COMPLETA ASIGNACIÓN DE LOS ESPECTROS DE ¹H Y ¹³C RMN DE DOS GUAYANOLIDAS CONOCIDAS AISLADAS DE Centaurea musimomum

COMPLETE ASSIGNMENT OF THE ¹³C AND ¹H NMR SPECTRA OF TWO KNOWN GUAIANOLIDES ISOLATED FROM Centaurea musimomum

K. Medjroubi*, F. Benayache1', F. Leon*++* J. Bermejo**

Recibido: 02/05/03 - Aceptado: 30/06/03

RESUMEN

Se complementan los datos espectroscópicos de dos guayanolidas conocidas aisladas de *C. musimomum* por ¹H, ¹³C y 2D RMN (HSQC, HMBC, ¹H-¹H COSY).

Palabras clave: Centaurea musimomum, guayanolidas, ¹H RMN, ¹³C RMN, ²D RMN.

ABSTRACT

Complementary ¹H, ¹³C and ²D NMR (HSQC, HMBC, ¹H-¹H COSY) spectroscopic data are provided for two known guaianolides.

Key words: Centaurea musimomum, guaianolides, ¹H RMN, ¹³C RMN, 2D RMN.

INTRODUCTION

Sesquiterpene lactones are part of a biologically active group of substances found in several plant families, most notably the Compositae which have yielded over 3000 structures. Their biological activity is increasingly appreciated – a recent detailed studies (1,2) have singled out several lactones with useful anthelmintic, antibiotic, allergenic and, above all, cytotoxic properties. One particular series of lactones with marked inhibitory action on the cell growth of many types of tumour (3) has been identified from among the antineoplastic agents obtained from plants (4).

Sesquiterpene lactones irritate the nose, eyes and gastrointestinal tract. Sheep and goats are the main livestock

Départment de Chimie, Faculté des Sciences, Université de Constantine, Route de Ain El Bey, 2500 Constantine Algérie.

Instituto Universitario de Bio-Orgánica "Antonio González"-Instituto de Productos Naturales y Agrobiología C.S.I.C., La Laguna, Tenerife, España.

Instituto Canario de Investigación del Cáncer, La Laguna, Tenerife, España.

species affected (5), primarily because the plants are unpalatable and therefore rarely consumed in toxic quantities by cattle and horses. The toxicity of sesquiterpene lactones is due to the binding of the exocyclic methylene group with tissue constituents, such as sulphydril groups and other nucleophilic components (6).

One and two-dimensional NMR data are given for two known guaianolides from Centaurea musimomum (7,8) to

supplement the information already available for these two compounds.

EXPERIMENTAL

General Experimental Procedures

¹H and ¹³C NMR spectra were taken on a Bruker AMX-500 spectrometer with standard pulse sequences, operating at 500 MHz for ¹H and 125 MHz for ¹³C. CDCL₃

Figure 1. Correlations for compound 1, a) \$^1\text{H-}^1\text{H COSY; b}\$ HMBC (arrows \$^{13}\text{C-}^1\text{H}).

was used as solvent and TMS as internal standard.

Plant Material

Centaurea musimomum was collected in the Souk-Ahras area in the East of Algeria in June 1992. It was identified by Dr Nadra Khalfallah and deposited in the herbarium of Research Unit of Chemistry, University of Constantine.

Extraction and Isolation

Air-dried powdered aerial parts (150 g) were soaked in MeOH (2 L). The MeOH extract was evaporated and the residue dissolved in H2O (100 mL). The solvent was treated with Pb(oAc). After 3 min centrifugation, the mixture was filtered and the vellow-coloured filtrate extracted with CHCl₃ (3 × 50 ml). The extract was concentred in vacuo at room temp, the residue weighing 6 g. A part of this residue (3 g) was separated by CC (silica ge1 230-400 mesh) using solvent mixtures (CHCl3- Me3CO) with increasing polarities. The fraction was divided into nine crude ones. Fractions 3 (210 mg) and 8 (180 mg) were studied. Fraction 3 on rechromatography on silica gel using solvent mixtures (hexane- Et2O-Me2CO) with increasing polarities gave 2 (70.2 mg) and fraction 8 on rechromatography on a silica gel column with CHCl3-hexane Et OAc, 1:1:1 gave 1 (16.1 mg).

Spectral data for compounds 1 and 2:

4 β , 15-Dihydro-3-dehydrosolstitialin A (1). Crystals, mp (154-156°); $[\alpha]_0^{25}$

+145 (CHCL₃, C 0.04); IR ν_{max} 3400, 1770, 1730,and 1640 cm⁻¹; EI-MS: 280 [M]⁺ (C₁₅ H₂₀ O₅) ¹H and ¹³C NMR data, see Table 1.

 4β , 15-Dihydro-3-dehydrosolstitialin A monoacetate (2)9. Crystals, mp (143-144°); [α]_D²⁵ +125 (CHCL₃, c 0.1); IR ν_{max} 3410, 1770, 1720, and 1640 cm⁻¹; EI-MS: 322 [M]⁺ (C₁₇H₂₂O₆) ¹H and ¹³C NMR data, see Table 1.

RESULTS AND DISCUSSION

The 13 C NMR, DEPT and mass spectra of **1** and **2** showed 15 and 17 carbon signals, respectively, indicating molecular formula $C_{15}H_{20}O_5$ and $C_{17}H_{22}O_6$.

Complete ¹H and ¹³C connectivity was established by extensive use and interpretation of ²D (¹H-¹H) COSY, HSQC (one bond ¹³C-¹H correlation) and HMBC (long-range ¹³C-¹H correlations) NMR spectra (Table 1)

The arrangement of the functional groups and the full structures of 1 and 2 were attributed from the $^{1}\text{H}^{-1}\text{H}$ COSY spectrum of 1 in which the following $\delta_{\text{H/H}}$ (ppm) correlations were observed (Figure 1): H-1 α (3.09) with H-2 β (2.52), H-2 α (2.56) and H-5 α (2.28); H-4 β (2.32) with CH₃-15 α (1.26) and H-5 α ; H-5 α with H-1 α and H-6 β (4.15); H-6 β with H-5 α , H-7 α (2.63); H-7 α with H-8 α (1.56); H-13a (3.77) with H-13b (3.83).

The functional groups in 1 were confirmed by HMBC data (Figure 1), the important correlations being between C-3 (δ 219.74) and H-1 α , H-5 α , H₂-2; between C-5 (δ 51.40) and H-1 α , H-4 β , H-7 α ,

Table 1. 1 H and 13 C NMR chemical shifts for 1 and 2 including 13 C- 1 H Long-Range correlations a,b

1	2					
Position	δC	δH (mult.)	нмвс (с→н)	δC	δH (mult.)	нмвс (с→н)
1α	39.62	3.09ddd (8.4, 7.8, 3.6)	H2-2, H-5, H2-14	39.52	3.04 ddd (8.3, 7.8, 3.4)	H2-2, H-5, H2-14
20.	43.86	2.56 dd (19; 7.8)	H-1, H-4	43.72	2.54 dd (19, 7.8)	H-1, H-4, H-5
2β		2.52 dd (19, 3.6)			2.49 dd (19, 3.4)	
3	219.74		H:-2, H-4, H-5, Me-15	219.09		H-1, H2-2, H-4 H-5, Me-15
4β	47.08	2.32 m	Ha-2, H-6, Me-15	47.06	2.30 m	H-6, H2-8, Me-15
5α	51.40	2.28 t, br (8.5)	H-1, H-4, H-7, Me-15	51.18	2,20 br t (8.3)	H-1, H-4, H-7, Me-15
6β	87,20	4.15dd (9.7. 8.9)	H-7, H2-8	86.77	4.05 dd (10, 8.3)	H-5, H-7, H2-8
7α	49.40	2.63 m	H-6, H2-8, H2-13	49.46	2.61 m	H-6, H2-8, H2-13
8 ax	26.85	1.56 dq (12.7, 5.1)	H-6, H2-9, H2-14	27.08	1.40 m	H-6, H2-9, H2-14
8 eq		2.22 m			2.19 m	
9 ax	38,56	2.11 m	H-1, H-7, H2-8, H2-14	38.31	2.09 m	H-1, H-7, H2-8 H2-14
9 eq		2.65 m			2.57 m	
10	148.90		H-1, H-5, Hz-8, Hz-9, Hz-14	148.74		H-1, H2-8, H2-9, H2-14
11	77.20		H-7, H2-13	75.49		H-7, H ₂ -13
12	178.80		Hz-13	176.23		
13a 13b	63.12	3.77 d (11.2) 3.83 d (11.2)	H-7	63.99	4.29 d (11.5) 4.11 d (11.5)	H-7
14a 14b	112,48	4.68 s 4.99 s	H-1, H ₂ -9	112.68	4.93 d (3.7) 4.62 d (3.7)	H-1, H2-9
15	13.89	1.26 d (7.1)	H-4, H-5	13.97	1.20 d (6.8)	H-4, H-5
C = O				169_19		H2-13, Me-17,
Actyl-Me				20.52	2.05 s	

a Assignments confirmed by decoupling, 'H-'H COSY, HSQC and HMBC spectra.

b J values are given in Hz.

 H_3 -15; between C-11 (δ 77.20) and H_2 -13, H-7 α ; between C-12 and H_2 -13; and between C-13 (63.12) and H-7 α . We definitively determined the structure of 1 by X-ray analysis (7).

These signals show certain similarities to those of the monoacetyl derivative 2 (Table 1), the structure of which was obtained on the basis of its 2D NMR spectrum. Compound 2 was previously described by Herz *et al.* (8,9) on the basis of ¹H and ¹³C NMR spectra and X ray analysis. We observed that the assignments of C-1 and C-4 given by those authors were interchanged with respect to those found by us for compound 2. HMBC spectrum (Figure 2) shown important correlations between C-1 (δ 39,52) and H₂-14, between C-4 (δ 47,06) and H₃-15. (Figure 2).

ACKNOWLEDGMENT

This research was supported by FEDER grant No. 1FD1997-1831 (J.B.B and F.L)

REFERENCES

- Danierwiski W., Kocoz M. and Zoltowska B. (1995). Structure of lactarorufin B and Activity. Bull. Acad. Pol. Sci., 785.
- Schmidt T. J. (1999), Toxic activities of sesquiterpene lactones: Structural and biochemical aspects. Current Organic Chemistry, 3(6), 577.
- Kupchan S. M.; Hemingway J. C., Cassady T. M. and Knox J. R. (1967), Isolation and structural elu-

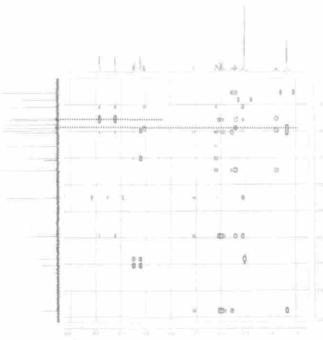


Figure 2. HMBC (long-range 13C-1H correlations) spectrum of compound 2.

- cidetion of euparotin acetate, a novel guaianolide tumor inhibitor from Eupatoriam rotundifolium. J. Am. Chem. Soc., 89 (465).
- Mitchell J. C.; Friting B.; Singh B. and Towers G. H. N. (1970). Allergic contact dermatitis from Frullania and Compositae. The role of sesquiterpene lactones. J investig. Dermatol. 233.
- Elissalde M. H.; Ivie, G. W.; Rowe L. D. and Elissalde G. S. (1983) Considerations of the structure of sesquiterpene lactones on biological activity: influence of the camethylene-γ-lactone moiety on mast cell degranulation. Am. J. Vet. Res., 44 (1894).
- Lee K. H.; May I. H.; Mar E. C.; Starnes C. O.; Elgebaly S. A.; Wad-

- dell T. G.; Hadgraft R. I.; Ruffner C. G. and Weider I. (1977) Sesquiterpene antitumor agents: inhibitors of cellular metabolism Science, 196, (533).
- González-Platas J.; Ruiz-Pérez C.; González A. G.; Bermejo J. and Medjroubi K. (1999) Acta Cryst., 4β,15-dihydro-3-dehydrosolstitialin A, C55 (1837).
- Öksüz S.; Clark R. J. and Herz W. (1993) A gualanolide dial monoacetate from Centaurea beben and C solstitialis ssp, Schouwii. Phytochemistry, 33(5), 1267.
- Bruno M.; Diaz J. G.; Herz W. (1991). Guaianolides and lignans from Centaurea solstitialis subsp schouwii. Phytochemistry, 30 (12): 4165.