos (DR), una estrategia
que identifica nuevos objetivos terapéuticos utilizando productos existentes. Los
modelos de aprendizaje automatico supervisado (SML), que incorporan redes de
interaccién, ofrecen un enfoque prometedor para DR. Este estudio tiene como
objetivo revisar y meta-analizar sistemdticamente los modelos SML que predicen
DR, identificando caracteristicas clave que influyen en su desempefno. Metodologia:
Se realiz6 una revision sistemdtica para identificar modelos SML que utilizaran redes
para predecir DR, los cuales se evaluaron comparando su desempefio mediante un
meta-andlisis de efectos aleatorios. Resultados: Se incluyeron 19 estudios en la
sintesis cualitativa y 17 en la evaluacién cuantitativa. El modelo Bosque aleatorio
surgi6 como el clasificador predominante (63%), obteniendo el mayor rendimiento
en las comparaciones AUC ROC (valor general: 0,91, 95% IC: 0,86 - 0,96). Los
esfuerzos de validacién en 18 estudios confirmaron las predicciones de los modelos
SML, afirmando los medicamentos propuestos. Se descubrié que la incorporacién
de estructura quimica en el entrenamiento de modelos mejora el rendimiento
al ayudar en la discriminacién de predicciones. Conclusién: Los modelos SML
pueden predecir la DR, el modelo RF fue el modelo SML mds utilizado con los
mejores resultados de rendimiento, lo que resalta el uso potencial de modelos FR

para predecir el DR utilizando redes de informacién biomédica.

Palabras clave: Reposicionamiento de medicamentos, Desarrollo de medicamentos,

Redes bioldgicas, Aprendizaje automdtico, Bosque aleatorio.

REsuMO

O modelo de aprendizado de méquina Floresta Aleatéria
apresenta melhor desempenho para prever o reposicionamento de
medicamentos utilizando redes: Revisao Sistematica e Meta-analise

Introdugao: O processo longo e custoso de desenvolvimento de medicamentos pode

ser acelerado por meio do reposicionamento de medicamentos (DR), uma estratégia
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que identifica novos alvos terapéuticos usando produtos existentes. Modelos de
aprendizado de miquina supervisionado (SML), incorporando redes de interagio,
oferecem uma abordagem promissora para o DR. Este estudo tem como objetivo
revisar sistematicamente e realizar meta-anélises de modelos SML que preveem DR,
identificando caracteristicas-chave que influenciam seu desempenho. Metodologia:
Foi realizada uma revisao sistemdtica para identificar modelos SML que usaram
redes para prever DR, os quais foram avaliados comparando seu desempenho por
meio de uma meta-andlise de efeitos aleatérios. Resultados: 19 estudos foram
incluidos na sintese qualitativa e 17 na avaliagio quantitativa, o modelo Floresta
Aleatéria (RF) emergiu como o classificador predominante (63%), apresentando o
melhor desempenho em comparagoes de AUC ROC (valor geral: 0,91, IC 95%:
0,86 - 0,96). Os esforgos de validagio em 18 estudos confirmaram as previsées dos
modelos SML, afirmando os medicamentos propostos. A incorporagio da estrutura
quimica no treinamento do modelo mostrou-se capaz de melhorar o desempenho
a0 auxiliar na discriminagio das previsoes. Conclusio: Os modelos SML podem
prever DR, o modelo RF foi 0 modelo SML mais amplamente utilizado com os
melhores resultados de desempenho, o que destaca o potencial uso dos modelos FR

para prever DR usando informagoes biomédicas de rede.

Palavras-chave: Reposicionamento de medicamentos, Desenvolvimento de

medicamentos, Redes bioldgicas, Aprendizado de maquina, Floresta Aleatdria.

INTRODUCTION

The research and development of new drugs constitute a lengthy and costly process.
Given the varying complexities of therapeutic fields, it proves challenging to univer-
sally quantify the approximate cost in terms of both time and money for all drugs.
Nevertheless, available data indicates that the investment required to bring a drug to
market ranges from $161 million to $4.5 billion dollars [1] and can take 10 to 15 years
[2]. Despite the substantial efforts invested in this process, approximately 90% of drugs
experience failure during their clinical phase. This outcome leads to prolonged waiting
periods for many patients, anticipating a successful approval process for a treatment
molecule [3]. Given the extended timeline and a relatively low success rate, it becomes
crucial to adopt strategies aimed at enhancing the efliciency and success of the drug
development and approval process.

Drug repositioning (DR) is an approach that enables the identification of new thera-
peutic targets from products that are already known or currently in the market. This
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approach facilitates an expedited drug approval process [4]. This characteristic makes
DR an advantageous strategy compared to the traditional pharmaceutical product
development process. Typically, for a repositioned drug, a significant portion of non-
clinical research has already been explored. This includes aspects such as chemical
analysis, manufacturing and control, animal toxicology, and clinical pharmacology.
Consequently, it can progress more directly to the clinical phase, where there is already
existing basic clinical information that could prove beneficial for the new treatment.
This streamlined process has the potential to significantly reduce the overall develop-
ment costs by 50 — 60%. Moreover, given that this medicine already possesses a known
safety profile, the risk of failure in later stages of the process is significantly reduced [5].

DR can be conducted through experimental work where the drug is evaluated in
the laboratory. However, it may not be the most optimal path to take initially in the
research for drug repositioning. This is because it demands time, facilities, equipment,
and personnel dedicated to experimentation, along with the physical product, to con-
duct the necessary assessments for each specific analysis [6]. This, added to the high
number of molecules available on the market, makes it strategically better to have
computational tools that initiate the DR process. In this regard, high-performance
computing and artificial intelligence can help accelerate the identification of potential
active substances for repositioning and reduce high failure rates [7].

Thanks to the different open data initiatives, the extensive pharmaceutical knowledge
in the literature, large databases of diseases, drugs and adverse effects, it has been pos-
sible to develop computational tools for the repositioning of drugs [7]. Computa-
tional prediction between drugs and diseases has emerged as a crucial process in drug
repositioning research. Advances in systems biology and interaction networks have
facilitated the evolution of network pharmacology, transforming the paradigm of drug
interaction. Initially perceived as a linear path “one drug — one therapeutic target -
one disease’, it has evolved into a network model: “Multiple Drug” network, involving
multiple therapeutic targets and multiple diseases. This shift represents a fundamental
change in our understanding of drug interactions [8].

In general, in the study of drug repositioning, it is assumed that chemical structures,
target proteins, and even adverse effects enrich the information to establish new indica-
tions [9]. The chemical structure of a drug provides information based on its structural
function, target proteins provide information on the direct effect of the drug at the
molecular level, and adverse effects establish key points in relation to the undesired
effect at the level of the drug phenotype [10]. Understanding the rules, patterns, and
similarities within existing data facilitates comprehending the interaction between a
drug and its efficacy in treating a disease. In the same vein, exploring these data sets
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can lead to the discovery of new relationships. Studies have demonstrated that drugs
sharing similar chemical structures, target proteins, or exhibiting comparable adverse
effects have an increased probability of effectively treating the same disease [10, 11].
In this sense, the use of biological networks provides the opportunity to know those
topological characteristics between nodes and edges that predict unknown associa-
tions between drugs and diseases [9].

For making predictions, Supervised Machine Learning (SML) models have been imple-
mented. These models are trained using the characteristics of the network extracted
from biomedical databases to measure similarities in conjunction with known drug-
disease interactions. Through this approach, the model becomes capable of generating
new potential candidate drugs for repositioning [12]. On the other hand, the use of
SML is an efficient strategy that provides predictions on a larger scale, which broadens
the scope of repositioning evaluation, allowing screening to be made to a greater num-
ber of drugs [13]. In addition, Machine Learning models are not limited to the total
knowledge of the three-dimensional structure of chemical ligands and protein targets,
which is the main disadvantage of the well-known molecular docking modeling [14].

The utilization of SML for suggesting drug candidates for repositioning based on net-
work information has seen substantial growth. This presents an opportune scenario to
synthesize information, discern strategic data pertaining to the models and algorithms
employed, the origin of the data utilized, and identify potential performance modera-
tors influencing the prediction of new therapeutic targets. In addition, to be able to
establish the reliability of the different models based on their validation strategies in
the candidate drugs for repositioning.

Thus, in this work, a systematic review and meta-analysis [15] was developed in order
to synthesize the available information on the use of SML in proposing candidate
drugs for repositioning, using network information and provide a tool for academia
or industry with key synthesized information for the development of computational

models for DR.
METHODOLOGY

The systematic review was conducted following the guidelines in the Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 2020 [16].

Literature search strategy

A literature search was executed in English in the Scopus and PubMed databases,
where studies up to April 2023 were included. The search syntax related the terms net-
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works (Network*) and drug repurpose* joined with the AND operator, and the Boolean
operator OR was used to include the synonyms. The complete search strategy for both
databases can be reviewed in Supplementary Table 1. Employing search engine filters,
articles in languages other than English, conference abstracts, and reviews were excluded.

Study selection and eligibility criteria

The initial screening of studies was conducted using the Rayyan platform [17]. Lever-
aging the tools provided by Rayyan, duplicates between the two databases were identi-
fied and removed. Two review authors independently conducted the title and abstract
screening. To be included, a study had to explicitly indicate the use of at least one net-
work model to predict drug repositioning (or any of its synonyms). Any discrepancies
in this initial review were resolved through discussions among the review authors.

In a subsequent step, one of the authors categorized the studies that emerged from the
initial screening based on the identified computational strategy, a classification that
was verified by the second reviewer. The primary focus of interest was on SML models,
encompassing any technique within this category employed for predicting drug repo-
sitioning through interaction networks. For encoding SML, the Python programming
language’s SciKit Learn library was utilized [18]. The models incorporated into this
package served as a reference for classifying the studies.

The full-text review and data collection process was carried out in all studies using at
least one MLS model. One author conducted this review, and the findings were cor-
roborated by the second author to address any discrepancies. Data extraction involved
populating a matrix in Microsoft Excel 2010, including author data, country, year of
publication, objectives, model type, data source for model development, network type,
performance metrics, details on whether the model was compared against other pre-
diction models, and information on validation. At this stage, the reasons for exclusion
were documented in each case.

The studies that were eligible in the qualitative analysis met the following criteria:

o The primary objective was to use networks to predict drug repositioning, employ-
ing at least one SML strategy.

o The study specified the name of the algorithm utilized.

o Thedeveloped model targeted more than one therapeutic specialty (screening) for
medication repositioning.

e The developed model focuses on more than one drug.
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e The data used for training the model was not veterinary.

e The study did not center on herbal medicines.

e The study did not center on traditional Chinese medicine.
The full article was accessible.

Studies were eligible in the quantitative analysis if they met the following criteria:
o Fulfill all the criteria mentioned above.

o  Evaluate the performance of the model with available results.
Studies were excluded if they met the following criteria:

o The article did not meet the inclusion criteria.

e The article was in a language other than English.

e The article was a review.

e The article was a conference summary.

e The article was a book chapter.

Quality assessment of study

The quality of the publications was measured after the final selection process. The
following list of questions was used to assess the credibility of the selected publications.

Question 1: Specity type of model, model-building procedures, and method for inter-

nal validation.

Question 2: Specify measures used to assess model performance and, to compare mul-
tiple models.

Question 3: Discuss the results with reference to performance and any other validation
data.

Question 4: Give an overall interpretation of the results, considering objectives, limita-
tions, results from similar studies, and other relevant evidence.

Each of the above questions was assessed with responses categorized as “Yes,” “Partially,”
or “No.” These responses were assigned numerical values: “Yes”=1, “Partially”=0.5 and
“No”=0. For each selected study, its quality score was determined by summing the

360



Random forest machine learning model performs better in predicting drug repositioning

scores of the responses to the four questions. This evaluation process was conducted by
one of the authors of this article. The quality levels were classified as High (score = 4),
Medium (2 < score <4) and Low (score <2). Studies with scores greater than or equal
to 3 were included in the final selection [19]. In cases where studies assessed perfor-
mance using only one parameter, question two was marked “partially”

Performance measurement and meta-Analysis

The AUC-ROC (Area Under the Curve - Receiver Operator Characteristics) was
chosen as the primary metric to assess the models’ performance in the quantitative
analysis, given its prevalent inclusion in nearly all articles (19 out of 17). While addi-
tional metrics were gathered, they were not incorporated into the quantitative analysis.
In cases where a study reported results from multiple predictive models, performance
parameters were collected exclusively for the model with the most favorable outcome.

The random effects meta-analysis model employing the DerSimonian-Laird model
[20] was selected for the corresponding statistical analyses. This approach involved
estimating the variability between studies (2) and applying Cochrane’s Q and I tests
to assess heterogeneity across studies. In the calculations, “n” was defined as the num-
ber of interactions during network construction. Statistical analysis was conducted in
R Studio version 4.2.3 [21] using the metafor package.

REsuLTS

Article Selection for Synthesis

Following the application of search terms in the databases and the use of filter tools,
reviews, conference papers, and articles not in English were excluded. The initial total
of articles was 941 (PubMed) and 861 (Scopus). After removing duplicates across both
databases, a total of 1057 articles were obtained and included in the initial screening
process. Within this set, articles utilized at least one network model for predicting
DR. These articles were categorized according to the computational strategy identi-
fied (see Table 1). Among these publications, we identified 44 articles that used SML
models for the prediction of DR and were included in the full article review process.
A comprehensive review of the 44 publications disclosed that 19 fulfilled all the inclu-
sion criteria for synthesis. All 19 studies were incorporated in the qualitative synthesis
and only 17 were included in the meta-analysis, with 2 studies [22, 23] being excluded.
At this point, the reasons for exclusion were recorded and can be reviewed in Figure 1.

361



Darlyn Juranny Garcia Marin, Jerson Alexander Garcia Zea

Table 1 Classification of articles by computational strategy.

Model Classification Number of articles
Deep Learning (DL) 67
Supervised Machine Learning 44
Graph theory 21
Network based 20
Semi supervised machine learning 7
Undetermined 37

Model Categorization

The 196 studies were categorized into the six groups outlined in Table 1 and the fre-
quency of model publication per year was determined (Figure 2). The initial publica-
tion appeared in 2009 with the most recent in 2023. DL emerged as the predominant
modeling strategy, representing 34% of the total publications, and the 84% of its arti-
cles were published between 2020 and 2023, with the peak occurringin 2022, marking
it as the year with the highest number of publications. This trend positions DL as the
strategy that has experienced the most significant increase in the last three years. In
contrast, SML constituting 22% of the articles, had publications spanning from 2013
to 2022, with representation in all years except 2015. Similarly, Network Based and
Graph Theory models made their appearances in 2012 and 2013, respectively. While
Figure 2 visually illustrates the distribution of studies up to 2023, it’s crucial to note
that the data for this year only includes articles published up to April.

Articles included in the synthesis/Study characteristics

Table 2 outlines the characteristics of the 19 studies. These were published between
2013 and 2022, 11 were conducted in China and the remainder in Thailand, Iran,
Korea, the United Kingdom, Canada, and the United States.

To delineate the relationship between drugs and therapeutic targets, the 19 studies
incorporated drug-target interaction databases. The most frequently utilized data-
base was DrugBank (14 out of 19 articles), followed by the Kyoto Encyclopedia of
Genes and Genomes (KEGG). In studies aimed at establishing the known relation-
ship between drugs and diseases (drug-disease), the Comparative Toxicogenomics
Database (CTD) was commonly employed. To determine the protein-disease rela-
tionship (Protein-disease), DisGeNET was implemented. When microRNAs and
long noncoding RNAs were included, data from LncRNA2Target, LncRNADisease,
IncRNASNP2, miRTarBase, and IncRNASNP2 were utilized. The protein-protein
relationship was defined using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING). In studies that incorporated adverse effects to establish relation-
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ships, SIDER (Side effect Resource) was employed, enabling the tracing of adverse effects

associated with medications.

To characterize and establish similarities between chemical structures, molecule/drug

repositories such as FDA-approved drugs, DrugBank or PubChem were implemented.
The similarity of the chemical structure of the drugs was made based on the chemi-
cal language SMIleS or in other cases the molecular descriptor MACCS (Molecular

ACCess System).
Identification of studies via databases
= T
£ Records identified from Records removed before screening:
8 Databases .
8 Duplicate records removed (n = 745)
= PubMed: 1096 — e
g Records marked as ineligible by database
S SCOPUS: 1111 automation tools (n = 405)
= (n=2207) -

v

Records in title/abstract
Screen (n = 1057)

>

Records excluded (n = 861)

v

Screening

Records for classification

(n=196)

Records excluded (n = 152)
Reason: No Supervised Machine Learning

Full text articles assessed for

eligibility (n = 44)

Reports excluded (n=25)
Reasons:

No Supervised Machine Learning (n = 15)
No Drug Repositioning screening (n = 3)
Different Method (n =2)

No Drug Repositioning (n =2)

AUC (n=1)

Full text not available (n =1)

Book Chapter (n=1)

Qualitative Eligibility

v

Articles included in qualitative
synthesis (n = 19)

Articles included in quantitative
synthesis (n = 17)

Eligibility

Quiantitative

—>

Reports excluded (n=2)

Reason:

No overall performance evaluation and low
result in quality assessment

(n=2)

Figure 1. PRISMA Flow diagram. Papers identified in databases, title/abstract screened, read full

text, and included in the synthesis. Reasons for exclusion are listed.
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To establish relationships between genes and diseases, the studies utilized information
available in Online Mendelian Inheritance in Man (OMIM) in some cases or Dis-
GeNET (a database of gene-disease associations) in others, using them as compendi-
ums of human genes and genetic disorders. For detailed information on the articles and
their databases/libraries, see supplementary table 2.

Count per year and category

Category
N Undetermined

s Network based

= Graph theory

25 = Supervised Machine Learning
= Deep Learning

mmm Semisupervised Machine Leaming

2009 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

Figure 2. Categorization of studies resulting from screening that used at least one network model

to predict drug repositioning.

In each study, considering the database utilized, various types of networks were
constructed. The studies generated networks between drugs and targets with up
to 9,400,000 interactions, 11 defined the interaction between drug and disease, 3
focused on the relationship between diseases and proteins. Additionally, 12 studies
incorporated chemical structure in the development of the model. Moreover, in other
instances, networks of interaction between genes and diseases or genes and drugs, as
well as networks between adverse effects and drugs, were constructed. The strategy
employed varied across studies; a single network was created to train the models, while
in others, different networks were developed within the same study for training the
model and establishing new indications for drugs (refer to Table 2 for more details).

Concerning the SML models, the most frequently employed classifier was Random
Forest (RF) (63%), implemented in 12 studies. Other models included Support
Vector Machine (SVM) (16%), logistic regression (11%), Gradient Boosting (5%)
and XGBoost (5%). Each of the studies had a unique networking process to train the
models and predict new therapeutic targets in medicines.
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For the prediction of new drug targets, accuracy was assessed using AUC ROC rang-
ing between 0.83 and 0.99 for the RF model and 0.88 to 0.90 for the SVM model.

Of the 19 articles selected after the full review of the study, 17 met all the final require-
ments to be included in the quantitative evaluation, while articles [22] and [23] were
excluded. Despite the fact that all 17 articles presented model performance measures,
there was no homogeneity in the performance parameters evaluated. The only com-
mon parameter in all 17 articles was the AUC ROC; Accuracy, F Measure, Sensitiv-
ity, and Precision were reported in 10 articles, Matthews’ correlation coefhicient was
reported in 5, and specificity and AUPR were reported in 3 (see Table 3). Additionally,
out of the 17 articles, all performed cross-validation, and 15 of 17 studies compared
their prediction models with other models reported in the literature. Among these, 13

made the comparison by calculating the AUC ROC.

Table 3. Model Performance Overview

ID ﬁgg Acc meanure MCC Is  Spe For AUPR 'O szﬁlsatio“/
20902 0823 082 - 0847 - 0808 - Yes/10
0986 0948 - 0965 0930 - - Yes/s
8§ 088 083 082 066 - ; - ; Yes/10
16 0903 0853 0779 - ; - 0778 - Yes/10
18 0920 0854 - 0713 0796 0912 0900 - Yes/S
20 0966 0919 0918 0840 0939 - 0899 - Yes/S
21 083 - 0.72 - 079 - 066 - Yes/10
23 0923 - - - - - - - Yes/10
25  0.841 - - - - - - - Yes/S
28 0998 - - ; ; ; - - Yes/10
29 0.876 - - - - - - - Yes/-
31 0879 0967  1.00 ; ; ; - ; Yes/s
32 0940 - 0928 - 0928 - 0927 0.894 Yes/10
33 0876 - | 079 0589 0796 - 0793 0.866 Yes/10
34 0963 0900 0900 - 0897 - 0903 - Yes/10
35 0938 0857 0866 - 0928 - 0812 0932 Yes/S
36 0879 0798 - 0596 0.800 0796 0.797 - Yes/5

AUC ROC: Area Under the Curve - Receiver Operator Characteristics / Acc: Accuracy / MCC: Matthews Cor-
relation Coefficient / Sen: Sensitivity / Spe: Specificity / Pre: Precision/ AUPR: Area Under Precision-Recall Curve.
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After evaluating the performance of the developed models, tests were conducted to val-
idate the veracity of the predictions, and since the models aimed to predict new indica-
tions for the drugs, confirming the effectiveness of the newly established relationships
became crucial. Out of the 19 studies, 18 presented validation results for their mod-
els. The most commonly employed strategy was consulting the literature to identify
whether the new indication for the drug(s) had been reported at any time. In this exer-
cise, the most cited sources of information were ClinicalTrials.gov and PubMed, in
other cases the source consulted was not specified. In all the studies that used this way
of validating the candidate drugs for repositioning, they presented citations of clini-
cal studies or other references where this new indication for repositioned drugs had
already been mentioned in the scientific literature. Finally, 2 studies presented different
strategies to literature searching [27, 33], in the case of Amiri-Souri ez al. (2022) [33],
an in vitro study was done and in the Fahimian ez /. (2020) [27] work, a simulation
with molecular docking was performed (reference to Table 2 for more details).

Assessing the quality of the evidence

10 studies were rated as high quality, 8 as medium quality and 1 as low quality. For
those studies that only assessed performance focused on a single metric, they were
assigned “Partially” in question 2. In cases where there were no validation results, “Par-
tially” was assigned in question 4. Since studies with a score equal to or greater than
3 were included in the quantitative assessment, 2 studies were excluded at this point
in the process. The full result of the quality assessment of the studies can be found in

Supplementary Table 3.

Meta-analysis

A total of 17 studies were included in the quantitative assessment after removing two
studies due to quality assessment outcome and lack of overall model performance. The
studies were evaluated using a random-effects model and compared based on their
AUC ROC (95% CI), the summary of the results can be seen in Figure 3. We assessed
inter-study variability > = 0.0103 (SE 0.0104) and Cochrane’s Q=223772.7841,
p-val <.0001, I* =99.99% for heterogeneity.

The AUC ROC is measured on the scale 0 — 1, the closer to 1, the better the classifier
[38]. The overall analysis of the results obtained from the meta-analysis showed that
the mean AUC ROC for the included studies was 0.91 (95% CI 0.86 — 0.96). The
highest AUC ROC result was obtained by Yue and He (2021) [30] with a value of 1.00
who implemented an RF model. The model with the lowest accuracy was Fahimian

et al. (2020) [27] with 0.83 AUC ROC, which also used RF for prediction. Regard-
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ing the studies that used SVM, the highest accuracy value was obtained by Wang ez 4/.
(2013) [10] and Wi ez al. (2019) [9] with 0.90 and the lowest for Moghadam ez al.
(2016) [25] with a result of 0.88 in the meta-analysis. The model that implemented the
highest number of interactions to build the network was Fahimian ez a/. (2020) [27],
which obtained a result of 0.83. In contrast, the models implemented by Moghadam ez
al.(2016) [25], Wang ez al. (2013) [10] and Zhou ez a/. (2020) [28] generated the low-
est number of network drug-target interactions (1933) and showed a value for AUC
ROC 0f0.88, 0.90 and 0.92 respectively.

The study developed by Yue and He (2021) [30] obtained the highest result (1.00
AUC ROC) among the models that included databases that established a relationship
between Drug-Target and Drug—Disease. Among the studies that used the Protein-
Disease relationship in the construction of interactions, the highest result was AUC
ROC of 0.96 [35]. As for those that included the Protein-Protein ratio, Kitsiranu-
wat et al. (2022) [36] obtained 0.94 as the highest value. The chemical structure
of the drugs was integrated into the development of 12 models. Among these, Cao
et al. (2014) [24], achieved the highest accuracy (0.99). Additionally, the association
between genes and diseases was used in 10 articles, Liu ez a/. (2020) [12] obtained
0.97 in this category. Wang ez a/. (2013) [10] and Wei ez al. (2019) [9] with 0.90,
integrated adverse effects in drugs into the development of the model. Furthermore,
both Jiang and Huang (2022) [37] and Chen et 4/. (2020) [26] were the only studies
that included RNA and obtained values of 0.88 and 0.92 for AUC ROC, respectively.

Fahimian et al., 2020 n 0.83(0.83, 0.83)
Gilvary et al., 2020 - 0.84[0.84, 0.85]
Yang et al,, 2021 - 0.88(0.87, 0.88)
Zhao etal., 2022 - 0.88(0.87, 0.88)
Kitsiranuwat et al., 2021 - 0.88(0.87, 0.88)
Jiang & Huang, 2022 [ 0.88(0.87, 0.89)
Moghadam et al., 2016 e 0.88(0.87, 0.89]
Wang et al., 2013 e 0.90(0.89, 0.92)
Wei etal., 2019 - 0.90(0.90, 0.91)
Chen et al., 2020 n 0.92[0.92,092)
Zhou etal., 2020 [ 0.92(0.91, 0.93)
Kitsiranuwat et al., 2022 - 0.94[0.94, 0.94]
Amiri Souri et al., 2022 . 0.94(0.93,0.95]
Zhang et al., 2022 = 0.96 (0.9, 0.97)
Liu et al., 2020 - 0.97[0.96, 0.97)
Caoetal., 2014 - 0.99[0.98, 0.99]
Yue & He, 2021 = 1.00 [1.00, 1.00]

RE Model ——— 0.91(0.86, 0.96]

T T T
08 085 09 095
Observed Outcome

Figure 3. Forest plot comparing the papers by AUC ROC, in a random effects model. Overview of
meta-analysis under a random effects model, comparing the AUC ROC of SML studies for drug

repositioning. The data is organized in ascending order.
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DiscussioN

Generally, in drug repositioning studies, it is assumed that chemical structures, tar-
get proteins, and even adverse effects enrich and provide valuable information for the
identification of new indications [9]. Drugs with similar structures have been shown
to have a high probability of treating the same disease [11] and in conjunction with the
integration of biological networks offers the opportunity to understand the topologi-
cal characteristics between nodes and edges, predicting previously unknown associa-
tions between drugs and diseases [9].

In this context, studies aimed at predicting drug repositioning use biomedical data-
bases that relate information from the target to the drug. These databases are combined
with various sources of information to build the network, measure similarities, and
obtain the characteristics needed to train the prediction model. These predictions are
based on the idea that drugs or diseases with similar topological network properties
may be functionally related. Figure 2 illustrates the increase in studies predicting drug
repositioning using interaction networks from 2009 to 2022. It highlights the increase
in studies implementing SML from 2013 to 2020, with continuity in publications dur-
ing 2021 and 2022. At this point, it is opportune to conduct a systematic review of
the available information on these prediction models that implement SML methods.
These models are designed to identify new candidate indications for drug reposition-
ing, taking into account the various types of relationships between biomolecules and
known drug-disease interactions. In addition, a quantitative evaluation of these models
through a meta-analysis was proposed.

Considerable efforts have been devoted to demonstrating that drugs with similar
chemical structure, similar adverse effects, and drugs that target the same target protein
can treat the same specific disease. In a previous study, Wang ez a/. (2013) [10], showed
that adopting this perspective favors the process of drug repositioning. It highlights
that an SML model designed for repositioning can be trained using information from
databases, such as chemical structures, target proteins, or adverse effects. In addition,
various data, such as genes, expression profiles [22], microRNAs and long noncod-
ing RNAs [26, 37], have proven to be valuable in the construction of these models.
However, when evaluating performance, it has been observed that merging all these
resources during the training process significantly improves the model compared to the
individual use of information [10, 25]. Therefore, it can be considered that making a
comprehensive characterization of drugs at multiple levels (chemical structure, target
protein/gene or adverse effects) can substantially expand and improve the quality of
predictions in drug repositioning.
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Regarding the development of the models, the predominant approach in the reviewed
studies consisted of the creation of interaction networks, the identification of their
characteristics and the incorporation of this information into SML models, address-
ing the problem as a classification task. In this way, it can be determined whether a
drug might be linked to a new disease, based on available training information. In sev-
eral models developed, it has been shown that including the networks significantly
improves the overall performance of the model. In these cases, network profiles pro-
vide valuable additional information compared to databases that do not incorporate
interaction profiles [11, 24, 26]. This finding suggests that the consideration of net-
work characteristics enriches the predictive capacity of the models, offering a more
complete perspective in the identification between drugs and diseases.

In this study, papers were considered in the quantitative assessment if they reported at
least AUC ROC. Some studies used a variety of performance measures (see Table 3),
while others limited to report only the AUC ROC. The quantitative analysis was con-
ducted using a meta-analysis, using a random-effects model that considers the vari-
ability both intra-study and between-studies. For this purpose, the measure > was
calculated, which provides an estimate of the variance in effects between studies, while
I* describes the percentage of variability attributable to heterogeneity, assessing the
extent to which the studies agree with each other [39]. In our case, a high value for
heterogeneity was obtained, which can be manifested through statistical uncertainty
or random variability, which could be derived from methodological diversity due to
different strategies in the construction of the network, variations in training data, dif-
ferences in data sources, the definition of similarities in interactions and the use of

different SML models.

In the resulting quantitative analysis, it was observed that the most frequently used
classifier was RF, being not only the most common alternative, but also the model with
the highest accuracy measured by the AUC ROC in the general summary of the meta-
analysis (see Figure 3). In fact, the four highest values of this performance measure,
ranging from 0.96 to 1.00, corresponded to models developed with RFE. Additionally,
studies comparing RF performance with other supervised learning models found that
this strategy was shown to have more consistent performance and prediction [26, 37].
This finding becomes relevant when making large-scale predictions about the associa-
tion between drugs and diseases. It is plausible that the preference for RF implementa-
tion in various studies is due to its suitability for larger datasets, as this method excels in
the detection of Out-Of-Bag errors, the proximity between features, and the handling
of unbalanced datasets [40].
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In this sense, the model with the highest AUC ROC was the one developed by Yue
and He (2021) [30], however, this study only reported the AUC ROC as a perfor-
mance measure, other parameters such as sensitivity or specificity were not provided,
and had a quality assessment classified as medium. In addition, other databases such as
genes, adverse effects or chemical structures were not explored to create the network
or establish similarities, which could have enriched the model. This fact was demon-
strated by Cao ez al. (2014) [24], where in their study, the drug-target relationship can
be influenced by characteristics of the chemical structure in relation to the structural
and physicochemical properties of the targets, greatly helping the discrimination of
predictions. Similarly, studies that included adverse effects as part of the data to build
the network, generated better predictive results in relation to the other data sources
commonly used as a drug-target [10, 25].

Regarding the databases used in the development of the prediction models for DR,
all studies incorporated databases that linked drugs to their targets. In addition, some
authors explored the inclusion of information to understand the topology and similar-
ities of their network. For example, Cao e 4/. (2014) [24], developed the model with
the highest AUC ROC (0.99) among those who evaluated the chemical structures of
drugs. This performance measure outperforms other studies that included additional
information, such as genes and diseases, like Liu ez 4/ (2020) [12] with AUC ROC
of 0.97 or the protein-disease interaction [35] with an AUC ROC of 0.96; protein-
protein [36] with an AUC ROC of 0.94; the inclusion of RNA [26] with an AUC
ROC 0f 0.92, or the integration of adverse drug effects by Wang ez a/. (2013) [10] and
Wei et al. (2019) [9], both with AUC ROC 0f 0.90. The observation that the inclusion
of chemical structures obtained a higher AUC ROC value may be linked to what Cao
et al. (2014) [24] defined. In this study, they suggest that the drug-target relationship
may be influenced by characteristics of the chemical structure and its relationship with
the properties of the targets, which helps in the discrimination of predictions.

A limitation of models that used supervised learning to make predictions is their need
for both positive and negative training data. However, most data sources allow posi-
tive therapeutic relationships between drugs and diseases to be established but lack
the ability to determine negative relationships between them. Therefore, one of the
main challenges when defining a drug repositioning model lies in obtaining reliable
negative data for training. To address this issue, many models chose to take unlabeled
data or unrelated pairs (drug-targets) as negative examples. However, this strategy may
introduce some possible positive drug-disease pairs into negative samples, generating
noisy training data and decreasing the reliability of predictions. In contrast, studies
such as that by Amiri-Souri ez a/. (2022) [33] and Liu ez 4/. (2020) [12] adopted a more
careful and realistic strategy when selecting negative training data, which contributed
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to improved model performance compared to strategies that took unlabeled data ran-
domly. Despite these advances, the study by Liu ez a/. (2020) [12] emphasizes the need
to consider even more reliable strategies when employing supervised learning models
in drug repositioning.

Regarding the validation of the results of the models, the most common strategy was
the confirmation of predictions in scientific databases, where the main purpose was to
identify references where the relationship between the repositioned drugand its new dis-
ease had previously been established. In some cases, the literature validation took a more
focused approach to the study of the repositioned drug. This included the exploration of
genes related to the disease, and the review of information related to the metabolic path-
ways in which the drug might be involved. This approach made it possible to determine
whether the repositioned drug could be associated with the same pathways that lead to
the treatment of the disease [10]. In addition, another strategy was to compare the new
drug with those currently used to treat the disease, looking for similarities at the molecu-
lar or metabolic level to evaluate its potential effectiveness in treatment [10].

In some cases, the validations went beyond the literature review. An example is the
study by Fahimian ez 4/. (2020) [27], which carried out a structural comparative
analysis between new molecules repositioned to treat breast cancer and those already
approved for this indication. In addition, they conducted an iz vitro study to demon-
strate the efficacy of the newly repositioned drug in the treatment of this pathology
[27]. Another highlight is the study by Amiri-Souri ez /. (2022) [33], which per-
formed a simulation with molecular docking and an exhaustive literature review to
validate the new interactions between target proteins and drugs predicted by the SML
model for cancer treatment.

In short, the application of an integrative approach, including multiple sources of bio-
molecules and validation of results using various methodologies, not only proposes
promising candidates to treat various diseases, but also plays an important role in the
understanding of effective therapies that influence multifactorial diseases. These mod-
els, apart from predicting new indications, can contribute significantly to clinical phar-
macogenomics research, defining relationships between drugs—gene and disease—gene
[22, 26]. Likewise, the repositioning of drugs can be very useful for the development
of knowledge regarding adverse effects since, by discovering possible new indications
for medicines, it is easier to conduct studies more focused on the mechanisms of action
of drugs, reducing the gap between medical indications and the understanding of the

effects of drugs [10].
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CONCLUSIONS

This systematic review and meta-analysis of the published literature to predict drug
repositioning by using SML models presents relevant aspects that may be useful for
future studies in this field. This review suggests that SML models can predict the
repositioning of drugs with high performance values, which underscores the poten-
tial use of RF in DR. It was identified that the inclusion of chemical structures in the
development of the model can improve performance, which allows us to suggest the
evaluation of this parameter in future studies. It is suggested to explore how the drug
repositioning prediction could contribute to better understand multifactorial diseases
and adverse drug effects in future studies. It should be noted that the RF model was
the most widely used SML model to predict drug repositioning and with the best per-
formance results compared to AUC ROC. It recognizes that it is important to define
strategies to define negative samples when training SML models so as not to incur the
increased risk of false negatives. Finally, it could be interesting to study the DL models
developed to predict new indications for medications, given that its publications have
considerably increased since 2019.
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SUPPLEMENTARY ARCHIVE

Supplementary Table 1. Full scarch syntax for each database

PubMed

Search

Syntax

#1

(“Network*”[ Title/Abstract])

#2

((“drug repurpos*”[ Title/ Abstract]) OR (“drug redirecting”[ Title/Abstract]) OR
(“drug reposition*”[ Title/Abstract]) OR (“drug retasking”[ Title/ Abstract]) OR (“drug
reprofiling”[ Title/ Abstract]) OR (“drug retargeting”[ Title/ Abstract]) OR (“drug
relocation”[ Title/Abstract]) OR (“Drug re-profiling”[ Title/ Abstract]) OR (“drug
re-tasking”[ Title/Abstract]) OR (“drug rescue”[ Title/ Abstract]) OR (“indication
expansion”[ Title/Abstract]) OR (“indication switching”[ Title/ Abstract]) OR

(“drug rescuing”[ Title/Abstract]) OR (“drug recycling”[ Title/Abstract]) OR (drug
redirection[ Title/Abstract]) OR (“therapeutic switching”[ Title/ Abstract]) OR (“Novel
drug us*’[ Title/Abstract]) OR (“novel drug rediscovery”[ Title/Abstract]) OR (“Novo
drug us*’[ Title/Abstract]) OR (“novo drug rediscovery”[ Title/Abstract]))

#3

#1 and #2

SCOPUS

Search

Syntax

#1

TITLE-ABS ( “Network*”)

#2

TITLE-ABS (( “drug reposition*” ) OR (“drug repurpos*”) OR (“drug redirecting”)
OR (“drug reposition*”) OR (“drug retasking”) OR (“drug reprofiling”) OR (“drug
retargeting”) OR (“drug relocation”) OR (“Drug re-profiling”) OR (“drug re-tasking”)
OR (“drug rescue”) OR (“indication expansion”) OR (“indication switching”) OR
(“drug rescuing”) OR (“drug recycling”) OR (drug redirection) OR (“therapeutic
switching”) OR (“Novel drug us*”) OR (“novel drug rediscovery”) OR (“Novo drug
us*”) OR (“novo drug rediscovery”))

#3

#1 and #2
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