Rev. Colomb. Quím., 2012, 41(1): 75-88

PROPIEDADES VOLUMÉTRICAS DE LA MEZCLA N,N-DIMETILFORMAMIDA + 1-PROPANOL A DIFERENTES TEMPERATURAS

VOLUMETRIC PROPERTIES OF THE MIXTURE N,N-DIMETHYLFORMAMIDE +1- PROPANOL AT DIFFERENT TEMPERATURES

PROPRIEDADES VOLUMÉTRICAS DA MISTURA N, N-DIMETILFORMAMIDA +1-PROPANOL EM DIFERENTES TEMPERATURAS

Manuel S. Páez^{1,2}, María K. Vergara¹, Plinio D. Cantero¹

Recibido: 03/01/12 - Aceptado: 16/04/12

RESUMEN

Las densidades del sistema binario N.N-Dimetilformamida + 1-propanol se midieron como una función de la fracción molar a las temperaturas de (283,15; 288,15; 293,15; 298,15; 303,15; 308,15 y 313,15) K y 1011 bar, usando un densímetro de tubo vibratorio DMA 5000. Los datos experimentales de densidad se utilizaron para calcular los volúmenes molares de exceso (V_m^E) , volúmenes molares parciales de exceso del soluto y del solvente (\bar{V}_i^E) , volúmenes molares parciales a dilución infinita (\overline{V}^{∞}) y los coeficientes viriales (bv) de acuerdo con la teoría de McMillan-Mayer, que se discutieron en términos de las interacciones presentes en solución. Los volúmenes molares de exceso se correlacionaron usando la ecuación polinomial de Redlich–Kister. Los volúmenes molares de exceso y volúmenes molares parciales de exceso del soluto y del solvente son negativos en todo el intervalo de fracción molar a todas las temperaturas de estudio, hecho que puede deberse a interacciones específicas entre los componentes o a la asociación a través de fuerzas débiles.

Palabras clave: densidad, volúmenes molares de exceso, coeficientes viriales, fuerzas débiles.

ABSTRACT

The densities of the binary system N, N-Dimethylformamide + 1-propanol were measured as a function of the mole fraction at temperatures of (283.15, 288.15,

Universidad de Córdoba, Departamento de Química, Facultad de Ciencias Básicas. Cra 6° - 76-103, Km 3, vía Cereté, Montería, Córdoba, Colombia

² mspaezm@unal.edu.co

293.15, 298.15, 303.15, 308, 15 and 313.15) K and 1011bar, using a vibrating tube densimeter DMA 5000. Experimental data of density was used to calculate excess molar volumes (V^E_m), excess partial molar volumes of solute and solvent (\bar{V}_{i}^{E}) , partial molar volumes at infinite dilution (\bar{V}^{∞}) and the virial coefficients (bv) according to the McMillan-Mayer theory, which were discussed in terms of the interactions present in solution. The excess molar volumes were correlated using a polynomial equation Redlich-Kister. The excess molar volumes and excess partial molar volumes of solute and solvent are negative over the entire range of mole fraction at all temperatures of study, a fact which may be due to specific interactions between the components or the association through weak forces.

Keywords: Density, excess molar volumes, virial coefficients, forces weak.

RESUMO

As densidades do sistema binário N, N-Dimetilformamida + 1-propanol foram medidos em função da fração molar em temperaturas de (283,15, 288,15, 293,15, 298,15, 303,15, 308,15 e 313,15) K 1011bar, usando um tubo vibrando densímetro DMA 5000. Dados experimentais de densidade foram usados para calcular volumes em excesso molar (V_m^E) , volumes molares parciais de excesso do soluto e do solvente (\bar{V}_i^E) , volumes molares parciais à diluição infinita (\bar{V}_{i}^{∞}) e os coeficientes viriais (bv) de acordo com a teoria de McMillan-Mayer, que foram discutidas em termos das interações presentes na solução. Os volumes molares de excesso foram correlacionados usando uma equação polinomial Redlich-Kister. Os volumes molares de excesso e os volumes molares parciais de excesso do soluto e do solvente são negativos em toda a faixa de fração molar em todas as temperaturas de estudo, fato que pode ser devido a interações específicas entre os componentes ou a associação através de forças fracas.

Palavras-chave: densidade, volumes molares de excesso, coeficientes viriais, forças fracas.

INTRODUCCIÓN

Es bien conocido que las propiedades fisicoquímicas de una solución dependen de la naturaleza de las moléculas que la componen. Es así como la generalización de las propiedades de una solución en una teoría que permita explicarlas totalmente requiere de una comprensión total del comportamiento molecular. Sin embargo, actualmente existe falta de entendimiento de cómo las interacciones moleculares determinan el comportamiento macroscópico de las soluciones. Es por ello que la determinación de las propiedades termodinámicas de mezclas binarias es esencial en el desarrollo de una teoría del estado líquido.

La N,N-Dimetilformamida (DMF) y el 1-Propanol son compuestos de gran importancia a nivel científico e ingenieril. La DMF se caracteriza por poseer un momento dipolar grande (μ =3,24 Debye) y una constante del dieléctrica alta (ϵ =36,71) que le confieren la capacidad de ser un excelente solvente para la síntesis de polímeros y productos farmacéuticos (1). Además puede utilizarse como disolvente para sales o compuestos con un peso molecular elevado, debido a la habilidad que posee para formar complejos. Por otra parte, el 1-Propanol es un líquido polar fuertemente asociado mediante puentes de hidrógeno y es de gran interés a nivel industrial debido a su amplio uso como solvente para gomas, lacas, hule, aceites esenciales; de igual forma se emplea en medicina como antiséptico, en la fabricación de acetona, glicerina, acetato de isopropilo, en productos cosméticos como lociones y productos refrescantes, y en la obtención de compuestos anticongelantes (2).

El conocimiento de las densidades de sistemas binarios permite obtener cantidades termodinámicas de exceso tales como los volúmenes molares de exceso, volúmenes molares parciales de exceso, volúmenes molares parciales a dilución infinita, que son útiles en el estudio de las interacciones moleculares, y los efectos de empaquetamiento entre los componentes de sistemas binarios que contengan líquidos asociados, no asociados, polares, no polares, próticos o apróticos (3, 4). De igual forma, esta propiedad permite obtener los coeficientes viriales (bv) de acuerdo con la teoría de McMillan-Mayer, que posibilita hacer inferencias acerca del tipo de interacciones predominantes en la mezcla N.N-Dimetilformamida + 1-Propanol (5).

El estudio de interacciones moleculares mediante el uso de una propiedad termofísica como la densidad en un sistema amida + alcohol es de gran interés a nivel bioquímico pues este tipo de sistema constituye un modelo apropiado para el estudio de las interacciones en péptidos y proteína-solvente (4). Por tal motivo, en este trabajo se reportan las densidades (q) para la mezcla binaria N,N-Dimetilformamida +1-propanol a una presión atmosférica de 1011 bar, a las temperaturas de (283,15; 288,15; 293,15; 298,15; 303,15; 308,15 y 313,15) K en todo el intervalo de composición expresado en fracción molar. Los valores experimentales de ρ se usaron para calcular los volúmenes molares de exceso (V^E_m), los coeficientes de temperatura del volumen molar de exceso $(\partial V_m^E/\partial T)$, volúmenes molares parciales (\overline{V}_{i}), volúmenes molares parciales de exceso (\overline{V}_i^E) y volúmenes molares parciales a dilución infinita $(\overline{V}_{i}^{\infty})$; el comportamiento de estos parámetros con la concentración y la temperatura se analizó en términos de las interacciones que ocurren a nivel de la solución.

MATERIALES Y MÉTODOS

Los reactivos empleados son los siguientes: N,N-Dimetilformamida (99,9 % de pureza), 1-Propanol (99,5 % de pureza), obtenidos de Merck. Se verificó la pureza de estas sustancias mediante la comparación de las densidades de estos compuestos con los datos reportados en la literatura a las temperaturas de (283,15; 288,15; 293,15; 298,15; 303,15; 308,15 y 313,15) K, como se muestra en la Tabla 1.

Las soluciones se prepararon por el método de las pesadas usando agua doblemente destilada y desionizada (conductividad eléctrica menor de 2 μ S/cm), mediante una balanza (OHAUS, modelo Explorer) con una sensibilidad de ± 10⁻⁴ g en botellas herméticamente cerradas para evitar pérdida por evaporación de alguno de los componentes. Las densidades de los líquidos puros y/o mezclas se determinaron usando un densímetro de tubo vibratorio (Anton Paar, DMA 5000, Austria). La densidad del líquido puro y/o la solución problema (ρ) está dada por la ecuación [1].

$$\rho = A + B\tau^2 \tag{1}$$

Donde A y B son constantes internas del densímetro que dependen de la geometría de la celda que contiene la muestra y τ , el periodo de oscilación del líquido y/o la solución problema. La incertidumbre experimental en la determinación de las densidades es del orden de $\pm 1 \times 10^{-5}$ g/ cm³. Para la calibración del densímetro se usó agua bidestilada y desgasificada como líquido puro de referencia.

RESULTADOS Y DISCUSIÓN

Las densidades (ρ) para los compuestos 1-Propanol y N,N-Dimetilformamida puros, obtenidas en este trabajo, se presentan en la tabla 1, junto con los valores publicados por algunos investigadores, observándose que estas en general se encuentran en buen acuerdo con los datos reportados, lo cual garantiza la confiabilidad de las mediciones experimentales.

Los resultados experimentales de las densidades ρ de las soluciones de la

mezcla N,N-Dimetilformamida + 1-Propanol a las temperaturas (283,15; 288,15; 293,15; 298,15; 303,15; 308,15 y 313,15) K se reportan en la Tabla 2 en la cual se puede observar que las densidades del sistema N,N-Dimetilformamida + 1-Propanol disminuyen con el aumento de la temperatura y la concentración del alcohol en la solución.

La evaluación del volumen molar de mezcla desde las medidas de densidad obtenidas experimentalmente a cada temperatura se calcula mediante la ecuación [2].

$$V_{m} = (x_{1}M_{1} + x_{2}M_{2})/\rho$$
 [2]

Donde M_1M_2 , $x_1 x_2 y \rho$ son los pesos moleculares de los componentes puros, las fracciones molares de solvente N,N-Dimetilformamida y del soluto 1-Propanol y la densidad de la solución, respectivamente. Los volúmenes molares parciales del 1-Propanol se determinaron a partir de la ecuación (3):

$$\overline{\mathbf{V}}_{2} = \mathbf{V}_{\mathrm{m}} + \mathbf{x}_{1} \left(\partial \mathbf{V}_{\mathrm{m}} / \partial \mathbf{x}_{2} \right)_{\mathrm{T,P}}$$
[3]

Donde $V_m y \overline{V}_2$ es el volumen molar de la solución y el volumen molar parcial del soluto.

Componente	₽/cm³mol¹						
	283,15 K	288,15 K	293,15 K	298,15 K	303,15 K	308,15 K	313,15 K
DMF	0,95842 (a)	0,95367 (a)	0,94859 (a)	0,94415 (a)	0,93938 (a)	0,93484 (a)	0,93008 (a)
	0,958731 (6)	0,953874 (6)	0,94391 (7)	0,9445 (8)	0,93945 (8)	0,9342 (8)	0,9302 (8)
			0,948051 (6)	0,94403 (9)	0,9394 (8)	0,935717 (10)	0,9298 (11)
1-propanol	0,81152 (a)	0,80755 (a)	0,803574 (a)	0,799572 (a)	0,79554 (a)	0,791471 (a)	0,787361 (a)
	0,8111 (12)	0,8074 (12)	0,8035 (12)	0,79957 (13)	0,79596 (12)	0,79115 (12)	0,78762 (12)

Tabla1. Densidades de los componentes puros y comparación con los valores disponibles en la literatura a las temperaturas de (283,15, 288,15, 293,15, 298,15, 303,15, 308,15 y 313,15) K

a. Este trabajo

Los volúmenes molares de exceso (V_m^{E}) se calcularon con la siguiente ecuación:

$$(V_{m}^{E}) = \left(\frac{x_{1}M_{1} + x_{2}M_{2}}{\rho}\right) - \left(\frac{x_{1}M_{1}}{\rho_{1}^{*}} + \frac{x_{2}M_{2}}{\rho_{2}^{*}}\right) [4]$$

En esta ecuación ρ_1^* , ρ_2^* y ρ son las densidades de los componentes puros (N,N-Dimetilformamida y 1-Propanol) y la densidad de la solución a cada temperatura. Los resultados obtenidos para los volúmenes molares, volúmenes molares de exceso, volúmenes molares parciales del soluto y del solvente en función de la fracción molar se presentan en la Tabla 2 y la Figura 1.

En la Figura 1 se observa que los valores de los volúmenes molares de exceso son negativos en todo el intervalo de fracciones molares, a todas las temperaturas de trabajo, indicando que existe una contracción en el volumen de mezcla, lo cual podría atribuirse a la formación de enlaces de hidrógeno o a la asociación a través de fuerzas físicas débiles. La formación de enlaces de hidrógeno entre los distintos componentes de la mezcla binaria (Alcohol + N.N-Dimetilformamida) podría ser el resultado de los efectos de empaquetamiento de los componentes en la mezcla ocasionado por la ubicación geométrica del 1-Propanol en la red estructural de la N,N-Dimetilformamida (14). Desde un punto vista estructural, la probabilidad de la formación de enlaces de hidrógeno viene dada por la capacidad que tiene la N,N-Dimetilformamida para formar complejos por el carácter resonante de esta molécula, como se observa en la Figura 2 (15).

Figura 2. Estructura resonante de la N,N-Dimetilformamida (13)

Figura 1. Volumen molar de exceso de la mezcla binaria de N,N-dimetilformamida + 1-Propanol, en función de la fracción molar del 1-Propanol a las temperaturas de (◆283,15, ■288,15, ▲293,15, +298,15, -303,15, ●308,15, *313,15) K

x22	ρ	V_m	$V_{m}^{\rm E}$	\overline{V}_2	$\overline{\mathbf{V}}_{_{1}}$	ρ	V_m	$\mathbf{V}_{m}^{\mathrm{E}}$	$\overline{\mathbf{V}}_{_{2}}$	$\overline{V}_{_{1}}$
	g.cm ⁻³	cm ³ mol ⁻¹	cm³mol¹1	cm ³ mol ⁻¹	cm ³ mol ⁻¹	g.cm-3	cm ³ mol ⁻¹			
			T= 283,15H	K				T= 288,15H	ζ	
0,0000	0,95839	76.268	0,000	71.988	76.268	0,95367	76.645	0,000	72.465	76.645
0,0299	0,95485	76.143	-0,056	72.094	76.268	0,95003	76.529	-0,050	72.769	76.645
0,0517	0,95218	76.060	-0,092	72.416	76.258	0,94733	76.449	-0,081	72.951	76.640
0,0610	0,95102	76.025	-0,105	72.571	76.250	0,94616	76.415	-0,094	73.047	76.634
0,0701	0,94987	75.993	-0,118	72.651	76.245	0,94501	76.383	-0,106	73.101	76.631
0,0884	0,94753	75.929	-0,141	72.757	76.237	0,94267	76.320	-0,128	73.174	76.625
0,0999	0,94604	75.890	-0,154	72.858	76.227	0,94119	76.281	-0,141	73.247	76.618
0,1499	0,93945	75.731	-0,203	73.022	76.209	0,93464	76.120	-0,191	73.378	76.604
0,2000	0,93269	75.582	-0,241	73.210	76.175	0,92795	75.968	-0,231	73.546	76.574
0,3045	0,91821	75.295	-0,297	73.381	76.133	0,91359	75.675	-0,291	73.726	76.529
0,4001	0,90466	75.049	-0,332	73.504	76.079	0,90012	75.428	-0,326	73.871	76.465
0,5012	0,89007	74.803	-0,354	73.588	76.023	0,88558	75.181	-0,347	73.968	76.401
0,6013	0,87533	74.576	-0,360	73.671	75.939	0,87091	74.955	-0,351	74.051	76.317
0,7002	0,86041	74.374	-0,342	73.764	75.799	0,85607	74.752	-0,333	74.137	76.188
0,7999	0,84489	74.206	-0,290	73.868	75.556	0,84066	74.579	-0,283	74.232	75.964
0,8999	0,82867	74.090	-0,184	73.974	75.135	0,82459	74.456	-0,183	74.334	75.560
1,0000	0,81152	74.053	0,000	74.053	74.422	0,80756	74.415	0,000	74.415	74.824
			T= 293,15H	K				T= 298,15 I	K	
0,0000	0,94859	77.056	0,000	72.956	77.056	0,94415	77.418	0,000	73.418	77.418
0,0299	0,94496	76.940	-0,048	73.197	77.056	0,94046	77.308	-0,042	73.744	77.418
0,0517	0,94226	76.860	-0,079	73.364	77.051	0,93771	77.233	-0,069	73.941	77.412
0,0610	0,94110	76.827	-0,091	73.454	77.046	0,93653	77.201	-0,079	74.008	77.409
0,0701	0,93995	76.795	-0,102	73.504	77.043	0,93537	77.171	-0,089	74.045	77.406
0,0884	0,93762	76.731	-0,124	73.573	77.037	0,93302	77.110	-0,109	74.095	77.402
0,0999	0,93615	76.692	-0,137	73.642	77.031	0,93153	77.073	-0,120	74.145	77.398
0,1499	0,92964	76.530	-0,186	73.768	77.017	0,92499	76.915	-0,165	74.235	77.388
0,2000	0,92299	76.377	-0,225	73.933	76.988	0,91833	76.764	-0,203	74.352	77.367
0,3045	0,90872	76.081	-0,284	74.112	76.943	0,90414	76.467	-0,264	74.488	77.333
0,4001	0,89534	75.831	-0,317	74.260	76.878	0,89085	76.212	-0,302	74.615	77.278
0,5012	0,88089	75.582	-0,336	74.355	76.814	0,87650	75.960	-0,326	74.716	77.210
0,6013	0,86632	75.352	-0,339	74.434	76.735	0,86201	75.728	-0,332	74.805	77.120
0,7002	0,85160	75.144	-0,322	74.514	76.615	0,84730	75.525	-0,311	74.910	76.962
0,7999	0,83634	74.964	-0,275	74.604	76.404	0,83206	75.350	-0,261	74.999	76.755
0,8999	0,82044	74.833	-0,179	74.702	76.012	0,81627	75.216	-0,170	75.081	76.428
1,0000	0,80358	74.785	0,000	74.785	75.274	0,79957	75.159	0,000	75.159	75.723

Tabla 2. Densidades, volúmenes molares, volúmenes molares parciales, para la mezcla binaria N,N-dimetilformamida + 1-propanol a diferentes temperaturas.

x,	ρ	V_m	$V_{\rm m}^{\rm E}$	\overline{V}_2	$\overline{\mathbf{V}}_{_{1}}$	ρ	V_m	$V_{\rm m}^{\rm E}$	\overline{V}_2	\bar{V}_1
-	g.cm ⁻³	cm ³ mol ⁻¹	cm³mol-1	cm ³ mol ⁻¹	cm ³ mol ⁻¹	g.cm ⁻³	cm ³ mol ⁻¹			
		T= 3	03,15K					T= 308,15 I	X	
0,0000	0,93938	77.811	0,000	74.131	77.811	0,93483	78.190	0,000	74.690	78.190
0,0299	0,93565	77.705	-0,038	74.292	77.811	0,93107	78.088	-0,034	74.773	78.190
0,0517	0,93291	77.631	-0,063	74.374	77.808	0,92831	78.015	-0,057	74.861	78.187
0,0610	0,93173	77.599	-0,074	74.422	77.806	0,92712	77.985	-0,067	74.911	78.185
0,0701	0,93057	77.569	-0,084	74.448	77.804	0,92595	77.955	-0,075	74.938	78.183
0,0884	0,92823	77.508	-0,103	74.486	77.801	0,92359	77.897	-0,093	74.978	78.180
0,0999	0,92675	77.470	-0,114	74.527	77.797	0,92210	77.860	-0,103	75.018	78.176
0,1499	0,92024	77.311	-0,160	74.605	77.788	0,91556	77.707	-0,144	75.095	78.168
0,2000	0,91363	77.158	-0,199	74.718	77.769	0,90891	77.559	-0,178	75.200	78.149
0,3045	0,89952	76.859	-0,261	74.864	77.732	0,89476	77.268	-0,233	75.328	78.117
0,4001	0,88629	76.605	-0,298	75.009	77.669	0,88154	77.018	-0,267	75.447	78.065
0,5012	0,87198	76.354	-0,319	75.118	77.596	0,86729	76.767	-0,289	75.533	78.007
0,6013	0,85752	76.124	-0,322	75.209	77.505	0,85292	76.535	-0,295	75.608	77.932
0,7002	0,84292	75.917	-0,304	75.290	77.382	0,83844	76.323	-0,283	75.683	77.819
0,7999	0,82782	75.736	-0,258	75.373	77.189	0,82345	76.138	-0,243	75.765	77.627
0,8999	0,81213	75.599	-0,169	75.461	76.838	0,80789	75.996	-0,159	75.854	77.274
1,0000	0,79554	75.540	0,000	75.540	76.125	0,79147	75.928	0,000	75.928	76.602
		T= 3	13,15K			_				
0,0000	0,93005	78.592	0,000	75.052	78.592					
0,0299	0,92630	78.490	-0,032	75.192	78.592					
0,0517	0,92354	78.418	-0,054	75.297	78.588					
0,0610	0,92235	78.388	-0,063	75.354	78.585					
0,0701	0,92118	78.359	-0,072	75.386	78.583					
0,0884	0,91882	78.301	-0,088	75.431	78.580					
0,0999	0,91733	78.266	-0,097	75.477	78.575					
0,1499	0,91077	78.115	-0,134	75.561	78.566					
0,2000	0,90411	77.972	-0,165	75.673	78.546					
0,3045	0,88992	77.688	-0,212	75.801	78.514					
0,4001	0,87669	77.444	-0,240	75.910	78.467					
0,5012	0,86246	77.197	-0,257	75.982	78.419					
0,6013	0,84815	76.966	-0,262	76.042	78.358					
0,7002	0,83376	76.752	-0,252	76.104	78.265					
0,7999	0,81891	76.560	-0,218	76.175	78.098					
0,8999	0,80353	76.408	-0,144	76.256	77.777					
1 0000	0 78736	76 325	0.000	76 325	77 155					

En la Figura 2 se puede observar que el polo negativo de la N,N-Dimetilformamida está ubicado sobre el átomo de oxígeno que sobresale del resto de la molécula; debido a que el oxígeno es un buen aceptor de electrones, favorece la formación de enlaces tipo puente de hidrógeno con las moléculas de alcohol que podrían ser de la siguiente forma: C=O...HO. El polo positivo de la N,N-Dimetilformamida se encuentra alojado sobre el nitrógeno que se encuentra en la parte interna de la estructura, comportándose este átomo como un donador de electrones; sin embargo existe la posibilidad de que se origine el enlace tipo puente de hidrógeno a través del nitrógeno de esta manera: (CH₃)₂N...HO, pero la presencia de los grupos metilo presentes en la N,N-Dimetilformamida crea un impedimento estérico que impide que las moléculas del alcohol lleguen lo suficientemente cerca al nitrógeno desfavoreciendo la formación de este enlace. Por otra parte, la asociación de fuerzas físicas de carácter débil puede ocurrir por la presencia interacciones débiles dipolodipolo.

Adicionalmente se calcularon los coeficientes de temperatura del volumen molar de exceso $(\partial V_m^E/\partial T)$ para cada fracción molar, que se muestran en la Tabla 3, observándose que estos son positivos y pequeños, lo que podría indicar un debilitamiento de las interacciones entre

componentes disimilares con el aumento de la temperatura. Así los comportamientos de V_m^E y $\partial V_m^E / \partial T$ son consistentes entre sí.

Los valores de los volúmenes molares de exceso se ajustaron a la ecuación polinomial de Redlich-Kister (16), mediante la siguiente ecuación:

$$\mathbf{V}_{m}^{E} = \mathbf{x}_{1}\mathbf{x}_{2} \sum_{j=0}^{k} \mathbf{A}_{j} (\mathbf{x}_{2} - \mathbf{x}_{1})^{j}$$
 [5]

Donde A_j son parámetros ajustables y k, el número de parámetros. El ajuste se realizó utilizando el método de los mínimos cuadrados, en el que la desviación estándar (σ) viene dada por la siguiente ecuación (17).

$$\sigma = \left(\sum_{i=1}^{n} \frac{\left(V_{m \exp,i}^{E} - V_{m \operatorname{cal},i}^{E}\right)^{2}}{n-p}\right)^{1/2}$$
[6]

Donde $V^{E}_{m,exp,i}$, $V^{E}_{m,cal,i}$ son los volúmenes molares de exceso determinados a partir de los datos de densidad obtenidos experimentalmente y calculados por la ecuación [4], respectivamente; n, el número de puntos experimentales, y p, el número de parámetros ajustables. Los resultados logrados se muestran en la Tabla 4.

Los volúmenes parciales de exceso del soluto y del solvente se calcularon mediante las ecuaciones [7] y [8], respectivamente.

Tabla 3. Coeficientes de temperatura del volumen molar en exceso $(\partial V_m^e/\partial T)$ como una función de la fracción molar (x_2) de 1-Propanol para la mezcla binaria de 1-Propanol + N,N-Dimetilformamida.

x ₂	0,0299	0,0517	0,0610	0,0701	0,0884	0,0999	0,1499	0,2000	0,3045	0,4001	0,5012	0,6013	0,7002	0,7999	0,8999
10 ³															
$\left(\partial V_{m}^{E} / \partial T\right)_{p}$	0,85	1,30	1,40	1,59	1,84	1,91	2,34	2,57	2,65	2,89	3,06	2,98	2,94	2,43	1,30
(cm3 mol-1 K-1)															

Т / К	\mathbf{A}_{0}	\mathbf{A}_{1}	\mathbf{A}_{2}	\mathbf{A}_{3}	σ/ cm ³ mol ⁻¹
283,15	-1,407	-0,324	-0,723	0,151	0,003
288,15	-1,381	-0,266	-0,646	-0,005	0,002
293,15	-1,338	-0,237	-0,64	-0,05	0,002
298,15	-1,297	-0,303	-0,458	-0,012	0,003
303,15	-1,271	-0,243	-0,457	-0,181	0,002
308,15	-1,152	-0,289	-0,466	-0,136	0,001
313,15	-1,025	-0,231	-0,482	-0,337	0,001

Tabla 4. Parámetros Aj de la ecuación polinomial de Redlich-Kister para la mezcla binaria 1-Propanol + N,N-Dimetilformamida.

$$\overline{V}_{1}^{E} = \overline{V}_{1} - V_{1}^{\circ} = x_{2}^{2} \sum_{j=0}^{n} A_{j} (1 - 2x_{2})^{j} + 2x_{1} x_{2}^{2} \sum_{j=0}^{n} j A_{j} (1 - 2x_{2})^{j-1}$$
[7]

$$\overline{V}_{2}^{E} = \overline{V}_{2} - \overline{V}_{2}^{\circ} = x_{1}^{2} \sum_{j=0}^{n} A_{j} (1 - 2x_{2})^{j} + 2x_{1}^{2} x_{2} \sum_{j=0}^{n} j A_{j} (1 - 2x_{2})^{j-1}$$
[8]

En la Tabla 5 se observa que los volúmenes molares parciales de exceso del soluto y del solvente son negativos en la mayoría de las temperaturas y concentraciones de estudio, por tanto, este comportamiento indica que los volúmenes molares para la mezcla N,N-Dimetilformamida +1-Propanol en la mezcla son menores que los volúmenes molares en estado puro, lo que podría indicar una contracción en el volumen de la mezcla de estudio, favoreciéndose así las interacciones soluto-solvente (4, 18).

Los volúmenes molares a dilución infinita $(\overline{V}_i^{\infty})$ del soluto y del solvente se evaluaron aplicando las ecuaciones [9] y [10] respectivamente, lo que permite rescribirlas en la forma:

$$\bar{\bar{V}}_{1}^{\infty} = \bar{V}_{1}^{\circ} + \sum_{j=0}^{n} A_{j} (-1)^{j}$$
^[9]

$$\bar{V}_{2}^{\infty} = V_{2}^{\circ} + \sum_{j=0}^{n} A_{j}$$
[10]

Donde V_1° , V_2° son los volúmenes molares de los componentes puros.

Los volúmenes molares parciales de exceso a dilución infinita son una medida de las interacciones soluto-solvente; y ellos se evalúan a partir de los valores de los volúmenes molares a dilución infinita, usando las expresiones [11] y [12].

$$\overline{\mathbf{V}}_{1}^{\mathrm{E}\infty} = \overline{\mathbf{V}}_{1}^{\infty} - \mathbf{V}_{1}^{\circ}$$
^[11]

$$\overline{\mathbf{V}}_2^{\mathrm{E}\infty} = \overline{\mathbf{V}}_2^\infty - \mathbf{V}_2^\circ$$
[12]

En la Tabla 6 se indican los valores de los volúmenes molares parciales de exceso a dilución infinita de la N,N-Dime-

x ₂	$\overline{\nabla}_{2}^{E}$	$\overline{\nabla}_{1}^{E}$	$\overline{\nabla}_{2}^{E}$	∇_1^E	$\overline{\nabla}_{2}^{E}$	$\overline{\nabla}_{1}^{E}$	$\overline{\nabla}_{2}^{E}$	$\overline{\nabla}_{1}^{E}$	$\overline{\nabla}_{2}^{E}$	$\overline{\nabla}_{1}^{E}$
	cm ³ mol ⁻¹									
	T= 28	3,15 K	T= 28	8,15 K	T= 2	93,15	T= 2	98,15	T= 3	03,15
0,0000	-2.065	0,000	-1.950	0,000	-1.829	0,000	-1.741	0,000	-1.409	0,000
0,0299	-1.959	0,000	-1.647	0,000	-1.587	0,000	-1.415	0,000	-1.248	0,000
0,0517	-1.637	-0,010	-1.464	-0,006	-1.420	-0,005	-1.219	-0,006	-1.166	-0,003
0,0610	-1.482	-0,018	-1.369	-0,011	-1.330	-0,010	-1.151	-0,010	-1.118	-0,005
0,0701	-1.402	-0,024	-1.315	-0,014	-1.281	-0,013	-1.115	-0,012	-1.092	-0,007
0,0884	-1.296	-0,032	-1.242	-0,020	-1.212	-0,018	-1.064	-0,016	-1.054	-0,010
0,0999	-1.195	-0,041	-1.169	-0,027	-1.142	-0,025	-1.014	-0,021	-1.013	-0,014
0,1499	-1.031	-0,060	-1.038	-0,041	-1.016	-0,039	-0,924	-0,031	-0,935	-0,022
0,2000	-0,843	-0,093	-0,869	-0,071	-0,852	-0,068	-0,807	-0,051	-0,822	-0,042
0,3045	-0,672	-0,135	-0,690	-0,116	-0,672	-0,113	-0,671	-0,085	-0,676	-0,079
0,4001	-0,549	-0,190	-0,544	-0,180	-0,525	-0,178	-0,544	-0,141	-0,531	-0,142
0,5012	-0,465	-0,246	-0,448	-0,244	-0,429	-0,241	-0,443	-0,208	-0,422	-0,215
0,6013	-0,382	-0,329	-0,364	-0,328	-0,350	-0,321	-0,354	-0,298	-0,331	-0,306
0,7002	-0,289	-0,469	-0,279	-0,457	-0,270	-0,441	-0,249	-0,456	-0,250	-0,429
0,7999	-0,185	-0,712	-0,183	-0,681	-0,180	-0,652	-0,160	-0,664	-0,167	-0,622
0,8999	-0,079	-1.133	-0,082	-1.086	-0,082	-1.044	-0,078	-0,991	-0,079	-0,973
1,0000	0,000	-1.847	0,000	-1.821	0,000	-1.782	0,000	-1.696	0,000	-1.686
	T= 3	08,15	T= 3	13,15						
0,0000	-1.238	0,000	-1.273	0,000						
0,0299	-1.156	0,000	-1.132	0,000						
0,0517	-1.067	-0,003	-1.028	-0,003						
0,0610	-1.018	-0,005	-0,971	-0,006						
0,0701	-0,990	-0,007	-0,939	-0,008						
0,0884	-0,951	-0,010	-0,894	-0,012						
0,0999	-0,910	-0,014	-0,848	-0,016						
0,1499	-0,834	-0,023	-0,764	-0,026						
0,2000	-0,728	-0,041	-0,651	-0,045						
0,3045	-0,600	-0,073	-0,524	-0,077						
0,4001	-0,482	-0,125	-0,415	-0,125						
0,5012	-0,395	-0,183	-0,343	-0,173						
0,6013	-0,320	-0,258	-0,283	-0,234						
0,7002	-0,245	-0,371	-0,221	-0,327						
0,7999	-0,163	-0,563	-0,149	-0,494						
0,8999	-0,075	-0,916	-0,069	-0,815						
1,0000	0,000	-1.588	0,000	-1.436						

Tabla 5. Volúmenes molares parciales de exceso para la N,N-Dimetilformamida (\overline{V}_1^E) y 1-Propanol (\overline{V}_2^E) como función de la fracción molar a diferentes temperaturas.

tilformamida y el 1-Propanol, los cuales para este último son negativos a todas las temperaturas de estudio; este comportamiento se atribuye a la contribución molar del 1-Propanol ya que el volumen de mezcla es menor en solución que en el estado líquido puro. Siguiendo el criterio de Hepler (19), valores negativos de la segunda derivada del volumen molar parcial a dilución infinita con temperatura (-0,0000758 \pm 0,00027), para el 1-Propanol, indican que este soluto actúa como un disruptor de la estructura de la N,N-Dimetilformamida.

	V_2°	V_1°	\overline{V}_2^{∞}	∇_{l}^{∞}	$\overline{V}_2^{\infty} - V_2^{\circ}$	$\nabla^{\infty}_l - V^{\circ}_l$
T/K	cm ⁻³ mol ⁻¹	cm ⁻³ mol ⁻¹				
283,15	74,053	76,268	71,75	74,243	-4,518	0,190
288,15	74,415	76,645	72,117	74,889	-4,528	0,474
293,15	74,785	77,056	72,52	75,365	-4,536	0,580
298,15	75,159	77,418	73,089	75,978	-4,329	0,819
303,15	75,54	77,811	73,388	76,507	-4,423	0,967
308,15	75,928	78,19	73,885	76,997	-4,305	1,069
313,15	76,325	78,592	74,25	77,44	-4,342	1,115

Tabla 6. Volúmenes molares parciales a dilución infinita (\overline{V}_2^{∞}), volúmenes molares parciales de exceso a dilución infinita (\overline{V}_2^{∞} - V_2°) De la mezcla N,N-dimetilformamida + 1-Propanol a diferentes temperaturas

Tabla 7. Parámetro b_v de la ecuación [12] a diferentes temperaturas.

T/K	283,15	288,15	293,15	298,15	303,15	308,15	313,15
b _v	$0,\!56\pm0,\!13$	$0,\!80\pm0,\!02$	$0,\!65\pm0,\!02$	$0,\!90 \pm 0,\!02$	$0,\!41\pm0,\!01$	$0,\!25\pm0,\!02$	$0,\!39\pm0,\!01$
Intervalo de Concentración				(0-1,3691)m			

Adicionalmente, el volumen molar parcial de exceso para el soluto de una mezcla binaria en la región diluida puede expresarse de acuerdo con la teoría de McMillan-Mayer mediante la siguiente ecuación:

$$V_2 = \overline{V}_2^{\infty} + b_v m + b_{vv} m^2 \qquad [13]$$

Donde \overline{V}_2^{∞} , m, b_v, y b_{vv} es el volumen molar parcial del 1-Propanol a dilución infinita, la molalidad de la solución y los coeficientes viriales, respectivamente. Los valores obtenidos para el parámetro b_v se muestran en la Tabla 7.

En la Tabla 7 se indican que los valores de b_v son positivos y pequeños en todas las isotermas de estudio. Basados en los modelos de solvatación de Wurz-Burger (20) y McMillan – Mayer (21), se puede argumentar que las interacciones soluto-soluto se favorecen con el incremento de la concentración en la región de estudio, ya que el soluto (1- Propanol) se asocia con la N,N-Dimetilformamida (solvente) formando clústeres, causando disrupción sobre la estructura del solvente.

CONCLUSIONES

En este trabajo se presentan datos experimentales para las densidades del sistema binario N,N-Dimetilformamida + 1-Propanol en todo el intervalo de composición y a las temperaturas de (293,15, 298,15, 303,15, 308,15 y 313,15) K.

Los resultados para los volúmenes molares de exceso, volúmenes molares parciales de exceso, volúmenes molares parciales de exceso a dilución infinita son negativos en el intervalo de fracciones molares descrito y a las temperaturas de estudio, lo que podría ser atribuido a la formación de enlaces de hidrógeno entre componentes de la mezcla o también a la asociación a través de fuerzas físicas débiles; indicando a su vez que en la mezcla se favorecen las interacciones soluto-solvente. Los valores obtenidos para los coeficientes de temperatura del volumen molar en exceso $\partial V_m^E / \partial T$ indican que se favorecen este tipo de interacciones. El signo positivo del coeficiente b_v señala que el 1-Propanol presenta una tendencia a formar clústeres por autoasociación en presencia de la N,N-Dimetilformamida.

Finalmente, el signo negativo de la segunda derivada del volumen molar parcial a dilución infinita con temperatura para el 1-Propanol, y el valor positivo del coeficiente b_y a todas las temperaturas de estudio, sugieren que este soluto (1-Propanol) actúa como un disruptor de la estructura de la N,N-Dimetilformamida.

LISTA DE SÍMBOLOS

Tabla 8. Símbo	olos empleados	en el manuscrito.
----------------	----------------	-------------------

ρ	Densidad (g. cm ⁻³)
x_i	Fracción molar
M	Masa molecular (g mol ⁻¹)
n	número de puntos experimentales
р	Numero de parámetros ajustables
m	molalidad de la solución (mol Kg-1)
A	Parámetros Ajustables
$\overline{\mathbf{V}}_{1}^{\mathrm{E}}$	Volumen molar parcial de exceso (cm ³ mol ⁻¹)
$\overline{\mathbf{V}}_{1}^{\infty}$	Volumen molar parcial a dilución infinita (cm ³ mol ⁻¹)
\mathbf{V}_1°	Volumen molar parcial para los componentes puros (cm3mol-1)
$\mathbf{b}_{\mathbf{y}}, \mathbf{b}_{\mathbf{y}\mathbf{y}}$	Coeficientes viriales de acuerdo a la teoría de McMillan-Mayer
A, B	Constantes internas del densímetro
τ	Periodo de oscilación del líquido y/o la solución problema
V _m	Volumen molar (cm ³ mol ⁻¹)
$\overline{\mathbf{V}}_{1}$	Volumen molar parcial (cm ³ mol ⁻¹)
$\mathbf{V}_{m}^{\mathrm{E}}$	Volumen molar de exceso (cm ³ mol ⁻¹)
$(\partial V_m^E / \partial T)$	Coeficientes de temperatura del volumen molar en exceso (cm3 mol-1 K-1)

AGRADECIMIENTOS

Los autores agradecen a la Universidad de Córdoba por el apoyo prestado para la realización de este trabajo.

REFERENCIAS BIBLIOGRÁFICAS

- Bhuiyan, M.; Uddin, M. Excess molar volumes and excess viscosities for mixtures of N,N-dimethylformamide with methanol, ethanol and 2-propanol at different temperatures. *J. Mol. Liq.* 2008. **138**:139-146.
- Perry, R. Manual del Ingeniero Químico. México: MacGraw-Hill. 1992, pp. 153-457.
- Kharat, S.; Nikam, P. Density and viscosity studies of binary mixtures of aniline + benzene and ternary mixtures of (aniline + benzene + N, N-dimethylformamide) at 298.15, 303.15, 308.15, and 313.15 K. J. Mol. Liq. 2007. 131:81-86.
- Kumar, A. Molecular interactions in binary mixtures of formamide with 1-butanol, 2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: An ultrasonic and viscometric study. *Fluid Phase Equilibria*. 2008. 265: 46-56.
- Alvarado, Y.J.; Caldera-Luzardo, J.; De La Cruz C.; Ferrer-Amado, G.; Michelena, E.; Silva, P. Volumetric, Electric, and Magnetic Properties of Thioxanthen-9-one in Aprotic Solvents as Revealedby High-Precision Densitometry, High-Accuracy Refractometry and Magnetic Susceptibility Measurements and by DFT

Calculations. *J. Solution. Chem.* 2006. **35**(1):29-49.

- Scharlin, P.; Steinby, K.; Dománska, U. Volumetric properties of binary mixtures of N,N-dimethylformamide with water or water-d2 at temperatures from 277.13 K to 318.15 K. J. Chem. Thermodynamics.2002. 34: 927-957.
- Iloukhaniand, H.; Rostami, Z. Measurement of Some Thermodynamic and Acoustic Properties of Binary Solutions of N, N-Dimethylformamide with 1-Alkanols at 30 °C and Comparison with Theories. J. of Solution Chemistry. 2003. 32: 451-462.
- Yang, C.; Yue, S.; He, Y.; Ma, P. Volumetric Properties and Viscosities of Binary Mixtures of N,N-Dimethylformamid He with Methanol and Ethanol in the Temperature Range (293.15 to 333.15) K. J. Chem. Eng. Data. 2008 53: 293-297.
- Bai, T.; Yao, J.; Han, S. Excess Molar Volumes for the Ternary Mixture N,N-Dimethylformamide + Methanol + Water at the Temperature 298,15 K. *J. Chem. Eng. Data*. 1999. 44: 491-496.
- Marcheselli, L.; Marchetti, A.; Tagliazucchi, M.; Tassi, L.; Tosi, G. N,N-Dimethylformamide–2-methoxyethanol solvent system. Densities and excess molar volumes at various temperatures. J. Chem. Soc. Faraday Trans. 1992. 88: 3159-3163.
- 11. Chen, G.; Knapp, H. Densities and Excess Molar Volumes for Sulfo-

lane + Ethylbenzene, Sulfolane + L-Methylnaphthalene, Water + Nfl-Dimethylformamide, Water + Methanol, Water + N-Formylmorpholine, and Water +N-Methylpyrrolidone for. J. Chem. Eng. Data.1995. **40**: 1001-1004.

- Frenkel, M.; Hong, X; Wilhoit, R.C; Hall, K. R. IV/8D: Thermodynamic Properties of Organic Compounds and Their Mixtures. **1998**. DOI:10.1007/b75928.
- Awwad, A. Densities and Excess Molar Volumes of N-Methylmorpholine + 1-Alkanol Systems at 298.15 K. J. Chem. Eng. Data. 2008. 53: 307-309.
- Al-Tuwaim, M.; Alkhaldi, K.; Al-Jimaz, A.; Mohammad, A. Comparative study of physico-chemical properties of binary mixtures of N,N-dimethylformamide with 1-alkanols at different temperatures. J. Chem. Thermodynamics. 2012. 48: 39-47.
- Venkatesu, P.; Chandra; Sekhar, G.; Prabhakara; Rao, M.; Hofman, T. Excess molar volumes of N,N-dimethylformamide + 2-pentanone + alkan-1-ols mixed solvent systems at 303.15K. *Thermochimica Acta*. 2006. 443: 62-71.
- Kondaiah, M.; Sravana, D.; Sreekanth, K.; Krishna, D. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures

of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = $308.15 \text{ K} \cdot J$. *Chem. Thermodynamics*. 2001. **43**: 1844-1850.

- Kapadi, U.; Hundiwale, D.; Patil, N.; Lande, M.; Patil, P. Studies of viscosity and excess molar volume of binary mixtures of propane-1,2diol with water at various temperatures. *Fluid Phase Equilibria*. 2001. 192: 63-70.
- Kumar, A. Densities and Volumetric Properties of Binary Mixtures of Formamide with 1-Butanol, 2-Butanol, 1,3-Butanediol and 1,4-Butanediol at Temperatures between 293.15 and 318.15 K. J. Solution Chem. 2007. 36: 497-516.
- Páez, M.; Lafont, J.; Alvis, A. Densities and Volumetric Properties of Mixtures N,N-Dimethylformamide + Water at Constant Pressure of 98.93 kPa and various Temperatures. *Technological information*. 2009. 20:47-54.
- Wurzburger, S.; Sartorio, R.; Guarino, G.; Nisi, M. Volumetric properties of aqueous solutions of polyols between 0.5 and 25°C. J. Chem. Soc. Faraday Trans. 1988. 84: 2279-2287.
- McMillan, W.; Mayer, J. The Statistical Thermodynamics of Multicomponent Systems. J. Chem. Phys. 1945 13, 276-305.