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Summary

Background: Carnitine palmitoyltransferase II deficiency is an inherited disorder 
of long-chain fatty acid oxidation characterized by hypoketotic hypoglycemia, 
cardiomyopathy, seizures, muscle pain and weakness, and myoglobin. Individuals 
with carnitine palmitoyltransferase II deficiency have a defect in the production of 
the enzyme carnitine palmitoyltransferase-II, which plays an important role in fatty 
acid oxidation. Signs and symptoms of carnitine palmitoyltransferase II deficiency 
are due to the buildup of fatty acids and long-chain acyl-carnitine as well as reduced 
energy production in cells. Carnitine palmitoyltransferase II deficiency is an auto-
somal recessive disease caused by mutations in the CPT2 gene. During changing 
Nonalcoholic fatty liver disease (NAFLD) to the cirrhosis, the probability of cancer 
is high that should be considered as a dangerous situation. Methods: SDS-PAGE 
system of polyacrylamide gel electrophoresis through analytical method for sepa-
rating charged molecules in mitochondrial mixtures according to their molecular 
mass in the presence of electrical fields was used. The Invitrogen® Bright Imaging 
(IBI) system provides was applied for the imaging and analysis of protein imprints. 
Results: Since currently no effective treatment for CPT-II deficiency, prevention of 
liver failure is a proper way of treatment through controlling mitochondria without 
affecting CPT-II potency. We discussed about the severe infantile hepatocardiac 
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muscular position of CPT II deficiency affects the liver heart, and muscles. Conclu-
sions: Through this work, we discussed and characterized the pathophysiological 
function in several tissues such as liver, Kidney cancers.

Keywords: Liver cancer; Kidny failure; Hepatocellular carcinoma; Nonalcoholic 
fatty liver disease; CPT-I; CPT-II; SDS-PAGE system.

Resumen

Aplicación químico-farmacéutica de la carnitina 
palmitoiltransferasa-2 (CPT-II) mediante la regulación 

mitocondrial frente a células tumorales cancerosas

Antecedentes: La deficiencia de carnitina palmitoiltransferasa II es un trastorno 
hereditario de la oxidación de ácidos grasos de cadena larga caracterizado por hipo-
glucemia hipocetósica, miocardiopatía, convulsiones, dolor y debilidad muscular y 
mioglobina. Las personas con deficiencia de carnitina palmitoiltransferasa II tienen 
un defecto en la producción de la enzima carnitina palmitoiltransferasa-II, que 
desempeña un papel importante en la oxidación de los ácidos grasos. Los signos y 
síntomas de la deficiencia de carnitina palmitoiltransferasa II se deben a la acumu-
lación de ácidos grasos y acilcarnitina de cadena larga, así como a la reducción de la 
producción de energía en las células. La deficiencia de carnitina palmitoiltransferasa 
II es una enfermedad autosómica recesiva causada por mutaciones en el gen CPT2. 
Durante el cambio de la enfermedad del hígado graso no alcohólico (NAFLD) a la 
cirrosis, la probabilidad de cáncer es alta y debe considerarse una situación peligrosa. 
Métodos: Se utilizó el sistema SDS-PAGE de electroforesis en gel de poliacrilamida 
como método analítico para separar moléculas cargadas en mezclas mitocondriales 
según su masa molar en presencia de campos eléctricos. El sistema Invitrogen® Bright 
Imaging (IBI) se utilizó para la obtención de imágenes y el análisis de huellas de 
proteínas. Resultados: Dado que actualmente no existe un tratamiento eficaz para 
la deficiencia de CPT-II, la prevención de la insuficiencia hepática es una forma 
adecuada de tratamiento mediante el control de las mitocondrias sin afectar la 
potencia de CPT-II. Aquí se discute acerca de la posición muscular hepatocardíaca 
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infantil grave a causa de la deficiencia de CPT II que afecta el hígado, el corazón y los 
músculos. Conclusiones: En este trabajo, se discute y caracteriza la función fisiopa-
tológica en varios tejidos como el cáncer de hígado y riñón.

Palabras clave: Cáncer de hígado; Insuficiencia renal; Carcinoma hepatocelular; 
Enfermedad del hígado graso no alcohólico; CPT-I; CPT-II; Sistema SDS-PAGE.

Resumo

Aplicação químico-farmacêutica da carnitina 
palmitoiltransferase-2 (CPT-II) através da regulação mitocondrial 

contra células tumorais cancerígenas

Antecedentes: A deficiência de carnitina palmitoiltransferase II é um distúrbio 
hereditário da oxidação de ácidos graxos de cadeia longa, caracterizado por hipogli-
cemia hipocetótica, cardiomiopatia, convulsões, dor e fraqueza muscular e mioglo-
bina. Indivíduos com deficiência de carnitina palmitoiltransferase II apresentam um 
defeito na produção da enzima carnitina palmitoiltransferase-II, que desempenha 
um papel importante na oxidação de ácidos graxos. Os sinais e sintomas da defi-
ciência de carnitina palmitoiltransferase II são devidos ao acúmulo de ácidos graxos 
e acil-carnitina de cadeia longa, bem como à redução da produção de energia nas 
células. A deficiência de carnitina palmitoiltransferase II é uma doença autossômica 
recessiva causada por mutações no gene CPT2. Durante a mudança da doença hepá-
tica gordurosa não alcoólica (DHGNA) para cirrose, a probabilidade de câncer é 
alta, o que deve ser considerado uma situação perigosa. Métodos: Foi utilizado o 
sistema SDS-PAGE de eletroforese em gel de poliacrilamida através de método analí-
tico para separação de moléculas carregadas em misturas mitocondriais de acordo 
com sua massa molecular na presença de campos elétricos. O sistema Invitrogen® 
Bright Imaging (IBI) fornecido foi aplicado para a geração de imagens e análise de 
impressões de proteínas. Resultados: Como atualmente não há tratamento eficaz 
para a deficiência de CPT-II, a prevenção da insuficiência hepática é uma forma 
adequada de tratamento através do controle das mitocôndrias sem afetar a potência 
do CPT-II. Discutimos sobre a posição muscular hepatocardíaca infantil grave da 
deficiência de CPT II que afeta o fígado, o coração e os músculos. Conclusões: 
Através deste trabalho, discutimos e caracterizamos a função fisiopatológica em 
diversos tecidos, como câncer de fígado e rim.

Palavras-chave: Câncer de fígado; Falência renal; carcinoma hepatocelular; Doença 
hepática gordurosa não alcoólica; CPT-I; CPT-II; Sistema SDS-PAGE.
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Introduction

Carnitine palmitoyltransferase specification (CPT)

Carnitine palmitoyltransferase II (CPT II) deficiency is a condition that prevents the 
body from using certain fats for energy, particularly during periods without food (fast-
ing). There are three main types of CPT II deficiency: a lethal neonatal form, a severe 
infantile cardio muscular form, and a myopathy form. The lethal neonatal form of CPT 
II deficiency becomes apparent soon after birth. Infants with this form of the disorder 
develop respiratory failure, seizures, liver failure, a weakened heart muscle (cardiomy-
opathy), and an irregular heartbeat (arrhythmia). Affected individuals also have low 
blood glucose (hypoglycemia) and a low level of ketones, which are produced during 
the breakdown of fats and used for energy. Together these signs are called hypoketotic 
hypoglycemia. In many cases, the brain and kidneys are also structurally abnormal. 
Infants with the lethal neonatal form of CPT II deficiency usually live for a few days 
to a few months [1-6]. Since there is a mechanism of oxidation of phospholipids in 
tumors, these disorders may be caused by the regulation of fatty acids in the mitochon-
drial matrix [7-9]. The outer membrane transferase CPT-I is generally recognized as 
the main regulatory site of lipid peroxidation in mitochondria, and for this reason, 
its regulation has been extensively studied, as has the regulation of the outer mem-
brane transferase CPT-II. Problems related to this form of CPT II deficiency can be 
triggered by periods of fasting or by illnesses such as viral infections. Individuals with 
the severe infantile hepato-cardio-muscular form of CPT-II deficiency are at risk for 
liver failure, nervous system damage, coma, and sudden death. During treatment of the 
latent status of cancer, several changes occur, such as a striking enhancement in PGE2 
concentration [13-15]. It is clear that inhibition of PGE2 reduces tumor growth in 
both in vivo and in vitro studies [16-20]. We exhibited the translational activities of 
CPT-I or CPT-II can also influence the anti-keto genic creation of extra hepatic tumor 
growth in human liver [10-12]. It is a question whether inhibition of prostaglandin 
synthesis could impair the tumor growth effects of liver mitochondrial CPTs. CPT-
II deficiency is one of the most uncommon inherited traits caused by the lipid chain 
and also the most common cause of recurrent rhabdomyolysis in adults. It is noteable 
CPT-I or CPT-II are proteins that help transport fatty chains from the cytoplasm to 
the mitochondria during beta oxidation of fatty acids for energy production. Fatty 
acid oxidation (FAO) (Figure 1) is suitable for producing energy during stress, strong 
sports, long time exercise, fasting, and also cold climate. Consequently through a huge 
stress, the concentration of CPT-II will be decreased due to transition of acyl-carnitine 
across the inner mitochondrial membrane as a result oxidation is reduced.
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Figure 1. Esterification of fatty acids across mitochondrial.

The lethal neonatal form of CPT II deficiency becomes apparent soon after birth. 
Infants with this form of the disorder develop respiratory failure, seizures, liver fail-
ure, a weakened heart muscle (cardiomyopathy), and an irregular heartbeat (arrhyth-
mia). Affected individuals also have low blood glucose (hypoglycemia) and a low level 
of ketones, which are produced during the breakdown of fats and used for energy. 
Together these signs are called hypoketotic hypoglycemia. In many cases, the brain and 
kidneys are also structurally abnormal. Infants with the lethal neonatal form of CPT 
II deficiency usually live for a few days to a few months. CPT-II is divided into three 
main phenotypes, two of which cause hypoglycemia due to hypoglycemia and are fatal 
in utero or in the first days of life. The third type, which attacks until puberty, is the 
typical muscle type, characterized by muscle pain, muscle weakness, and rhabdomy-
olysis due to vigorous exercise. Although for some sports its effect is hidden, in some 
other sports myalgia appears with frequent attacks of rhabdomyolysis. Mutations in 
the CPT2 gene cause CPT II deficiency. This gene provides instructions for making an 
enzyme called carnitine palmitoyltransferase 2. This enzyme is essential for fatty acid 
oxidation, which is the multistep process that breaks down (metabolizes) fats and con-
verts them into energy. Fatty acid oxidation takes place within mitochondria, which 
are the energy-producing centers in cells. A group of fats called long-chain fatty acids 
must be attached to a substance known as carnitine to enter mitochondria. Once these 
fatty acids are inside mitochondria, carnitine palmitoyltransferase 2 removes the carni-
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tine and prepares them for fatty acid oxidation. Fatty acids are a major source of energy 
for the heart and muscles. During periods of fasting, fatty acids are also an important 
energy source for the liver and other tissues

Decreasing HCC under NAFLD in vivo

HCC often arises in patients with liver cirrhosis caused by chronic hepatitis B or C 
virus infection. However, recent epidemiology studies found that non-alcoholic fatty 
liver disease (NAFLD) is also a high-risk factor for HCC . In humans, adoptive trans-
fer of tumor-specific CD4+ T cells caused a complete tumor eradication in a patient 
bearing cholangiocarcinoma, another primary liver cancer. Furthermore, immuno-
therapy is becoming standard of care for the treatment of advanced HCC [21,22]. 
To address this question, a better understanding of the influences of fatty liver envi-
ronment on T-cell metabolism is required. This may also shed light on the design of 
a targeted therapy and potentially a combined immunotherapy for HCC. [23–25]. 
Most humans have no explicit signs and cannot be recognized before liver cirrhosis or hepa-
tocellular carcinoma (HCC) ,because the effect of early clinical screening is negligible [26]. 
During changing NAFLD to the cirrhosis, the probability of reverse situation has high 
risk that HCC should be considered as a dangerous position. As a result, many systemic 
diseases appear in humans by HCC, such as cardiovascular diseases, chronic alcoholic dis-
eases, and colon and rectal tumors, all of which threaten human health [27-29]. As CPT1a 
up regulation leads to greater ROS and CD4+ T cell apoptosis, we sought to test 
whether blocking CPT-1 affects CD4+ T cells and HCC development in the context 
of NAFLD. As we found the CPT inhibitor perhexiline rescued murine CD4+ T cell 
and Jurkat cell apoptosis when cultured with C18:2 in vitro. Liver-specific inducible 
MYC oncogene transgenic mice, which spontaneously develops HCC after turning 
on MYC gene (MYC-ON), were fed with the MCD diet and injected with perhexi-
line. The liver is a central organ for lipid metabolism. With the prevalence of NAFLD 
in Western countries and the significant risk of NAFLD patients to develop HCC, 
critical components in lipid metabolism could be potential targets for the treatment 
of NAFLD-induced HCC. PPARs and CPT proteins are among those potential tar-
gets. However, the exact role of PPAR-α in HCC has been controversial on whether 
PPAR-α promotes or suppresses tumor growth [30]. NAFLD and another type known 
as nonalcoholic steatohepatitis (NASH) are associated with liver cancer, which causes 
fatty particles to build up in liver cells. The epidemic of NAFLD is rapidly increasing 
with the prevalence of diabetes and appears to be present in a quarter of the world’s 
population [31,32]. In addition, this issue has been evaluated in 2011 and diagnosed 
that from each one per five liver cancers worldwide one of them is related to diabetes. 
NAFLD can be considered a dire and dangerous world subjects; nevertheless, there 
is no useful treatment and no mechanism of NAFLD decreasing for this disease up 
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to now. There are huge information indicating that metabolic conversions in the can-
cer tumors might be converted to anti-immune metabolism and consequently ruin 
antitumor immunity [33-35]. Although the anti-tumor effects of CD4 + T cells in 
various forms of cancers such as liver are the main target for diagnosis by researchers 
[36], there is no further research except using the diethylnitrosamine (DEN)-primed 
murine HCC model. Working on a mouse model, it was found that CD4+ T cells are 
able to prevent tumor initiation and remove malignant liver cells [37-40]. There are 3 
particular subunits of CPT-I known as a, b and c [33,34]. CPT-Ia is the first subunit 
in lymphocytes, liver, kidney, spleen, lung, intestine, and pancreas. CPT-Ib is mostly 
translated in muscles, heart, and adipose tissue, while CPT-II is mainly translated in 
the brain [41-42]. Peroxisome proliferator-activated receptor (PPARs) is a category of 
phospholipids of RNA transcription agents that affects to metabolic systems. They can 
be separated into three subunits including: alpha, gamma and beta/delta .Although 
PPAR-α and PPAR-γ is translated in lymphocytes, finally PPAR-α is a major part in 
the liver for attaching to fatty acids. It has been exhibited CPT-I trough activating 
PPAR-α15 is considerably affected by fatty acids, , moreover several works confirm the 
role of both PPAR-α and PPAR-γ as activated receptors to adjustment the transcrip-
tion of the CPT-Ia gene directly [43-45].

Although these changes can be tested from liver CD4+ T cells through nutrition rat 
with linoleic acid or NAFLD diets, more research exhibited that PPAR-α is the reason 
the turbulent of CPTs genes. Introduction of CPTs genes can increase ROS and lead 
to apoptosis of CD4 + T cells. In vivo treatment of mice with CPTs inhibitor in addi-
tion to reducing apoptosis of hepatic CD4 + T cells and controlling HCC growth 
in NAFLD system provides useful data, such as identify genes for CPTs such as liver 
cancer therapy promoted by NAFLD [45-50].

CPT-II genes

The carnitine palmitoyltransferase (CPT) system is responsible for transporting long-
chain fatty acids from the cytoplasm into the mitochondria where the fatty acids 
undergo β-oxidation. Transport of long-chain fatty acids into the mitochondrial 
matrix requires both CPT1 and CPT2, with CPT1 being the rate limiting step. This 
CPT system contains two separate proteins localized in the outer (CPT1) and the 
inner (CPT2) mitochondrial membrane. The most suitable action of the CPTs might 
be mentioned as an ability for helping fatty acids to enter inside the mitochondria 
for any further oxidation. For this purpose, trans-membrane protein as known CPT-I 
is placed in OMM, as well as, CPT-II genome is located in IMM. CPT-II genome 
appears on chromosomes1 (1p32) and consist of 3092 nucleotides in five exons that 
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can encode the enzyme chain containing 660 amino acids (table 1)[50]. The expression 
of CPT1b and CPT2, suggesting that other lipids may also contribute to the induction 
of CPT genes in NAFLD.

Table 1. Structure of CP-II genome

Exson
Size 
(bp)

Nucleotides Amino 
acids Amino acid substitution in mutations of five exons

106 756-857 80-112 Cys84Arg; Ala101Val; Ser113Leu

1303 858-2163 113-549

Met120Cys; Arg121Gln; Asn124Gln; 
Arg124Ter; Asn146Thr; Ala151Gln; Arg151Gly; 
Arg161Trp; Ile164Ter; Arg167Gln; Asp173Ser; 
Glu174Lys; Tyr210Ala; Asp213Trp; Met214Arg; 
Gln216Arg; Pro227Leu; Ala231Ser; Arg247Trp; 
Gln274Met; Arg296Ser; Arg296Leu; Ala296Ter; 
Gly310Gly;Cys326Tyr; Lys328Gly; Met342Asp; 
Phe352Met; Val368Ile; His369Arg; Arg382Lys; 
Phe383Tyr;Gln413Gln; Phe448Ala; Arg450Ter; 
Gln451Glu; Gln454Ter; Lys457Trp; Tyr479Phe; 
Tyr479Cys;Glu480Arg; Gln487Lys; Gly497Ser; 
Ile502Thr; Arg503Ser; Phe504Leu; Asn516Ser; 
Gln545Ala

934 2164-3092 550-660

Ala560Gln; Leu575Pro; Arg576Gly; 
Ser588Gln; Ser590Asn; Gly600Met; Pro604Ser; 
Val605Leu;Asp608Gly; Tyr628Ser; Arg631Cys; 
Lys644Ser

667 1-669 1-50 Pro41Leu; Pro50His
80 669-750 51-79 Pro55Arg; Ala67Gly

Intermediate role of PPAR-α for CPT gene

Previously, it was reported that PPAR-α can directly up regulate CPT1a expression 
[50, 51], so the hypothesized that the induction of CPT genes observed in CD4+ 
T cells treatment is mediated by PPAR-α. To test this, we used the PPAR-α agonist 
bezafibrate and monitored CPT gene expression .CPT-I and CPT-II contributed to 
the oxidation of long-chain fatty acids in mitochondria as well as their transport across 
the mitochondrial membrane for β-oxidation [ 51 ]. From a genetic concept point of 
view, CPT-II is identified by seventy percent of mutant alleles, which plays an impor-
tant role in fatty acid entry into mitochondrial fatty acid oxidation as well as cellular 
metabolic homeostasis [52]. Oxaliplatin as an effective anti-cancer drug is used for 
increasing the CPT-II activation in cancer tumors and enhancing the catabolism of 
fatty acids. Structural amino acids evaluation from Exon 4 and Exon 5 and also its 
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activities indicating, which CPT-II might be became instable due to heterogeneous 
mutations , exogenous carcinogens, endogenous perturbation and huge mutation 
phenomenon [53]. Since the liver cells should control their metabolic systems in any 
usage of variety of feeds and ATP necessities [52-55], CPT-II must be well catalyzes 
Trans esterified acylcarnitine’s transferred from cytosol into the inter-membrane space 
(IMS) [55-57]. CPTs act in the oxidation of LCFAs containing CPT-I and CPT-II in 
the OMM, catalyze fatty acids to form fatty acids with the participation of ATP and 
CoA, and then transport long-chain acyl-CoA into the system via the delivery system. 
Mitochondria many genes encoding CPT-II are known to be recessive genetic defects 
and clinical situations of associated diseases such as hypoglycemia, cardiomyopathy, 
arrhythmias, and rhabdomyolysis can be considered [58-68].

Materials and methods

Naphthylene was obtained from Aldrich Chemical Co; PPO, Palmitoyl CoA, pro-
tein G, carnitine, POPOP, sepharose-protein G, FMP, Indomethacin was prepared 
from Sigma, and dioxan from Brazil. [3H]-methylcarnitine, nitrocellulose (Highbong 
extra), Hypercassette and Hyperscreen were purchased from Amersham (UK). Mice 
were divided into four groups: 1-tumor-bearing group (TB), 2-control group (C), 
3-control treated with indomethacin, and 4-tumor-bearing group treated with indo-
methacin. The livers of rat embryos (gestational days 10-18) were divided into pieces 
in Dulbecco’s modified essential medium (DMEM). The pieces were placed in 0.25% 
collagenase solution for half hour at 37 °C. Again it centrifuged by speed of 1500 r/min 
for 8 minutes. Collagen enzyme potential was neutralized by adding 25% fetal serum 
to the mixture. They were suspended in DMEM and 12% fetal serum and cultured in a 
plastic thermos at -70°C. This method is based on the method of reference 63 [63] and 
after killing the mice, their livers were cleaned and homogenized with a buffer solution 
(250 mM mannitol, 70 mM sucrose, 3 mM HEPES, 0.3 mM EDTA, pH 7.2). In the 
same buffer, the homogenate is filtered and centrifuged twice at 1200 rpm for 10 min-
utes. Finally, the above part of the mixture was centrifuged three times at 8000 rpm for 
15 minutes (Sorvall RC2B centrifuge). The maximum activity of CPT-I and CPT-II 
was measured in isolated mitochondria using detergents according to number 64 [64]. 
Finally, they were re-suspended in buffer containing 0.12 mM KC1, 5.0 mM Tris-HC1 
(pH 7.3) and centrifuged (15,000 rpm, 10 min). They were then re-suspended in 15 
mM phosphate buffer (pH 7.3), frozen in liquid nitrogen, and then thawed at room 
temperature. They were again ultra-centrifuged.
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PCR for RNA application

RNA was extracted from cell pellets or frozen tissue with QIAshredder (Qiagen) and 
RNeasy MiniKit . The sequence of primers used for quantitative RT-PCR have been 
estimated from RNA isolation . All reactions of quantitative RT-PCR were run in trip-
licates using iQTM SYBR Green Super mix and performed on the ViiATM Real-Time 
PCR System.

Mitochondrial coloring

Mitochondrial-associated ROS was detected by mitoSOXstaining according to the 
manufacturer’s protocol. Briefly, treated cells were stained with 3 µM mitoSOX for 
half hour in a CO2 incubator at 38 °C. After washing twice, the cells were processed.

Fluorescent coloring

Fibroblast cells were seeded several times by NuncTM Lab-TekTM Chambered Cover 
glass wells. After half day, cells were washed with phosphate-buffered saline (PBS) 
three times and incubated with 2 µM BODIPY probe with 10 nM MitoTracker Deep 
Red in PBS at 38 ˚C for half hour min. Cells cleaned by PBS and was kept for imaging. 
Live cells were imaged using a Zeiss LSM880 laser (Figure 2).

Figure 2. Mitochondrion fluorescent coloring.

Results

We found that intrahepatic CD4+ T cells are an indispensable component of anti-
tumor surveillance in NAFLD, and linoleic acid (C18:2) causes CD4+ T cell apop-
tosis by impairing electron transport chain (ETC) function and generating ROS8. 
During this process, CPT1 catalyzes the transfer of the acyl group of a long chain fatty 
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acyl-CoA from coenzyme A to carnitine so the resulting acylcarnitine can cross the 
mitochondrial outer membrane, while CPT2 reverses this reaction inside mitochon-
dria. Table 2 exhibits the optimal potentials and activities of CPT-I and CPT-II in 
mitochondria provided by the livers of TB and control mice. For CPT-I, no significant 
differences emerged between the two groups. However, the CPT-II potential in liver 
mitochondria of TB-infected rats was 55% lower than that of control rats.

Table 2. Enzymatic potential

Liver
Samples CPT-I CPT-II

C (n=15) 3.25 2.22
TB (n=6) 3.85 1.01

Tumor
TB (n=8) 2.12 3.43

TB-ind (n=15) 3.09 5.21

Figure 3 exhibits the schematic of proteins separated by SDS-PAGE of mitochondrial 
samples obtained from tuberculosis and control mice. The only distinct difference 
from the more abundant proteins was a small translation of the corresponding proteins 
into the mitochondria of TB mice.

Figure 3. SDS/PAGE segregation of mitochondrial from the rats, including normal and tumors.

In Figure 4, Western blot positions for CPT-I and CPT-II immunoreactivity in mito-
chondria from control mice and M. tuberculosis are shown. Although the difference 
between these two patterns in CPT-I amounts in mitochondria isolated from control 
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as well as TB mice was not significant, TB mitochondria showed little CPT-II activity 
at 69,000. In addition, in these mitochondria, a second band was also detected by the 
rat liver CPT-II antibody exhibited.

Figure 4. Western blot detection of immunoreactive CPT-I and CPT-II proteins in liver mito-
chondria isolated.

These effects were not found in vitro when embryonic hepatocytes were cultured in the 
presence of 12 g of indomethacin because there was no induction of CPT-I or CPT-II 
in indomethacin-treated cells compared with control cells (Table 3).

Table 3. Effects of indomethacin in vivo and in vitro on CPT I and CPT II from liver mitochondria.

Enzymatic potential (nmol/min.mg)
Items CPT-I CPT-II
control (n=4) 2.99 3.12
control –ind (n=6) 5.85 3.11
TB (n=3) 3.02 1.12
TB-ind (N=12) 4.15 4.05
Cultured hepatocytes (n=5) 3.21 4.41
Cultured hepatocytes –ind (n=5) 3.22 4.21

Discussion

In vivo feeding and in vitro culture experiments showed that induced CPT gene up 
regulation. Using either an agonist or antagonist, it confirms that PPAR-α mediates 
the induction of CPT genes, as well as targeting of CPT inhibits HCC development 
in the context of NAFLD. Since fatty acid diffusion to cytoplasm does not stop in 
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the livers of TB rats, it can be interpreted that the metabolic destroying creates during 
the transport of fatty acids into the mitochondrial matrix. Contrary to any previous 
hypothesis and prediction, CPT-I is capable of controlling FAO in all metabolic states. 
To date, neither the activity of this enzyme nor the translation of the corresponding 
protein has been affected in the liver mitochondria of TB mice. However, CPT-II 
potency was halved, and Western blotting using an anti-CPT-II polyclonal antibody 
revealed the source of the additional reactive enzyme in liver mitochondria obtained 
from TB mice. These considerations add to our knowledge that the less likely isoform 
of CPT-II is translated either through transcription of different genes or through post-
transcriptional mRNA labeling (in vivo) and proteolysis processing in the liver. It is 
also possible that the CPT-II isoform acts as a master receptor regulator. The results 
of this work exhibited that treatment with prostaglandin inhibitors was able to reverse 
the effects of cachexia on hepatic CPT-II activities. The similarity between the poten-
tial obtained in mitochondria isolated from control cultured hepatocytes and those 
cultured with indomethacin predicts that PGE2 modulation of the CPT-II reduction 
potential is not the result of eicosanoid production by the hepatocytes themselves, 
but is likely due to the action of prostaglandins. In other wise, the in vivo situation is 
related to the large amounts of PGE2 production by the tumor and of course our data 
of this work needs more investigation regarding the role of CPT-II and the control of 
its translation for FAo mechanism in the pathophysiological positions. It is notable, 
liver is a central organ for lipid metabolism, therefor With the prevalence of NAFLD 
in Western countries and the significant risk of NAFLD patients to develop HCC, 
critical components in lipid metabolism could be potential targets for the treatment 
of NAFLD-induced HCC. PPARs and CPT proteins are among those potential tar-
gets. However, the exact role of PPAR-α in HCC has been controversial on whether 
PPAR-α promotes or suppresses tumor growth.

Conclusions

In conclusion, we demonstrated that by inhibiting CPT1 we can rescue CD4+ T cells 
and prevent HCC development. Our results provide useful information that CPT1 
may be a potential target for NAFLD -promoted HCC therapy. Through this work, 
we have focused on the partial application of lipid metabolic pathways in disease patho-
genesis and considered the modulating cases and clinical treatments of lipid systems in 
different tissues. Furthermore, through this work, we have characterized the patho-
physiological function of both CPT-I and CPT-II systems in liver disease compared to 
several other chronic infections as well as cancer (Table 4).
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1,4-bis (5-phenyl-2-oxazolyl)-benzene; PPO: 2,5-diphenyloxazol; ROS: reactive oxy-
gen species; TB: tumor-bearing rats; TB-ind: turnout-bearing rats given indometha-
cin; TNF: tumor necrosis factor;
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