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Abstract

Pharmacophore identification is a very 
important step in de novo design, lead 
optimization, chemogenomics, and vir-
tual screening of drugs. Unfortunately, 
the high cost of comercial software for 
pharmacophore detection is a common 
limiting factor for researchers with limi-
ted funding. This paper presents a set of 
freely available perl routines that were 
designed to help in the process of 3D 
pharmacophore identification and QSAR 
studies. These routines also allowed the 
classification of ligands based on their 
tridimensional similarity and binding 
mechanism. The family of phosphodies-
terases and their inhibitors were used as 
test model.

Key words: pharmacophore, inhibi-
tor, protein, enzyme, drug.

Resumen

La identificación de farmacóforos es 
uno de los pasos más importantes en 
el diseño de novo, identificación de 
compuestos líder, quimiogenómica 
y tamizaje virtual de nuevos medica-
mentos. Sin embargo, el alto costo de 
los paquetes comerciales de software 
para la detección de farmacóforos es 
un factor limitante para investigado-
res con recursos limitados. En este 
artículo se presentan un conjuto de 
rutinas en Perl que se diseñaron para 
la identificación de farmacóforos en 
3 dimensiones y estudios de QSAR. 
Estas rutinas también permitieron una 
clasificación de ligandos basada en su 
similitud tridimensional y mecanismo 
de unión. La utilidad de estos progra-
mas se probó con los inhibidores de 
las fosfodiesterasas. 
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Palabras clave: farmacóforo, inhibi-
dor, proteína, enzima, droga.

Resumo

A identificação de farmacóforos, é um 
dos passos mais importantes no desen-
ho de novo, identificação de compostos 
líder, quimiogenômica e triagem virtual 
de novos medicamentos. No entanto, o 
alto custo dos pacotes comerciais de soft-
ware para a detecção de farmacóforos é 
um fator limitante para os pesquisadores 
com recursos limitados. Neste artigo 
apresentamos um conjunto de rotinas em 
Perl que foram desenhadas para a identi-
ficação de farmacóforos em 3 dimensões 
e estudos de QSAR. Estas rotinas permi-
tiram uma classificação de ligandos ba-
seada na similitude tridimensional e nos 
mecanismos de união. A utilidade dos 
programas foi testada com os inibidores 
da família das fosfodiesterases.

Palavras-chave: farmacóforo, inibi-
dor, proteína, enzima, medicamento.

Introduction

The pharmacological effect of drugs is 
generally the result of their interaction 
with a specific protein target. Com-
pounds with similar activities at the same 
enzyme or receptor must possess related 
properties that facilitate their specific 
binding. A pharmacophore is defined as 
the 3D arrangement of ligand features 
responsible for its activity (1, 2). Iden-
tification of the pharmacophore is a very 
important step in de novo design, lead 
optimization, ADME/TOX studies, che-
mogenomics, and virtual screening (3-5). 
The simplest approach for the identifica-

tion of pharmacophores is based on the 
alignment of protein-bound ligands and 
finding their common pharmacophore 
(1). This method also gives the highest 
level of resolution as the output consists 
of a 3D position of an atom associated 
with its properties (6-8). The performan-
ce and applicability of pharmacophore 
modeling depends on two main factors: 
the definition and placement of phar-
macophoric features and the alignment 
techniques used to overlay 3D pharma-
cophore models and small molecules. 
Identification of the pharmacophore can 
be a tedious and cumbersome task when 
many protein-ligand complexes are avai-
lable.

In this case, it is necessary to su-
perimpose available structures of the 
protein-ligand complexes. Unfortuna-
tely, compounds of different nature can 
bind to the same protein pocket and, so-
metimes, the same compound can bind 
in multiple conformations. For these 
reasons it is difficult to generalize the 
chemical features required for binding. 
Additionaly, the high cost of comercial 
software for pharmacophore identifica-
tion can be a limiting factor for resear-
chers with limited funding.

This paper presents a set of freely 
available Perl routines designed to help 
in the process of 3D pharmacophore 
identification and QSAR studies. The-
se routines also allow the classification 
of ligands based on their tridimensional 
similarity and binding mechanism. The 
family of phosphodiesterases (PDE) and 
their inhibitors was used as test model, 
which comprises a complex set of li-
gands that can also bind in different con-
formations. 
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Materials and methods

Scripts

All scripts were written in Perl 5.10 (9). 
Scripts and instructions on how to use 
them are freely available upon request to 
the corresponding author.

Data 

Comparisons were performed on the fo-
llowing set of phosphodiesterase comple-
xes obtained from the Protein Data Bank. 

•	 PDE3: 1SO2, 1SOJ.

•	 PDE4: 1PTW, 2QYK, 3I8V, 1RO6, 
1RO9, 1ROR, 1TB5, 1XLX, 1XLZ, 
1XM4, 1XM6, 1XMU, 1XMY, 
1XN0, 1XOS, 1XOT, 1Y2H, 1Y2J, 
2QYL, 1MKD, 1OYN, 1Q9M, 
1TB7, 1TBB, 1XOM, 1XON, 
1XOQ, 1XOR, 1Y2B, 1Y2C, 1Y2D, 
1Y2E, 1Y2K, 1ZKN, 2FM0, 2FM5, 
2PW3, 2QYN, 3D3P, 3G45, 3G4G, 
3G4I, 3G4K, 3G4L, 3G58, 3IAD, 
3IAK, 3K4S, 3KKT.

•	 PDE5: 1UDT, 1UDU, 1UHO, 1T9S, 
1TBF, 1XOZ, 1XP0.

•	 PDE7: 1ZKL. 

A list of all ligands and their structu-
res is shown in table 1 and Figure 1.

Cluster analysis

Ligands were superimposed with PyMOL 
(10). Dissimilarity between compounds 
was measured using the Jaccard distance 
defined by equation 1. 

J∂ A,B( ) =
A∪B − A∩ B

A∩ B 	
Equation (1)

|A∩B| corresponds to the number of 
atoms closer than 0.7 Å between com-
pounds A and B. A∪B is the total 
atom count for both compounds. Clus-
tering was done using the Neighbor-
Joining method of Nei and Saitou (11) 
implemented in PHYLIP (12). The tree 
was drawn using Dendroscope (13).

Pharmacophore detection and 
scoring

A total of 27 PDE4D inhibitors were 
used. The pharmacophore was built by 
sequentially averaging the position of 
each pair of atoms closer than a thres-
hold distance of 1.2 Å. The total number 
of atoms used for each average was writ-
ten into the temperature factor field of 
the PDB field. Atom type was assigned 
to the most frequent atom in the average. 
Scores were assigned to each inhibitor by 
adding the temperature field of each mat-
ching atom of the pharmacophore.

Results and discussion

Phosphodiesterases are a diverse family 
of enzymes that hydrolyse cyclic nucleo-
tides that play a key role in regulating 
intracellular levels of the second mes-
sengers cAMP and cGMP (14). PDEs 
are clinical targets for a range of biolo-
gical disorders, such as congestive heart 
failure, asthma, chronic obstructive 
pulmonary disease, depression, retinal 
degradation, and inflammation (15-17). 
Currently there is  great interest in de-
veloping new phosphodiesterase inhi-
bitors with higher selectivity and lower 
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Table 1. Identification codes of compounds used in this study.

ID Name

0CP 5-{3-[(1S,2S,4R)-bicyclo[2.2.1]hept-2-yloxy]-4-methoxyphenyl}tetrahydropyrimidin-2(1H)-one 

15X 1-[4-[[2-fluoro-4-methoxy-3-(3-nitrophenyl)phenyl]methyl]phenyl]urea

20A
N-benzyl-1-ethyl-4-(tetrahydro-2H-pyran-4-ylamino)-1H-pyrazolo[3,4-b]pyridine-5-carboxami-
de

3DE
4-(ethoxycarbonyl)-3,5-dimethyl-1-phenyl-1H-pyrazol-2-ium ethyl 3,5-dimethyl-1-phenyl-
pyrazol-2-ium-4-carboxylate

4DE Ethyl 1-(4-methoxyphenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylate

5DE Ethyl 1-(4-aminophenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylate

5GP Guanosine-5’-monophosphate 

5RM (R)-Mesopram 

666
(5R)-6-(4-{[2-(3-iodobenzyl)-3-oxocyclohex-1-en-1-yl]amino}phenyl)-5-methyl-4,5-dihydro-
pyridazin-3(2H)-one

6DE Ethyl 1-(2-chlorophenyl)-3,5-dimethyl-1H-pyrazole-4-carboxylate

7DE Ethyl 3,5-dimethyl-1-(3-nitrophenyl)-1H-pyrazole-4-carboxylate

8BR 8-bromo-adenosine-5’-monophosphate 

988 8-(3-nitrophenyl)-6-(pyridin-4-ylmethyl)quinoline 

AMP Adenosine monophosphate 

CIA Tadalafil

CIO Cilomilast 

CMP Adenosine-3’,5’-cyclic-monophosphate

D71 1-(3-nitrophenyl)-3-(pyridin-4-ylmethyl)pyrido[3,2-e]pyrimidine-2,4-dione

DEE ethyl 3,5-dimethyl-1H-pyrazole-4-carboxylate

EV1 Papaverine 

FIL Filamilast 

IBM 3-isobutyl-1-methylxanthine 

M98
2-{2-[(1R)-1-[3-(cyclopropyloxy)-4-(difluoromethoxy)phenyl]-2-(1-oxidopyridin-3-yl)ethyl]-1,3-
thiazol-5-yl}-1,1,1,3,3,3-hexafluoropropan-2-ol

M99
2-{2-[(1S)-1-[3-(cyclopropyloxy)-4-(difluoromethoxy)phenyl]-2-(1-oxidopyridin-3-yl)ethyl]-1,3-
thiazol-5-yl}-1,1,1,3,3,3-hexafluoropropan-2-ol

NPV 4-[8-(3-nitrophenyl)-1,7-naphthyridin-6-yl]benzoic acid 

0MO (4R)-4-[(3-butoxy-4-methoxy-phenyl)methyl]imidazolidin-2-one

PIL Piclamilast

ROF Roflumilast 

ROL Rolipram 

VDN Vardenafil

VIA Sildenafil

ZAR Zardaverine 
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side effects (18). Our set of routines was 
tested to help understand the binding 
mechanisms of PDE inhibitors and sup-
port the in silico evaluation of potential 
novel drugs. A flowchart describing the 
sequential use of these routines is shown 
in Figure 2.

Clustering of compounds The first 
set of scripts performs the structural 
alignment of compounds and calculates 
a distance matrix that can use as input 
many freely available clustering soft-

ware such as Phylip or dendroUPGMA 
(12, 19), (in Figure 3). Scripts were 
tested using 32 PDE inhibitors from a 
total of 59 PDB files. However some li-
gands can bind to the same protein tar-
get in two or three alternative confor-
mations (ROL, CIO, ZAR). In total, 66 
ligand conformations were analyzed. As 
a first step, protein complexes must be 
superimposed. The superposition script, 
superposition.pl, produces a PyMOL 
routine that will automatically perform a 
3D alignment on the selected structures. 

Figure 1. Chemical structures of the set compounds used in this study.
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The output will be a set of superimposed 
ligands in PDB format. All protein in-
formation and other non-relevant atoms 
will be removed at this stage. Output 
files are named using the compound 
name, chain id and pdb code from the 
protein data bank. For example, file 
ROL_B1OYN_lig.pdb corresponds to 
the rolipram (ROL) in conformation B 
as observed in the 1OYN pdb file. Su-
perimposed ligands are used as input for 
the distance.pl script that will calculate 
the Jaccard distance for each pair of 
compounds. A value of zero indicates a 
complete 3D match correspondence for 
all atoms present in both ligands. A Jac-
card distance of one corresponds to zero 
3D matches. A match is defined as a pair 
of atoms separated by a distances small-
er than 0.7 Å. The user can adjust this 
threshold value. A graphical comparison 
of Jaccard distance between cilomilast 
(CIO) and some selected compounds is 
shown in Figure 3. The output of the 
distance.pl script will be a square matrix 
containing the Jaccard distance for each 
pair of compounds saved as a distance.
tbl file (in Figure 3). 

Compounds were clustered using the 
distance.tbl file and the Neighbor-Joi-
ning algorithm (11). Nine well-defined 
sets of compounds, A-H, were obtained 
(in Figure 4). Cluster A corresponds to 
rolipram and new generation inhibitors 
sharing the 4-methoxy-phenyl substruc-
ture. Depending on the type of subs-
tituents and PDE type, this cluster can 
be further divided into 5 distinct subsets 
(A1-A5). It is evident that Rolipram can 
bind in many different conformations, 
as reported previously (20). Cluster B 
group inhibitor NVP bound to diferent 
phosphodiesterases: PDE4A (NPV_
A2QYN), PDE4B (NPV_A 2QYL) and 
PDE4D (NPV_A 2QYK). The active 
sites of PDE4B and PDE4D are mostly 
comparable. However, PDE4A shows 
significant displacements of the residues 
next to the invariant glutamine residue 
that is critical for substrate and inhibitor 
binding (21). This difference is clearly 
seen in tree, were PDEA is an outgroup 
of compounds PDE4B and PDE4D. 
Cluster C is comprised by zardaverine 
and papaverine. 

Figure 2. Flowchart explaining the input and output files of each script

Protein-drug
complexes (PDB)

Superimposed
ligands (PDB)

Distance
table

Tree
of compounds

Pharmacophore
table

Pharmacophore
(PDB)

Superimposed
ligands (PDB)

Table of scores

Superposition.pl

Distance.pl

Scores.pl
Clustering

software
(Phylip, 
DendroUPGMA)

Pharma2PDB.pl

Pharmacophore.pl
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These compounds share the 
Dialkoxyphenyl group present in ro-
lipram but bind PDEs with lower 
affinity. These compounds fill only a 
portion of the active site pocket and 
lack additional functional groups that 
can utilize the remaining empty space 
(22). Clusters D and G group varde-
nafil (VDN) and sildenafil (VIA). The-
se clusters correspond to complexes 
with PDE4B and PDE5 respectively. 
The binding mechanism for these com-
pounds is highly dependent on the type 
of phosphodiesterase. This is why the 
same compound belongs to two diffe-
rent clusters. Inhibitors from cluster E 
include compounds with a 3-nitrophen-
yl group such as 988, D71 and 15X. 
In spite of being very similar to NPV, 
these compounds are bulkier and re-

Figure 3. Graphical illustration of the Jaccard distance between cilomilast and some selected compounds 
(above). The corresponding distance.tbl file is shown below.

quire a diferent binding conformation 
(23). Cluster F comprises compounds 
1-7DEE, which have a pyrazole car-
boxylic ester scaffold with substitu-
tions at three sites (24). Finally, cluster 
H is composed by nucleotides and ana-
logs. Four compounds did not cluster 
into any group: tadalafil (CIA), IBMX 
(IBM), 666 and 20A. An illustration of 
all clusters is shown in Figure 5. 

Building of  
pharmacophores

Three-dimensional (3D) pharmacophore 
modeling is a technique for describing 
the interaction of a small molecule ligand 
with a macromolecular target. These 3D 
pharmacophores can be used to search for 
similarities between binding situations or 

CIO vs FIL

CIO vs D71

CIO vs PIL

CIO vs EV1

CIO vs ROL

CIO vs IBM

CIO vs ROF

CIO vs NPV

CIO_A1XLX
D71_A3G4I
EV1_A3IAK
FIL_A1XLZ
IBM_A1ZKN
NPV_A2QYN
PIL_A1XM4
ROF_A1XMU
ROL_A1Q9M

0.0000
0.7736
0.8400
0.2174
0.8537
0.8462
0.4400
0.5294
0.4667

0.7736
0.0000
0.8868
0.7551
0.9091
0.8909
0.8491
0.8519
0.7500

0.8400
0.8868
0.0000
0.7826
0.8537
0.7692
0.8400
0.7255
0.9111

0.2174
0.7551
0.7826
0.0000
0.8378
0.8333
0.5217
0.4894
0.2195

0.8537
0.9091
0.8537
0.8378
0.0000
0.8140
0.8537
0.8571
0.8333

0.8462
0.8909
0.7692
0.8333
0.8140
0.0000
0.8077
0.8113
0.8298

0.4400
0.8491
0.8400
0.5217
0.8537
0.8077
0.0000
0.0980
0.6000

0.5294
0.8519
0.7255
0.4894
0.8571
0.8113
0.0980
0.0000
0.4783

0.4667
0.7500
0.9111
0.2195
0.8333
0.8298
0.6000
0.4783
0.0000
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even for similarities between molecules 
(25). The generation of pharmacophores 
requires the use of the pharmacophore.
pl script that will generate average co-
ordinate for atoms in the vicinity of a 
threshold value set by the user. In our 
case a cut-off distance of 1.2 Å gave the 
most satisfactory results. This file con-
tains an atom count and coordinates for 
each atom in the pharmacophore. The 
pharmacophore.tbl file can be converted 
into a PDB file using the pharma2PDB.
pl script. In the resulting PDB file, each 

atom position is weighted by number of 
atoms averaged to give the mean their 
3D position. This information is record-
ed under the temperature factor field of 
the PDB file (9). The atom type field is 
assigned to the most frequent atom at 
that position. The resulting pharmacoph-
ore for PDE4D inhibitors is presented in 
Figure 5 together with examples of how 
this pharmacophore fits some selected 
compounds. Their pharmacophoric score 
is shown in parentheses. 

Figure 4. Neigbor-Joining tree of PDE inhibitors
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A pharmacophore model has to show 
predictive power that enables the design 
of novel chemical structures (26). In or-
der to measure how similar a compound 
is to the pharmacophore, script score.pl 
was written which will add the score of 
each atom of the reference compound. A 
satisfactory model relating scores with 
IC50 data has been obtained (R=0.6) 
(in Figure 6). A closer look at the data 
shows that zardaverin, piclomilast, and 
cilomilast have an IC50 at least two order 
of magnitude lower than the prediction 
from our scoring scheme. These devia-
tions suggest molecular features that 

Figure 5. Graphical illustration of the clusters from the tree of compounds (A) and the fit between pharma-
cophore and some selected compounds (B).

greatly improve the binding. Our scoring 
scheme depends on the total number of 
atoms averaging to a given position. It is 
obvious that in some cases strong inhibi-
tors may have some unique substituents 
that will have low scores in the pharma-
cophore. The pharmacophore scores can 
be corrected empirically, by inclusion 
of new parameters or adjustement of 
weights, to give a more acurate predic-
tion of inhibition constants. However, 
these corrections are very case-depen-
dent and correspond to a second phase 
of QSAR studies, which are beyond the 
scope of the scripts in this study. 

A

Cluster E

Pharmacophore

EV1(544) ROL(700) CIO(733) M98(834)

CMP(415) IBM(400) NPV(616)

Cluster G Cluster H

Cluster B Cluster D

B
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Figure 6. Relationship between pharmacophore scores and IC50 for PDE4D inhibitors.

Conclusions

A set of useful routines for the classifica-
tion of drugs, 3D pharmacophore iden-
tification and preliminary, and QSAR 
studies has been presented. These pro-
grams are freely available and can give 
an accurate overview of the binding 
mechanism for large set of compounds. 
3D pharmacophore can greatly simplify 
the molecular features required for inhi-
bitors to interact with a specific protein 
target. It was also proven that our sco-
ring schemes has predictive power and 
can be used to help in the de novo de-
sign, lead optimization, chemogenomics 
or virtual screening of novel compounds. 
The scripts used in this work will be very 
useful for research groups with limited 
funding to afford the expensive licenses 
of commercial software. 
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