OBTENCIÓN DE COMBUSTIBLES SINTÉTICOS MEDIANTE LA REACCIÓN DE FISCHER TROPSCH, EMPLEANDO CATALIZADORES DE HIERRO

SYNTHETIC PRODUCTION OF FUELS BY THE FISCHER-TROPSCH REACTION USING IRON CATALYSTS

Rodrigo Rodríguez Cepeda* y Luis Pacheco Ochoa* Recibido: 26/06/04 – Aceptado: 09/12/04

RESUMEN

Se prepararon una serie de catalizadores de hierro, sobre tres tipos diferentes de soporte: alúmina y dos tipos de carbón activado. A estos soportes se les adicionó potasio como promotor, y se les depositó paladio entre 0 y 1%, mediante el método de impregnación en exceso. Los catalizadores fueron caracterizados por adsorción de N₂ a 77 K, difracción de rayos XRD y reducción con temperatura programada, y se evaluaron bajo condiciones de la síntesis de Fischer Tropsch (FT). Se encontró que los catalizadores sintetizados sobre carbón activado de Eucalipto y de Tagua, con la adición de paladio, desplazan la distribución de los productos hacia hidrocarburos líquidos, disminuyendo la fracción acuosa. Igualmente se muestra que los catalizadores soportados en alúmina forman gases y una fracción acuosa como productos mayoritarios. Por otra parte, y de acuerdo con la distribución de probabilidad estadística $(\alpha_{\rm p})$, de Schulz-Flory todos los catalizadores presentan hidrocarburos entre gasolina y *diesel*.

Palabras clave: Fischer Tropsch, soporte, carbón, Schulz-Flory

ABSTRACT

A series of iron catalysts were prepared on three different types of supports: alumina and two activated carbons from eucalyptus woods and tagua seeds. Potassium was used as promotor and palladium was deposited by the excess wetness impregnation method. The catalysts were characterized by N₂ adsorption at 77K, XRD and TPR analysis and evaluated as Fischer-Tropsch catalysts. The carbon supported catalysts favour the production of liquid hydrocarbons and decrease the aqueous phase. Those supported with alumina form gases and aqueous phase as the main products. The α_p parameters of the Schulz-Flory distribution show hydrocarbons between gasoline and diesel.

^{*} Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia. Correo electrónico: rrodrigo@universia.net.co

Key words: Fischer-Tropsch, support, carbon, Schulz-Flory.

INTRODUCCIÓN

La síntesis de Fischer-Tropsch es el proceso mediante el cual es posible sintetizar hidrocarburos y compuestos oxigenados a partir de la hidrogenación catalítica de CO; este proceso fue desarrollado por Franz Fischer y Hans Tropsch en la década de los 30, quienes aprovecharon que la reacción es exotérmica, para obtener productos a bajas temperaturas (1, 2).

Con el descubrimiento de la síntesis de gasolina, publicado en 1926 por Fischer y Tropsch, el hierro y el cobalto empiezan a tener importancia como catalizadores en esta reacción, debido a que presentan porcentajes de conversión superiores a 90%, y gran selectividad a la formación de hidrocarburos alifáticos; por otro lado, son resistentes y durables a las condiciones de la reacción (2, 7). Sin embargo, estos catalizadores tienen como problema su pobre dispersión (3, 8).

Dos aspectos importantes deben tenerse en cuenta en dicha síntesis. Uno es la alta producción de alquenos lineales, y el más importante, el doble enlace en la posición final (o α alquenos). Estos últimos pueden ser utilizados en la fabricación de productos químicos importantes como olefinas del tipo lineal C₆-C₁₆ aplicables en la fabricación de detergentes biodegradables y plastificantes (4).

Los catalizadores de hierro y cobalto requieren de un álcali como promotor, con el fin de obtener una alta actividad y estabilidad (p. ej. 0,5% en peso de K₂O). La adición de sílica y alúmina como promotores estructurales y algo de manganeso, pueden utilizarse para controlar la selectividad (9-12).

El propósito del presente trabajo es sintetizar varios catalizadores de hierro, empleando como promotor catalítico el paladio y como promotores estructurales alúmina y dos carbones activados elaborados en el laboratorio a partir de Eucalyptus y semilla de tagua. Una vez sintetizados los catalizadores, se caracterizan y se someten a ensayos catalíticos, comparándolos frente a un catalizador tradicional de la reacción FT, de hierro soportado en alúmina, con el fin de determinar si existe una mejor conversión, selectividad y rendimiento de la reacción.

MÉTODO EXPERIMENTAL

Preparación de los catalizadores. Los catalizadores empleados fueron sintetizados sobre tres diferentes soportes –alúmina, carbón activado de eucalipto y carbón activado de tagua–, los cuales se impregnaron con una solución de nitrato férrico $Fe(NO_3)_3.9 H_2O$ y carbonato de potasio K_2CO_3 mediante el método de mojado en exceso (5,6), en una relación K/Fe de 0,17 molar; por otra parte, en algunos catalizadores se adicionó paladio en forma de cloruro de paladio PdCl₂ a dos diferentes concentraciones 0,5 y 1,0%.

Caracterización de los soportes catalíticos y catalizadores. A cada uno de los soportes catalíticos y a los precursores catalíticos se les efectuaron análisis de área superficial mediante adsorción de N_2 a 77 K empleando un equipo Micromeritics Gemini 2375; igualmente se les realizaron ensayos de TPR (reducción con temperatura programada) en un microrreactor de cuarzo, con corriente de hidrógeno al 10% diluido en argón (7, 19). El hidrógeno consumido por el reactor fue analizado en línea con un cromatógrafo de gases HP 6890, equipado con un detector de conductividad térmica y una columna HP Plot mole sieve 5 A y argón como gas de arrastre.

Por otro lado, algunos precursores catalíticos en su forma oxidada y los catalizadores en su estado reducido se analizaron por XRD para observar los cambios de fases de los metales.

Ensayos catalíticos. Los catalizadores sintetizados se sometieron a pruebas catalíticas en la reacción de Fischer-Tropchs, en un reactor diferencial para alta presión, con las siguientes condiciones: Temperatura de reacción: 330 °C; presión: 15 atmósferas; relación H2/CO 2:1; tiempo de residencia: 510 ml*h⁻¹*g⁻¹_{cat.} Los productos gaseosos de la reacción fueron analizados en línea, en un cromatógrafo de gases HP 6890, con una columna HP Plot mole sieve 5 A; igualmente los productos líquidos y las ceras se analizaron en un cromatógrafo de gases acoplado a espectrometría de masas, a fin de identificar los productos de la reacción.

RESULTADOS Y DISCUSIÓN

Caracterización. En la Tabla 1 se presentan los resultados para la reducción con temperatura programada de los diferentes catalizadores sintetizados.

La Figura 1 presenta el consumo de hidrógeno durante el ensayo catalítico para el catalizador sintetizado con hierro y potasio, soportado en alúmina.

	TPR		
Catalizador	Temperatura de consumo máximo de H ₂ (°C)	% H ₂ consumido	
Fe: K/Al ₂ O ₃	306 348	2,07 1,77	
Fe: K: Pd(0,5%)/Al ₂ O ₃	302 429	1,94 1,93	
Fe: K: Pd(1,0%)/Al ₂ O ₃	112	4,70	
Fe: K/carbón activado eucalyptus	322 505	1,56 1,72	
Fe: K: Pd(0,5%)/carbón activado eucalyptus	402	2,13	
Fe: K: Pd(1,0%)/carbón activado eucalyptus	303	5,46	
Fe: K/carbón activado tagua	498 539	1,45 1,47	
Fe: K: Pd(0,5%)/carbón activado tagua	180	4,27	
Fe: K: Pd(1,0%)/carbón activado tagua	152	5,49	

Tabla 1. Temperaturas de máximo consumo de hidrógeno en el ensayo de TPR

Figura 1. Análisis de reducción a temperatura programada catalizador Fe:K/Al₂O₃.

Los catalizadores preparados únicamente con hierro presentan dos picos mayoritarios de consumo de hidrógeno, lo cual indica que la reducción del hierro probablemente ocurre en dos etapas (Fe_2O_3 a FeO y luego a Fe^o) (13, 18). Es de resaltar que dependiendo del soporte catalítico se presenta una disminución en la temperatura de máximo consumo, siendo el carbón tagua el de mayor desplazamiento, pasando desde 498-539 °C, a 152 °C con Pd 1,0%, lo cual puede deberse a una mejor distribución de los metales en la superficie.

En los catalizadores bimetálicos y por la acción hidrogenante del paladio, se observa un aumento en el consumo de hidrógeno, lo que sugiere una mayor facilidad de reducción ya que requiere menos temperatura con un mayor consumo de hidrógeno. Este fenómeno es similar al₁ presentado por el cobre en el caso del catalizador Arge, reportado por Thomas Kunze (22). Cuando el so-

porte es carbonoso el efecto es más pronunciado, sugiriendo una mejor dispersión de los metales sobre este soporte debido a la distribución de poro (5, 15, 17, 20).

La Tabla 2 muestra los análisis de XRD, donde se observa el cambio de la estructura cristalina inicial del óxido de hierro a un componente amorfo, con una

Tabla 2. Resultados XRD catalizador Fe: K/C. Eucalyptus

Pico de mayor intensidad 2θ	Intensidad precursor forma oxidada	Intensidad catalizador forma activa	Especie característica
23,93	51	No detectable	
33,07	74	No detectable	Hematita Fe ₂ O ₃
35,56	266	No detectable	
41,37	52	No detectable	
30,27	107	6,25	
35,55	216	37,5	Maghemita Fe ₂ O ₃
57,34	96	No detectable	
62,77	149	15,2	
36,14	103	No detectable	
41,82	104	No detectable	Wustita FeO
60,65	75	No detectable	

pequeña cantidad de maghemita, debido a que desaparecen los picos de mayor intensidad, explicado por el proceso de reducción del metal catalítico.

Los resultados de los análisis de área superficial por adsorción de N2 a 77 K para los diferentes catalizadores se presentan en la Tabla 3, donde se observa que el área superficial BET para el soporte de carbón activado tagua presenta un valor similar a la alúmina, en tanto que el carbón activado de eucalyptus, presenta un área mayor; igualmente se evidencia una reducción de las áreas superficiales de los precursores catalíticos, debido a que la impregnación de los metales cubre los poros de los soportes catalíticos. Un comportamiento similar, donde las áreas superficiales de los soportes se reducen con la adición de metales fue reportada por Bukur Dragomir et al., quienes impregnaron hierro y cobre sobre sílica y alúmina (21).

Ensayos catalíticos. Durante los ensayos catalíticos fue posible determinar que los catalizadores empleados en la reacción de Fischer-Tropchs generan una fracción acuosa y una de hidrocarburos líquidos, retenidas en la trampa fría del reactor, diferenciándose por la formación de dos capas, las cuales fueron separadas y analizadas; por otra parte sobre la superficie del catalizador y en las paredes del reactor se recuperó una fracción de hidrocarburos pesados (ceras) y se determinó igualmente la formación de una fracción gaseosa integrada por metano, la cual fue analizada en línea con un cromatógrafo de gases; la distribución de estas fracciones se presenta en la Tabla 4.

Los catalizadores soportados en alúmina presentan como tendencia. La formación de fracción acuosa con cantidades despreciables de alcoholes solubles y una pequeña cantidad de ceras, siendo el producto mayoritario el metano; con la

 Tabla 3. Resultados de las medidas de áreas superficiales BET para los diferentes catalizadores sintetizados

Catalizador	Área superficial BET (m ² /g)
Alumina	199,9
Fe: K/AlO ₂	127,7
Fe: K: Pd(0,5%)/AlO ₂	116,2
Fe: K: Pd(1,0%)/AlO ₂	69,6
Carbón (Eucalyptus)	380,8
Fe: K/carbón activado Eucalyptus	183,9
Fe: K: Pd(0,5%)/carbón activado Eucalyptus	147,8
Fe: K: Pd(1,0%)/carbón activado Eucalyptus	188,4
Carbón Tagua (Ct)	198,0
Fe: K/carbón activado Tagua	192,1
Fe: K: Pd(0,5%)/carbón activado Tagua	199,2
Fe: K: Pd(1,0%)/carbón activado Tagua	121,0

		Fracciones			
Soporte	Catalizador (No.)	Ceras (%)	Hidrocarburo líquido (%)	Acuosa (%)	Metano (%)
Alúmina (AlO ₂)	1	4,21	0,00	44,84	50,94
	4	0,73	0,00	30,16	69,11
	7	1,39	0,00	37,12	61,48
Carbón activado eucalyptus	2	2,56	0,00	58,03	39,41
	5	0,98	7,36	31,06	60,60
	8	1,75	13,03	38,85	46,37
Carbón activado tagua	3	1,88	5,41	47,90	44,81
	6	4,68	3,25	47,97	44,10
	9	1,53	20,20	45,63	32,63

Tabla 4. Distribución de productos obtenidos después de la reacción en cada catalizador

adición de paladio no se observa un cambio drástico, ya que se aumenta la cantidad de metano formado y se disminuyen las ceras.

Los catalizadores soportados en carbón muestran una tendencia a formar hidrocarburos líquidos y ceras; igualmente, se muestra que las mayores conversiones de CO (alrededor de 90%) se obtienen con los soportes carbonosos como se observa en la Tabla 5.

Mediante el análisis de cromatografía de gases acoplada a espectrometría de masas se encontró que la fracción acuosa está compuesta por productos oxigenados, diluidos, tales como alcoholes y cetonas, en tanto que la fracción de hidrocarburos líquidos y ceras está compuesta

Tabla 5. Conversión, selectividad y rendimiento de los catalizadores

Soporte	Catalizador (No.)	Conversión del monóxido de carbono (CO) (%)	Selectividad a metano (CH ₄)(%)	Rendimiento a metano (CH ₄)(%)
Alúmina (AlO ₂)	1	27,04	22,67	6,65
	4	48,91	45,54	24,45
	7	95,24	12,22	11,29
Carbón activado eucalyptus	2	96,89	9,13	8,69
	5	90,47	23,45	21,74
	8	80,71	17,14	14,63
Carbón activado tagua	3	90,17	21,81	19,98
	6	95,49	13,88	13,07
	9	90,61	12,18	12,04

por gasolina, *diesel* y ceras (C_6 a C_{20}) como se muestra en la Figura 2. Esta composición se logra determinar por la aplicación de la distribución de Schulz-Flory (Figura 3), la cual define estadísticamente el número de –**CH**₂- adicionados a una cadena de hidrocarburos. Por otra parte, se encontró que los hidrocarburos obtenidos sobre carbón activado tagua presentan un mayor contenido de compuestos olefínicos (18, 21), este resultado puede deberse a la distribución del metal en la superficie del soporte, como se evi-

Figura 2. Distribución de hidrocarburos líquidos y ceras, catalizador Fe:K: Pd (1,0%)/ Al₂O₃.

Figura 3. Distribución Schulz-Flory, Catalizador Fe:K: Pd (1,0%)/ Al₂O₃.

dencia en el área superficial BET, la cual se reduce levemente con la adición del metal.

CONCLUSIONES

La adición de los metales reduce el área superficial de los soportes catalíticos, debido al cubrimiento de poros.

El análisis de TPR muestra que los catalizadores preparados únicamente con hierro se reducen en varios pasos.

La presencia de paladio hace que la temperatura de reducción del catalizador se desplace a valores más bajos y se genere en un solo paso, lo que sugiere un efecto de *spill over*.

Los catalizadores sintetizados generan cuatro fracciones diferentes: gaseosa, acuosa, hidrocarburos líquidos y ceras, durante la reacción.

De acuerdo con los valores de probabilidad estadística (α_p) de Schulz-Flory, la distribución de hidrocarburos se ubica entre gasolina y *diesel*.

El catalizador que formó mayor cantidad de hidrocarburos líquidos fue el sintetizado con hierro: potasio y paladio al 1% soportado sobre carbón activado de tagua.

AGRADECIMIENTOS

Especial agradecimiento al Laboratorio de Investigaciones en Combustibles de la Universidad Nacional de Colombia y a Colciencias, por la financiación para el desarrollo de este trabajo.

BIBLIOGRAFÍA

- Tihay, Fabrice. Obtention d'hydrocarbures légers via CO/H₂, CO₂/H₂ Sur matériaux composites Fe-Co métal/ferrite de cobalt, Strasbourg, 2000. Tesis de doctorado, Universite Louis Pasteur.
- Anderson, R. B. (1984). The fischer-Tropsch Synthesis. Academic Press Inc.: Orlando Florida.
- Chen, A.; Kaminsky, M.; Geoffroy, G.; Vannice, M. (1986). CO Hydrogenatlon over Carbon-Supported Iron-Cobalt and Potassium-Iron-Cobalt Carbonyl Cluster-Derived Catalysts. J. Phys. Chem. 90 (20): 4810-4819.
- Ajoy P., Raje. (1997). Fischer-Tropsch Syntesis over iron-based Catalysis in a slurry rector. Reaction rates, selectivities and implications for improving hydrocarbon productivity. *Catalysis Today*. (36): 335-345.
- Marsh, H.; Rodríguez Reinoso, F. (1997). Introduction to Carbon Technologies; University of Alicante: Spain, pp. 114-116.
- Ramírez, O. Oxidación parcial de metano con aire a gas de síntesis, mediante un catalizador basado en NiO. Trabajo de grado (Química). Universidad Nacional de Colombia, Santafé de Bogotá, 1999.
- Bedel, L.; Kiennemann, A., Roger, A. C.; Estorunes, C. (2000). Combined use of TPR and Magnetic Measurements under H₂ to Determine the Reduction Proces of La(Co,Fe)O₃

Perovskite Series to be Active in Fischer tropsch Syntesis. In: Advances in Fischer Tropsch Chemistry. American Chemical Society. Preprints Symposia. **45** (2): 236-239.

- Thomas, J. M.; Thomas, W. J. (1997). Principles and Practice of Heterogeneous Catalysis. VCH Publishers, Weinheim: New York, pp. 257-258.
- Schulz, H. (1999). Short History and Present Trends of Fischer-Tropsch Synthesis. *Applied Catalysis A*. 186 (3-12): 3-12.
- Vosloo, A. C. (2000). Fischer-Tropsch: A Futuristic View, Preprints Symposium, American Chemical Society. 45, 124-127.
- Davis, B. H. (2000). Fischer-Tropsch Synthesis: Current Mechanism and Futuristic Needs. Center for Applied Energy Research, University of Kentucky, 129-133.
- Riedel, T.; Michael, C.; Schulz, H. (1999). Comparative Study of Fischer-Tropsch Synthesis with H₂/CO₂ Syngas Using Fe-and Co-Based Catalysts. *Applied Catalysis A*. 186, 201-213.
- Senzi, L. I.; Iglesia, E., Meitzner, G. (2000) Fischer-Tropsch Synthesis Catalysts Base don Fe Oxides Modified by Cu and K: Structure and Catalytic Requirements. Preprints Symposia, American Chemical Society. 45, (2), 221-224.
- Lagasi, M. (2002). Anchoring of Pd on Silica Functionalized with Nitro-

gen Containing Chelating Groups and Applications in Catalysis. *Journal of Molecular Catalysis A. Chemical.* **182-183**, 61-72.

- Jüntgen, H. (1986). Activated Carbon as Catalyst Support, A Review of a New Research Results. Fuel, 65, October.
- Radovic, L. R. (2001). A Landmark Paper on Carbon – Supported Catalysts by Frank Derbyshire; the Real Story Revealed (or Obscured?) by the Science Citation Index. Energeia; Caer – University of Kentucky, Center for Applied Energy Research. 12 (3): 1-6.
- Fraga, M. A.; Jordào, E.; Mendes, J. M.; Freitas, A. M. (2002). Properties of Carbon - Supported Platinum Catalysts: Role of Carbon Surface Sites. *Journal of Catalysis*, 209, 355-364.
- Johanes Van Dijk, H. A. (2002). The Fischer-Tropsch Synthesis: A Mechanistic Study Using Transient Iso-

topic Tracing. Thesis Doctoral, Technische Universiteit Eindhoven, Holland.

- Marion, M. C.; Ducreux, O. (2000). Study of the Activation of Supported Cobalt Catalyst for Fischer-Tropsch Sybthesis. Preprints Symposia. American Chemical Society. 45 (2) 244-246.
- Rodríguez, R. F. et al. (1984). Porous Carbon as Support for Iron and Ruthenium Catalysts. Fuel. 63, 1089-1094.
- Bukur, D. B; Sivaraj, C. (2002). Supported Iron Catalysts for Slurry Phase Fischer-Tropsch Synthesis. Applied Catalysis A. 231, 201-214.
- 22. Kunze, T. (1991). Kinetik der Fischer-Tropsch Synthese Under Druck an Einem Eisenfällunskatalysator bei Einsatz eines Stickstoffreichen Synthesegases. Tesis Doctoral, Doktors Der Ingenieurwissenschaften, Universität Frridericiana Karisruhe, Karisruhe.