#### Gloria Smith Ramíez-Forero<sup>1,\*</sup>, Wilfredo Valdivieso-Quintero<sup>1</sup>, José Luis Ropero-Vega<sup>1</sup>, German Zafra<sup>2</sup>, Johanna Marcela Flórez-Castillo<sup>1</sup>

<sup>1</sup>Universidad de Santander, Facultad de Ciencias Exactas, Naturales y Agropecuarias, Ciencias Básicas y Aplicadas para la Sostenibilidad-CIBAS, Bucaramanga, Colombia. <sup>2</sup>Escuela de Microbiología, Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Universidad Industrial de Santander, Bucaramanga, Colombia.



\*Autor para correspondencia: gsramirez06@outlook.com

Recibido: 13/07/2020. Última revisión: 08/08/2020. Aceptado: 30/09/2020.

Cambios en el perfil protéico de E. coli O157:H7 frente al tratamiento con Ib-M1 e IONP@Ib-M1

#### Resumen

Escherichia coli O157:H7 es una bacteria patógena reconocida por su capacidad de resistencia a diversos antibióticos; razón por la cual, se generan complicaciones en el tratamiento de infecciones producidas por esta bacteria. El péptido Ib-M1 y el bioconjugado IONP@Ib-M1 han surgido como una nueva alternativa antimicrobiana contra E. coli O157:H7. El mecanismo de acción de Ib-M1 e IONP@Ib-M1 contra esta bacteria aún es desconocido; por lo tanto, el objetivo de esta investigación fue identificar el cambio en el perfil de proteínas de E. coli O157:H7 luego del tratamiento con Ib-M1 e IONP@ Ib-M1 como primer paso para determinar su mecanismo de acción. Para esto, se llevó a cabo la obtención de proteínas, posteriormente se realizó una electroforesis bidimensional para finalmente realizar la determinación de la variabilidad de los perfiles proteicos. Una vez obtenidos estos perfiles, se llevó a cabo un análisis de varianza (ANOVA). Se identificaron 72 proteínas expresadas diferencialmente, las cuales pueden relacionarse con el efecto sobre el crecimiento de la bacteria en presencia de Ib-M1 e IONP@Ib-M. Estas proteínas se encuentran involucradas en procesos de transferencia de grupos acilo (proteína Yhbs), translocación de lipoproteínas (proteína LolA) y transporte de aminoácidos (proteína GpmA), entre otros.

Changes in the protein profile of E. coli O157: H7 against treatment with Ib-M1 and IONP@Ib-M1

### Abstract

Escherichia coli O157: H7 is a pathogenic bacterium which is recognized for the ability to resist multiple antibiotics; accordingly, complications occur in the treatment of infections caused by this bacterium. The Ib-M1 peptide and the IONP @ Ib-M1 bioconjugate have emerged as a new antimicrobial alternatives against E. coli O157: H7. The mechanism of action of Ib-M1 and IONP @ Ib-M1 against this bacterium is still unknown; therefore, the goal of this research was to identify the change in the proteins profile of E. coli O157: H7 after treatment with Ib-M1 and IONP @ Ib-M1 as a first step to determine its mechanism of action. For this, the proteins were obtained first, and then a two-dimensional electrophoresis was performed to finally determine the variability of the protein profiles. Once the protein profiles were obtained, an analysis of variance (ANOVA) was carried out. 72 differentially expressed proteins were identified, which can be connected to the effect on the bacterium's growth in the presence of Ib-M1 and IONP @ Ib-M. These proteins are involved in acyl groups transfer processes (Yhbs protein), lipoprotein translocation (LolA protein) and amino acid transport (GpmA protein), among others.

Identificação de alterações no perfil protetor de E. *coli* O157: H7 contra o tratamento com Ib-M1 e IONP@Ib-M1

### Resumo

Escherichia coli O157: H7 é uma bactéria patogênica reconhecida por sua capacidade de resistir a vários antibióticos; razão pela qual, complicações são geradas no tratamento de infecções produzidas por essa bactéria. O peptídeo Ib-M1 livre e imobilizado em nanopartículas magnéticas de óxido de ferro (IONP @ Ib-M1) surgiu como uma nova alternativa antimicrobiana contra E. coli O157: H7 e isolados clínicos desta bactéria. O mecanismo de ação de Ib-M1 e IONP @ Ib-M1 contra E. coli O157: H7 ainda é desconhecido; Portanto, o objetivo desta pesquisa foi identificar a alteração no perfil proteico de E. coli O157: H7 após o tratamento com Ib-M1 e IONP @ Ib-M1 como um primeiro passo para determinar seu mecanismo de ação. Para isso, foi realizada a obtenção das proteínas, posteriormente foi realizada uma eletroforese bidimensional para finalmente determinar a variabilidade dos perfis protéicos. Uma vez obtidos os perfis de proteínas, foi realizada uma análise de variância (ANOVA). Os resultados mostram a identificação de proteínas expressas diferencialmente e que estão envolvidas em processos de transferência de grupos acila (proteína Yhbs), translocação de lipoproteínas (proteína LolA) e transporte de aminoácidos (proteína GpmA), entre outros.

**Palabras clave:** Escherichia coli O157:H7; análisis proteómico; péptidos antimicrobianos; Ib-M1.

**Keywords:** *Escherichia coli* O157: H7; proteomic analysis; antimicrobial peptides; Ib-M1.

**Palavras-chave:** Escherichia coli O157: H7; análise proteômica; peptídeos antimicrobianos; Ib-M1.

3

Rev. Colomb. Quim., vol. 50, no. 1, pp. 3-12, 2021. DOI: https://doi.org/10.15446/rev.colomb.quim.v50n1.89105



## Introducción

*Escherichia coli* O157:H7 es una bacteria patógena que ocasiona Enfermedades Transmitidas por Alimentos (ETAS) debido a que puede encontrarse contaminando alimentos como carne cruda o poco cocida, leche cruda, hortalizas y semillas germinadas crudas [1]. Entre las enfermedades producidas por *E. coli* O157:H7 se incluye la colitis hemorrágica, síndrome urémico hemolítico (HUS) y Enfermedad Diarreica Aguda (EDA) [2]. Este tipo de enfermedades se convierten en un problema a nivel mundial de salud pública significativa, ya que se han encontrado cepas de *E. coli* O157:H7 que muestran resistencia a diferentes antibióticos, como ampicilina, amoxicilina, ácido clavulánico, estreptomicina, gentamicina, kanamicina, neomicina, tetraciclina, cloranfenicol, ciprofloxacina, sulfametoxazol, entre otros [3].

Esta resistencia se ha convertido en una amenaza por la diseminación de bacterias resistentes, por lo cual los péptidos antimicrobianos (AMP, del inglés Anti-Microbial-Peptide) han surgido como una nueva alternativa de antimicrobianos, estos se caracterizan por su bajo peso molecular, gran variedad en su estructura secundaria, composición de aminoácidos variable y polaridad catiónica y anfipática. Debido a que presentan diferentes blancos de acción, dificultan el desarrollo de resistencia bacteriana [4] siendo algunos de sus mecanismos de acción la permeabilización de la membrana, la ruptura estructural de la célula y la interrupción de acciones biológicas de componentes citoplásmicos cruciales como proteínas, enzimas, ARN y ADN [5].

Flórez et al., en el año 2014, obtuvieron sintéticamente la familia de péptidos Ib-M, con modificaciones en la carga neta e hidrofobicidad en el dominio C-terminal con respecto a su análogo Ib-AMP4, péptido antimicrobiano derivado de Impatiens balsamina [6], obteniendo mayor efecto inhibitorio con respecto al péptido nativo en Escherichia coli K-12 [7]. Así mismo, se ha encontrado que de esta familia, el péptido Ib-M1 posee un valor de concentración mínima inhibitoria (CMI) de 4,7 µM y 1,6 µM de concentración mínima bactericida (CMB) contra E. coli O157:H7. Adicionalmente, presenta baja citotoxicidad en células VERO con un valor de concentración citotóxica 50 (CC $_{50}$ ) de 395,2  $\mu$ M [8]; lo que convierte a este compuesto en candidato a nuevos antibióticos para el tratamiento de infecciones ocasionadas por este patógeno. Por otra parte, se ha demostrado que la inmovilización de péptidos de la familia Ib-M en nanopartículas magnéticas de óxido de hierro (IONPs, por sus siglas en inglés) no afecta su actividad contra E. coli O157:H7, lo cual puede ser utilizado para el diseño de nuevos nanotransportadores de la familia Ib-M [9]. A pesar de las ventajas que los péptidos Ib-M presentan, aún no se conoce su mecanismo de acción antibacteriano.

Las respuestas bacterianas a nivel molecular en presencia de algún efector de su crecimiento llevan a cambios en los niveles de expresión de proteínas que son responsables de diversos procesos fisiológicos como la transducción de señales celulares, reacciones bioquímicas de catálisis [10], entre otros [11]. Por lo anterior, el objetivo de este trabajo fue realizar una aproximación inicial al conocimiento en los cambios proteómicos ocasionados por Ib-M1 e IONP@Ib-M1 sobre *Escherichia coli* O157:H7. De esta manera, se busca dar un primer indicio del posible mecanismo de acción contra este microorganismo.

## Materiales y métodos

#### Compuestos

El péptido Ib-M1 tiene una carga catiónica de +6 y 20 aminoácidos en su estructura [7], este fue fabricado por Biomatik® y la solución patrón fue preparada en tampón Tris-HCl (10 mM pH 7,4) a una concentración final de 2000  $\mu$ M y almacenado a -80 °C hasta su uso.

La síntesis de las IONPs se llevó a cabo mediante el método de coprecipitación [9] haciendo uso de cloruro de hierro tetrahidrato (II) (Sigma

#### Cepas y condiciones de crecimiento

*E. coli* O157:H7 (ATCC<sup>®</sup> 43888<sup>TM</sup>) se cultivó por primera vez en 5 mL de caldo Luria-Bertani (LB) a 37 °C durante 18 h a 37 °C antes del ensayo; posterior a la incubación, se realizó el ajuste a escala McFarland 3 (OD 625 nm =  $0.58/9*10^8$  UFC/mL) en caldo Mueller Hinton (MH), luego se llevó a cabo la inoculación en cada uno de los tratamientos (Ib-M1, IONPs, IONP@ y IONP@Ib-M1) y se obtuvo una concentración celular final de 4,4x10<sup>8</sup> UFC/mL para cada tratamiento, realizando dos réplicas biológicas para cada ensayo independiente.

#### Obtención de IONP@Ib-M1

La obtención del bioconjugado IONP@Ib-M1 se realizó siguiendo el procedimiento reportado por Ropero-Vega, et al. [9]. Inicialmente se obtuvieron las IONP por el método de coprecipitación utilizando como precursores sales de Fe<sup>+2</sup> y Fe<sup>+3</sup> y como base NH<sub>4</sub>OH. Para la inmovilización de Ib-M1 se realizó un recubrimiento de las IONP utilizando 160 µL de quitosano al 0.5% p/v en ácido acético al 2% v/v. Posteriormente, se realizó la formación de un enlace peptídico entre los grupos amino del quitosano y el grupo carboxilo del residuo Glu del péptido; para esto se mezclaron 70 µL del péptido con 44,9 mg de TBTU y 24,2 µL de DIPEA. Después de 20 min de reacción, la mezcla del péptido fue adicionada a una suspensión de 800 µg de IONPs. Para la determinación de la cantidad de péptido inmovilizado se estableció la concentración del péptido antes del proceso de inmovilización y el péptido en el sobrenadante después de la inmovilización utilizando el método de Bradford [12] con el kit Quick Start™ Bradford Protein Assay de BioRad determinando la absorbancia a 595 nm en un espectrofotómetro de fibra óptica AvaSpec-ULS2048L StarLine fiber-optic (Avantes).

#### Cinética de crecimiento de E. coli O157:H7

La inhibición del crecimiento de la bacteria se determinó mediante el método de microdilución de acuerdo con los procedimientos descritos por el Instituto de Normas Clínicas y de Laboratorio [13], utilizando placas estériles de 96 pozos de fondo redondo. Se prepararon diluciones seriadas de Ib-M1, IONPs, IONP@, IONP@Ib-M1 y luego se agregó el inóculo del caldo MH obteniendo un volumen final de 200  $\mu$ L por pocillo. Se realizaron controles de crecimiento negativos y positivos agregando cada una de las suspensiones caldo MH o *E. coli* O157:H7 con caldo MH a los pozos. La cinética de crecimiento se determinó midiendo la absorbancia de la suspensión a 595 nm utilizando Multiskan Sky (Thermoscientific) a 37 °C durante 24 h y en agitación constante.

#### Extracción de proteínas

#### intracelulares y cuantificación

Posterior a determinar el crecimiento celular, se llevó a cabo la inoculación de *E. coli* O157:H7 con los diferentes tratamientos a 37 °C / 140 rpm en un volumen final de 5 mL. Finalizada la incubación, se realizó la centrifugación

en tubos eppendorf de 1 mL. Una vez obtenido el pellet celular, se realizó el rompimiento de las células, posteriormente la extracción de proteínas siguiendo lo establecido por el fabricante [14] y después se llevó a cabo la cuantificación de las proteínas siguiendo lo establecido por la casa comercial con un volumen final de 1,5 mL [15].

# Determinación del perfil proteico de E. coli O157:H7

Electroforesis de isoelectroenfoque: una vez las proteínas fueron extraídas se separaron de acuerdo con sus puntos isoeléctricos mediante isoelectroenfoque (IEF) utilizando el equipo Protean IEF i12 de Bio-Rad. Para ello, se emplearon tiras IPG de pH 4-7, (rango lineal) de 11 cm, las cuales fueron rehidratadas con una solución de 8 M urea, 2% CHAPS, 50 mM DTT, 0,2% anfolitos, y trazas de azul de bromofenol [16] y con 200  $\mu$ L de muestra de proteína durante 18 h y posteriormente sometidas a electroforesis IEF teniendo en cuenta la siguiente programación: (1) voltaje 250 V – tiempo 20 min; (2) voltaje 8000 V – tiempo 2 h 30 min; (3) voltaje/hora 20,000.

Electroforesis SDS-PAGE: una vez terminado el corrido IEF, las tiras IPG fueron sometidas a un proceso de equilibrio según lo establecido por la casa comercial [16] y posteriormente se realizó una electroforesis en gel de poliacrilamida SDS vertical con concentraciones finales de acrilamida de 12% y 5% p/v para los geles de separación y apilamiento, respectivamente. La electroforesis se llevó a cabo durante 330 min a 150 V en un sistema de electroforesis Protean II XI Cell (Biorad) utilizando como patrón 20 µL de marcador de peso Chromatein Prestained Protein Ladder® (Vivantis). Finalizada la electroforesis, se realizó la tinción de los geles por medio de nitrato de plata [17]. Se preparó un litro de cada una de las soluciones en recipientes limpios antes de iniciar el procedimiento y utilizando agua de calidad Milli-Q. Cada uno de los geles fueron depositados en solución de fijación (12% ácido acético glacial, 50% etanol, 0,5 mL/L formaldehído grado analítico) durante una hora con agitación constante. Posteriormente, fueron depositados en la solución de lavado (50% etanol) por 5, 10 y 15 min. A continuación, fueron lavados rápidamente con solución de tiosulfato de sodio (0,2% Na,S,O,\*5H,O), después, los geles se lavaron con agua Milli-Q tres veces y se sumergieron en la solución de nitrato de plata (2% AgNO<sub>2</sub>, 0,75 mL/L formaldehído grado analítico) durante un tiempo de 20 min. Transcurrido este tiempo, los geles fueron lavados nuevamente tres veces con agua Milli-Q, seguido de esto, se sumergieron en la solución de revelado (3% Na<sub>2</sub>CO<sub>3</sub>, 20 mL/L de solución de tiosulfato de sodio, 0,5 ml/L de formaldehído grado analítico), durante 10 min. Finalmente, los geles se introdujeron durante 5 min en la solución de fijación y se almacenaron en la solución de conservación (25% etanol, 3% glicerol) a temperatura ambiente para su posterior registro mediante imágenes en formato \*.TIFF de los patrones visibles de proteínas a través de un sistema Gel-DocTM XR+Imager (Bio Rad).

## Determinación de la variabilidad de perfiles proteicos

La determinación de la variabilidad de los perfiles proteicos se realizó mediante análisis bioinformáticos. Para ello, por medio del *software* Photo-CaptMw versión 10.01, se efectuó la determinación de los puntos isoeléctricos (pI) y pesos moleculares de cada una de las manchas (*spot*) expresadas en cada perfil comparando la movilidad electroforética del marcador de peso molecular Chromatein Prestained Protein Ladder® (Vivantis). A partir de este análisis se determinó, de acuerdo con estos parámetros, la posible proteína expresada y su función relacionada. Posteriormente se llevó a cabo la determinación de la variabilidad de los perfiles protéicos, haciendo uso de PDQuest 2-D Analysis Software® (Bio Rad), en el cual se detectó el número total de manchas (*spots*) para cada gel de tratamiento, se identificaron coincidencias entre cada uno de ellos (*matching*) y se realizó un análisis de acuerdo con los atributos.

Rev. Colomb. Quim., vol. 50, no. 1, pp. 3-12, 2021

#### Análisis estadístico

Mediante la cuantificación de densidad de pixeles de cada una de las manchas, se llevó a cabo un análisis de varianza (ANOVA) de una vía, el cual permitió determinar si existen diferencias estadísticamente significativas entre las medias de los diferentes tratamientos de una misma proteína teniendo en cuenta las dos réplicas biológicas de cada una de las condiciones control, Ib-M1, IONP@Ib-M1, IONPs y IONP@. La comparación de medias de los tratamientos se realizó con el test de Bonferroni, en donde se determinó que cuando p<0,05 hay diferencia significativa. Este análisis se realizó haciendo uso del *software* Stata/MP versión 14.0®.

## **Resultados y discusión**

## Obtención de bioconjugado a partir de inmovilización de Ib-M1 en IONPs

La inmovilización del péptido Ib-M1 en IONP@ se monitoreó por medio de la determinación de la absorbancia a 595 nm antes y después de realizar el lavado. Los resultados se muestran en la figura 1, en donde se observa una disminución en la absorbancia del sobrenadante proveniente de la centrifugación del IONP@Ib-M1, lo que indica que disminuyó la cantidad de péptido en solución y fue, por tanto, inmovilizado después de dos horas de agitación. El porcentaje de inmovilización del péptido Ib-M1 en las IONP@ fue de 45,23%.

Cinética de crecimiento de E. coli O157:H7 bajo diferentes tratamientos con Ib-M1, IONP@Ib-M1, IONPs y IONP@

Los efectos inhibitorios de Ib-M1 se han estudiado en varias ocasiones [7, 8] bajo diferentes condiciones de cultivo. Se ha encontrado que el grado de inhibición depende de diferentes parámetros como la concentración celular. Teniendo en cuenta lo anterior, y con el objetivo de determinar cómo se podría afectar la cinética de crecimiento y a partir de qué momento de incubación se podría realizar el análisis con base en su cambio drástico en crecimiento,



Figura 1. Inmovilización del péptido Ib-M1 en IONP@.

se analizó la respuesta de crecimiento celular bajo tratamientos con Ib-M1, IONP@Ib-M1, IONP® y IONP@ usando el método de microdilución. En la figura 2 se muestran los resultados obtenidos de cinética de crecimiento de *E. coli* O157:H7 bajo los diferentes tratamientos.

De acuerdo con la figura 2A, el crecimiento de *E. coli* O157:H7 en ausencia de los tratamientos, alcanzó una densidad óptica (OD) de 0,8 después de 9 h de tratamiento. Cuando este microorganismo se inocula junto con el péptido Ib-M1, se observa una disminución de 24; 40 y 78% del crecimiento frente a las concentraciones 25, 50 y 100  $\mu$ M respectivamente después de 9 h de incubación. Bajo estas condiciones se observó que el Ib-M1 a concentración de 50  $\mu$ M llevó a una fase de latencia extendida 5 h después de la incubación. Para la concentración de 25  $\mu$ M de Ib-M1, la densidad celular estuvo por debajo del control durante todo el periodo de incubación. El análisis anterior mostró que bajo el tratamiento con Ib-M1 el estrés condujo a una fase de latencia prolongada e inhibió el máximo crecimiento celular a una concentración de 100  $\mu$ M; mientras que las tasas de crecimiento celular mostraron un aumento a medida que se disminuye la concentración.

Por otro lado, cuando E. coli O157:H7 es puesta en crecimiento junto con IONP@Ib-M1 a una concentración de 25 µM, se observa que el crecimiento celular presenta un cambio significativo en su fase de crecimiento a partir de la hora 9 de incubación, iniciando su fase exponencial. Es posible que este comportamiento esté relacionado con el aumento de la concentración focal del péptido sobre la membrana bacteriana [18]. De acuerdo con los resultados obtenidos por Prada et al. (2020), se observó diferencia en la cinética de crecimiento a lo largo de todo el periodo de incubación [8], esto posiblemente a causa de la diferencia en concentración celular utilizada en esta investigación. Así mismo, en el estudio realizado por Flórez-Castillo et al., se demostró que las IONP y IONP@ no poseen actividad antimicrobiana contra E. coli O157:H7 a una concentración de 120,7 y 60,3 µg/mL respectivamente. En este estudio, se determinó la cinética de crecimiento de este microorganismo en presencia de estas IONPs a concentraciones superiores, resultados que se presentan en la figura 2B, en donde se encontró que con respecto a IONPs y IONP@ a una concentración de 235 µg/mL en E. coli O157:H7 a partir de la sexta hora de incubación, se alcanza la fase estacionaria con respecto al control.

## Análisis proteómico de E. coli O157:H7 bajo tratamiento con Ib-M1y IONP@Ib-M1

Para determinar los cambios a nivel de expresión de proteínas bajo los diferentes tratamientos transcurridas nueve horas de incubación, se realizó el análisis por medio de electroforesis bidimensional. Para esto, se utilizaron entre 1,2 y 2,6 mg de muestra de proteína. Se realizaron dos réplicas biológicas para el control positivo y para los tratamientos Ib-M1, IONP@ Ib-M1, IONPs y IONP@. Posteriormente se efectuó el análisis como se menciona en el apartado de metodología. Se llevó a cabo la normalización de las intensidades de cada una de las manchas expresadas, utilizando la intensidad total del punto por gel, para compensar las variaciones entre las réplicas. En la figura 3 se muestra el resultado de la exposición de *E. coli* O157:H7 a Ib-M1 a una concentración de 25  $\mu$ M. Las manchas de proteínas se encuentran en todo el rango de pH de la tira IPG y los pesos moleculares de las manchas se distribuyen a lo largo de todo el gel, entre 22 y 95 kDa aproximadamente.

Se obtuvo la expresión total de 39 puntos de proteínas; 15 se inhibieron con respecto al control, 15 se expresaron con respecto al control, 23 tuvieron una sobreexpresión  $\ge 1,5$  y siete una inhibición  $\le 1,5$ . De aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con Ib-M1, seis presentaron diferencias estadísticamente significativas ( $p \le 0,05$ ), las cuales se muestran en la figura 4.

Después de identificar los patrones de expresión se realizó la aproximación a la identificación de las proteínas expresadas que presentaron diferencias estadísticamente significativas, aquellas que para nuestro conocimiento no han sido reportadas se indicaron con NR. La posible identificación de las proteínas se lista en la tabla 1.

De acuerdo con lo anterior, se observó la sobreexpresión de proteínas relacionadas con mecanismo de respuesta inmediata para contrarrestar los efectos del péptido Ib-M1 libre. Una de las proteínas con expresión diferencial podría corresponder a cheA (histidina quinasa), la cual es regulada por señales enviadas de quimio aceptores de metiloproteínas (MCP) en respuesta a cambios en el comportamiento flagelar a través de un movimiento conocido como quimiotaxis [21]. La expresión diferencial



Figura 2. (A) Cinética de crecimiento de *E. coli* O157:H7 (ATCC 43888) en presencia de péptido libre Ib-M1 a ( $\bullet$ ) 100 µM, ( $\blacktriangle$ ) 50 µM, ( $\checkmark$ ) 25 µM, ( $\blacktriangleleft$ ) y IONP@Ib-M1 a 25 µM. El crecimiento de *E. coli* O157:H7 (ATCC 43888) sin la adición de péptido ( $\blacksquare$ ) se incluyó con fines comparativos. (B) Cinética de crecimiento de *E. coli* O157:H7 (ATCC 43888) en presencia de ( $\bullet$ ) IONPs y ( $\bigstar$ ) IONP@ a 235,93 µg/ml. El crecimiento de *E. coli* O157:H7 (ATCC 43888) sin la adición de *E. coli* O157:H7 (ATCC 43888) sin la adición de ratamiento ( $\blacksquare$ ) se incluyó con fines comparativos.



Figura 3. (A) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación. (B) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con Ib-M1. Los círculos rojos evidencian manchas inhibidas bajo tratamiento y los círculos verdes son manchas expresadas bajo tratamiento.



**Figura 4.** Mapa bidimensional del proteoma de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con tratamiento Ib-M1. Se encuentran enmarcadas aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con Ib-M1 y que presentaron diferencias estadísticamente significativas (p  $\leq$ 0,05).

de la proteína identificada como moaB está involucrada en la biosíntesis del cofactor de molibdeno (MoCo) [22]. La falta MoCo en *Escherichia coli* causa hipersensibilidad a ciertos análogos de bases N-hidroxiladas, ya que se ha encontrado que *E. coli* contiene una molibdoenzima capaz de desintoxicar tales análogos (Kozmin & Schaaper, 2007). Así mismo, se ha encontrado que MoCo es el componente esencial de un grupo de enzimas de óxido-reducción que catalizan una amplia variedad de transformaciones

 Tabla 1. Proteínas de *E. coli* O157:H7 expresadas diferencialmente frente al tratamiento Ib-M1 con respecto al perfil de proteínas control.

| Spot | Posible<br>Proteína | Función Molecular / Proceso<br>Biológico                                                         | Expresión<br>Diferencial | P-Valor* | Pi  | Mw   |
|------|---------------------|--------------------------------------------------------------------------------------------------|--------------------------|----------|-----|------|
| 0304 | Nr                  | Nr                                                                                               | +1,5                     | 0,036    | 4,1 | 22,3 |
| 0924 | Chea<br>[19]        | Transmisión de señales sensoriales<br>de los quimiorreceptores a los<br>motores flagelares [20]  | +1,5                     | 0,001    | 4,0 | 86,6 |
| 3304 | Moab<br>[19]        | Biosíntesis de molibdopterina.<br>Hexamerización de proteínas [20]                               | +1,5                     | 0,000    | 5,6 | 21,6 |
| 3501 | Bla [19]            | Hidrólisis de enlace betalactámico<br>en antibióticos [19] respuesta a<br>antimicrobiano [20]    | +1,5                     | 0,000    | 5,5 | 28,8 |
| 3601 | Trxb<br>[19]        | Eliminación de radicales superóxido<br>[20]                                                      | +1,5                     | 0,025    | 5,5 | 34,0 |
| 4301 | Mdab<br>[19]        | Actividad de NADPH<br>deshidrogenasa (quinona), unión al<br>dinucleótido de adenina flavina [20] | +1,5                     | 0,029    | 5,9 | 21,8 |

\* El p-valor resulta luego de hacer el Anova y test de Bonferroni. NR Proteínas no reportadas de acuerdo con peso molecular (Mw) y punto isoeléctrico (pI).

de carbono, átomos de azufre y nitrógeno [23]. La proteína identificada como Bla ( $\beta$ -lactamasa) está asociada a la biosíntesis de molibdopterina, hexamerización de proteínas e hidrólisis de enlaces betalactámicos en antibióticos [24]. Se ha encontrado que este tipo de proteína es producida por ciertas bacterias que pueden hidrolizar cefalosporina [25], así mismo, confieren resistencia a la ampicilina, amoxicilina, aztreonam y a la mayoría de las cefalosporinas [26]. La proteína identificada como MdaB (modulador de la actividad del fármaco B/NADPH quinona reductasa) proporciona protección contra la toxicidad de biomoléculas conocidas como quinonoides por sistema de reducción de electrones, además, regula el ciclo redox de la quinona en *E. coli* [27]. Haciendo uso de la herramienta en línea STRING V11.0, no se obtuvo interacción entre las posibles proteínas identificadas, sin embargo, esto no necesariamente implica que no se trate

7

de proteínas biológicamente significativas, solo que aún no se conocen otras interacciones.

En la figura 5 se muestra el resultado de la exposición de *E. coli* O157:H7 a IONP@Ib-M1 a una concentración de 25  $\mu$ M. Las manchas de proteínas se encuentran en todo el rango de pH de la tira IPG y los pesos moleculares de las manchas se distribuyen entre 22 y 42 kDa aproximadamente.

Como resultado de la exposición de *E. coli* O157:H7 bajo el tratamiento con IONP@Ib-M1, fueron detectadas un total 17 puntos de proteínas expresados; 25 se inhibieron con respecto al control, dos se expresaron con respecto al control, 11 tuvieron una sobreexpresión  $\geq$  1,5 y dos una inhibición  $\leq$  1,5. De aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con IONP@Ib-M1, seis presentaron diferencias estadísticamente significativas (p $\leq$ 0,05) las cuales se muestran en la figura 6.

Después de identificar los patrones de expresión se realizó la aproximación a la identificación de las proteínas expresadas y aquellas que presentaron diferencias estadísticamente significativas, aquellas que para nuestro conocimiento no han sido reportadas se indicaron con NR. La posible identificación de las proteínas se lista en la tabla 2.

Al igual que con el tratamiento con Ib-M1, se obtuvo la expresión significativa de la proteína identificada como Bla (β-lactamasa), la cual está asociada a la biosíntesis de molibdopterina, hexamerización de proteínas e hidrólisis de enlaces betalactámicos en antibióticos [24]. Así mismo, se obtuvo expresión significativa de LolA, la cual es una chaperona periplásmica que interviene en la síntesis de lipoproteínas de membrana externa, proceso que es dependiente de ATP [28]. La proteína identificada como GpmA hace parte de proteínas que participan en el transporte de aminoácidos y el metabolismo en respuesta a estrés de tetraciclina y hexabromociclododecano (HBCD) [29]. La proteína identificada como YrbF se conoce que está involucrada en la regulación de fosfolípidos en la membrana externa de bacterias Gram-negativas, con el objetivo de formar y expulsar vesículas al medio externo como factor de virulencia y, así mismo, intercambiar componentes de la superficie celular [30]. Igualmente, la proteína está relacionada con funciones como actividad catalítica, transportador hipotético ABC y respuesta a antimicrobiano [20]. Haciendo uso de la herramienta en línea STRING V11.0, no se obtuvo interacción entre las posibles proteínas identificadas, sin embargo, esto no necesariamente implica que no se trate de proteínas biológicamente significativas, solo que aún no se conocen otras interacciones.



**Figura 6.** Mapa bidimensional del proteoma de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con tratamiento IONP@Ib-M1. Se encuentran enmarcadas aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con IONP@Ib-M1 y que presentaron diferencias estadísticamente significativas ( $p \le 0,05$ ).

En la figura 7 se muestra el resultado de la exposición de *E. coli* O157:H7 a IONPs a una concentración de 235,93  $\mu$ g/mL. Las manchas de proteínas se encuentran en todo el rango de pH de la tira IPG y los pesos moleculares de las manchas se distribuyen a lo largo de todo el gel.

Como resultado de la exposición de *E. coli* O157:H7 bajo el tratamiento con IONPs, se obtuvo un total de 55 puntos de proteínas; cinco se inhibieron con respecto al control, 20 se expresaron en relación con el control, 13 tuvieron una sobreexpresión  $\geq$  1,5 y nueve una inhibición



Figura 5. (A) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación. (B) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con IONP@b-M1. Los círculos rojos evidencian manchas inhibidas bajo tratamiento y los círculos verdes son manchas expresadas bajo tratamiento.

| Tabla 2.  | Proteínas | de E. | coli | O157:H7     | expresadas | diferencialmente | expuestas a |
|-----------|-----------|-------|------|-------------|------------|------------------|-------------|
| tratamien | to IONP@  | Ib-M1 | con  | respecto al | l control. |                  |             |

| Spot | Posible<br>proteína | Función molecular / proceso<br>biológico                                                               | Expresión<br>diferencial | p-valor | pI  | Mw   |
|------|---------------------|--------------------------------------------------------------------------------------------------------|--------------------------|---------|-----|------|
| 1204 | YhbS [19]           | Transferencia de grupos acilo [20]                                                                     | -1,5                     | 0,009   | 4,5 | 18,5 |
| 3304 | LolA [19]           | Participa en la translocación de<br>lipoproteínas de la membrana<br>interna a la membrana externa [20] | +1,5                     | 0,025   | 5,6 | 21,6 |
| 3501 | Bla [19]            | Hidrólisis de enlace betalactámico<br>en antibióticos [19] Respuesta a<br>antimicrobiano [20]          | +1,5                     | 0,004   | 5,5 | 28,8 |
| 4501 | GpmA<br>[19]        | Glucogénesis [20]                                                                                      | +1,5                     | 0,056   | 5,9 | 28,0 |
| 7501 | YrbF [19]           | Transportador hipotético ABC [19]                                                                      | +1,5                     | 0,007   | 6,3 | 28,1 |
| 7502 | SuhB [19]           | Actividad catalítica [20]                                                                              | +1,5                     | 0,035   | 6,5 | 29,6 |

\* El p-valor resulta luego de hacer el Anova y test de Bonferroni. NR Proteínas no reportadas de acuerdo con peso molecular (Mw) y punto isoeléctrico (pI).

 $\leq$  1,5. Este resultado puede deberse a la interacción electrostática entre las nanopartículas catiónicas y las membranas aniónicas del patógeno [31]. De aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con IONPs, 6 presentaron diferencias estadísticamente significativas ( $p \leq 0,05$ ), las cuales se muestran en la figura 8.

Después de identificar los patrones de expresión se realizó la aproximación a la identificación de las proteínas expresadas y aquellas que presentaron diferencias estadísticamente significativas. La posible identificación de las proteínas se lista en la tabla 3.

Una de las proteínas con expresión diferencial es Usg, esta hace parte del complejo acetil coenzima A carboxilasa (ACC), así mismo, está relacionada con el control de la traducción del ARNm uniéndose a una horquilla probable en el extremo 5' del ARNm, inhibiendo la traducción



**Figura 8.** Mapa bidimensional del proteoma de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con tratamiento IONPs. Se encuentran enmarcadas aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con IONPs y que presentaron diferencias estadísticamente significativas ( $p \le 0,05$ ).

[20]. Además, se obtuvo la sobreexpresión de la proteína identificada como MalE, la cual es una proteína periplásmica de unión a maltosa (MalE o MBP) requerida en bacterias Gram-negativas para el transporte de maltosa y maltodextrinas y para quimiotaxis hacia estos sustratos, también se ha encontrado que esta se expresa a un alto nivel en consecuencia de *shock* osmótico [32]. Al igual que en el tratamiento con el Ib-M1, se obtuvo la



Figura 7. (A) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación. (B) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con IONPs. Los círculos rojos evidencian manchas inhibidas bajo tratamiento y los círculos verdes son manchas expresadas bajo tratamiento.

| Tabla 3.  | Proteínas   | de E.   | coli  | O157:H7    | expresadas | diferencialmente | expuestas a |
|-----------|-------------|---------|-------|------------|------------|------------------|-------------|
| tratamien | to IONPs of | con res | pecto | al control | l.         |                  |             |

| Spot | Posible<br>proteína | Función molecular / proceso<br>biológico                                                                            | Expresión<br>diferencial | *p-valor | pI  | Mw   |
|------|---------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|----------|-----|------|
| 601  | Usg [19]            | Proceso biosintético de<br>aminoácidos celulares [20]                                                               | +1,5                     | 0,057    | 4,0 | 29,2 |
| 2801 | MalE<br>[19]        | Transporte de membrana de<br>maltosa [19], quimiotaxis celular,<br>respuesta celular a estímulo de<br>daño ADN [20] | +1,5                     | 0,015    | 5,2 | 40,8 |
| 3304 | LolA<br>[19]        | Participa en la translocación de<br>lipoproteínas de la membrana<br>interna a la membrana externa [20]              | +1,5                     | 0,000    | 5,6 | 21,6 |
| 3501 | Bla [19]            | Hidrólisis de enlace betalactámico<br>en antibióticos [19] Respuesta a<br>antibiótico [20]                          | +1,5                     | 0,004    | 5,5 | 28,8 |
| 3601 | TrxB<br>[19]        | Eliminación de radicales<br>superóxido [20]                                                                         | +1,5                     | 0,013    | 5,5 | 34,0 |
| 1503 | NR                  | NR                                                                                                                  | +1,5                     | 0,024    | 4,8 | 27,9 |

\* El p-valor resulta luego de hacer el Anova y test de Bonferroni. NR Proteínas no reportadas de acuerdo con peso molecular (Mw) y punto isoeléctrico (pI).

sobreexpresión significativa de proteínas como Bla, TrxB y LolA como lo obtenido en el tratamiento IONP@Ib-M1 cuya función es mencionada anteriormente. Haciendo uso de la herramienta en línea STRING V11.0, se obtuvo que esta red tiene una interacción entre las proteínas LolA y trxB.

En la figura 9 se muestra el resultado de la exposición de *E. coli* O157:H7 a IONP@ a una concentración de 235,93  $\mu$ g/mL. Las manchas de proteínas se encuentran en todo el rango de pH de la tira IPG y los pesos moleculares de las manchas se distribuyen a lo largo de todo el gel.

Como resultado de la exposición de *E. coli* O157:H7 bajo el tratamiento con IONP@, se obtuvo un total de 37 puntos de proteínas; 19 se inhibieron con respecto al control, 16 se expresaron en relación con el control,

9 tuvieron una sobreexpresión  $\geq 1,5$  y 2 una inhibición  $\leq 1,5$ . De aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con IONP@, 4 presentaron diferencias estadísticamente significativas (p  $\leq 0,05$ ) como se muestra en la figura 10.

Después de identificar los patrones de expresión se realizó la aproximación a la identificación de las proteínas expresadas y aquellas que presentaron diferencias estadísticamente significativas. La posible identificación de las proteínas se lista en la tabla 4.

**Tabla 4.** Proteínas de *E. coli* O157:H7 expresadas diferencialmente expuestas a tratamiento IONP@ con respecto al control.

| Spot | Posible<br>proteína | Función molecular /<br>proceso biológico                                                   | Expresión<br>diferencial | *p-valor | pI  | Mw   |
|------|---------------------|--------------------------------------------------------------------------------------------|--------------------------|----------|-----|------|
| 3501 | Bla [19]            | Hidrólisis de enlace betalactámico<br>en antibióticos [19] Respuesta a<br>antibiótico [20] | +1,5                     | 0,000    | 5,5 | 28,8 |
| 3601 | TrxB<br>[19]        | Eliminación de radicales superóxido<br>[20]                                                | +1,5                     | 0,000    | 5,5 | 34,0 |
| 4501 | GpmA<br>[19]        | Glucogénesis [20]                                                                          | +1,5                     | 0,001    | 5,9 | 28,0 |
| 8006 | NR                  | NR                                                                                         | +1,5                     | 0,004    | 6,7 | 11,0 |

\* El p-valor resulta luego de hacer el Anova y test de Bonferroni. NR Proteínas no reportadas de acuerdo con peso molecular (Mw) y punto isoeléctrico (pI).

significativa de proteínas como Bla, TrxB y GpmA, cuyas funciones fueron

mencionadas anteriormente. Haciendo uso de la herramienta en línea

STRING V11.0, no se obtuvo interacción entre las posibles proteínas

identificadas, sin embargo, esto no necesariamente indica que no se trate de

proteínas biológicamente significativas, solo que aún no se conocen otras

Al igual que en el tratamiento con el Ib-M1, se obtuvo la sobreexpresión

Figura 9. (A) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación. (B) Mapa bidimensional del proteoma control de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con IONP@. Los círculos rojos evidencian manchas inhibidas bajo tratamiento y los círculos verdes son manchas expresadas bajo tratamiento.

Α

kDa

-95

-42

~22



**Figura 10.** Mapa bidimensional del proteoma de *E. coli* O157:H7 ATCC 43888 después de 9 h de incubación con tratamiento IONP@. Se encuentran enmarcadas aquellas proteínas que estuvieron presentes tanto en el perfil de proteínas control como en el perfil de proteínas del tratamiento con IONP@ y que presentaron diferencias estadísticamente significativas ( $p \le 0,05$ ).

## Conclusiones

En este estudio se realizó el análisis proteómico comparativo bajo los diferentes tratamientos de antimicrobianos, como lo son Ib-M1, IONP@Ib-M1, IONPs y IONP@; el cual reveló un total de 72 proteínas. La expresión diferencial permitió determinar cambios relacionados con funciones como quimiotaxis, síntesis y mantenimiento de proteínas de membrana externa, procesos de óxido-reducción, crecimiento celular, protección contra toxicidad de biomoléculas, transporte de aminoácidos e inhibición de traducción. Estos hallazgos determinan un primer paso de mecanismos de acción de estos antimicrobianos alternativos, así mismo, se confirman las ventajas de análisis proteómicos sobre estrategias para identificar en futuros estudios proteínas clave en respuesta al estrés.

#### Referencias

- Organización Mundial de Salud, "Organización Mundial de Salud", 2020. [En línea]. Available: https://www.who.int/es/news-room/factsheets/detail/e-coli.
- [2] N. Amigo, Q. Zhang, A. Amadio, Q. Zhang, W. Silvia, B. Cui, Z. Chen, M. Larzabal, J. Bei & A. Cataldi, "Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to *E. coli* O157:H7 EDL933 Clade 3 Strain", Vol 11(11), *Plos One*, 2016.
- [3] E. Seker y F. Kus, "The prevalence, virulence factors and antibiotic resistance of Escherichia coli O157 in feces of adult ruminants slaughtered in three provinces of Turkey", *Veterinarski Arhiv*, Vol 89(1), pp. 107-121, 2019.
- [4] M. Semreen, M. El-Gamal, S. Abdin, H. Alkhazraji, L. Kamal, S. Hammad, F. El-Awady, D. Waleed & L. Kourbaj, "Recent updates of marine antimicrobial peptides", *Saudi Pharmaceutical Journal, Vol* 26(3), pp. 1-14, 2018.

Rev. Colomb. Quim., vol. 50, no. 1, pp. 3-12, 2021

- [5] D. Ciuman, H. Gong, X. Hu & J. Lu, "Membrane targeting cationic antimicrobial peptides", *Journal of Colloid and Interface Science*, Vol 537(1), pp. 163-185, 2019.
- [6] R. Tailor, D. Acland, S. Attenborough, B. Cammue, I. Evans, R. Osborn, J. Ray, S. Rees & W. Broekaert, "A Novel Family of Small Cysteinerich Antimicrobial Peptides from Seed of Impatiens balsamina Is Derived from a Single Precursor Protein", *The Journal of Biological Chemistry*, Vol 272(39), pp. 24480-24487, 1997.
- [7] J. Flórez, M. Perullini, M. Jobbágy & H. Cano, "Enhancing Antibacterial Activity Against Escherichia coli K-12 of Peptide Ib-AMP4 with Synthetic Analogues", *International Journal of Peptide Research and Therapeutics*, Vol 20, pp. 365-369, 2014.
- [8] S. Prada, J. Flórez, A. Farfán, F. Guzmán & I. Hernández, "Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7", *Plos One*, Vol 15(2), pp. 1-12, 2020.
- [9] J. Ropero, N. Ardila, P. Hernández & J. Flórez, "Immobilization of Ib-M2 peptide on core@shell nanostructures based on SPION nanoparticles and their antibacterial activity against Escherichia coli O157:H7", *Applied Surface Science*, vol. 515, 2020.
- [10] W. Li, S. Zhang, X. Wang, J. Yu, Z. Li, W. Lin & X. Lin, "Systematically integrated metabonomic-proteomic studies of Escherichia coli under ciprofloxacin stress", *Journal of Proteomics*, Vol 179 pp 61-70, 2018.
- [11] E. Velasco, S. Wang, M. Sanet, J. Fernández, D. Jové, E. Glaria, A. Valledor, T. O'Halloran & C. Balsalobre, "A new role for Zinc limitation in bacterial pathogenicity: modulation of α-hemolysin from uropathogenic Escherichia coli", *Scientific Reports, Vol 8 (6535 pp 1-11*, 2018.
- [12] M. Bradfor, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", *Analytical Biochemistry*, Vol 72, pp. 248-254, 1976.
- [13] CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition, West Valley Road, 2015.
- [14] Bio-Rad Laboratories, *ReadyPrep Protein Extraction kit (Total protein)*, 2000.
- [15] Bio-Rad Laboratories, RC DC Protein Assay. Instruction manual, 2000.
- [16] Bio-Rad Laboratories, ReadyPrep TM. 2-D Starter Kit. Catalog Number 163-2105, 2000.
- [17] H. Blum, H. Beier & H. Gross, "Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels", *Electrophoresis*, Vol 8 (2), pp. 93-99, 1987.
- [18] J. Cruz, C. Ortiz, R. Fernández & R. Torres, "Antimicrobial Peptides: Promising Compounds Against Pathogenic Microorganisms", *Current Medicinal Chemistry*, Vol 21 (20), pp 2299-2321, 2014.
- [19] Kaist, "EcoProDB. E. coli Protein Database", 2006. [En línea]. Available: http://eecoli.kaist.ac.kr/view?name=YtfQ.
- [20] Uniprot, 2020. [En línea]. Available: https://www.uniprot.org/uniprot/ P08390.
- [21] A. Muok, A. Briegel & B. Crane, "Regulation of the chemotaxis histidine kinase CheA: A structural perspective", *BBA - Biomembranas*, Vol 1862 (1) pp 1-12, 2020.

- [22] S. Kozmin & R. Schaaper, "Genetic characterization of moaB mutants of Escherichia coli", *Research in Microbiology*, Vol 164 (7), pp. 689-694, 2013.
- [23] C. Nivol & S. Leimkühler, "Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli", *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, Vol 1827 (8-9), pp. 1086-1101, 2013.
- [24] K. Champion, J. Nishihara, J. Joly & D. Arnott, "Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes", *Proteomics*, Vol 1(9), pp. 1133-1148, 2001.
- [25] S. Ghafourian, N. Sadeghifard, S. Soheili & Z. Sekawi, "Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology", *Current Issues in Molecular Biology*, Vol 17, pp. 11-21, 2015.
- [26] S. Máttar y P. Martínez, "Emergencia de la resistencia antibiótica debida a las β-lactamasas de espectro extendido (BLEE): detección, impacto clínico y epidemiología", *Infectio*, Vol 11 (1), pp. 23-35, 2007.
- [27] Z. Khan, A. Rehman, M. Nisar, S. Zafar & I. Zerr, "Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress", *Chemosphere*, Vol 174, pp. 136-147, 2017.
- [28] P. Murahari, S. Anishetty & G. Pennathur, "Understanding the lid movements of LolA in Escherichia coli using molecular dynamics simulation and in silico point mutation", *Computational Biology and Chemistry*, Vol 47, pp. 71-80, 2013.
- [29] M. Yang, H. Qin, W. Wang, H. Zhang, Y. Long & J. Ye, "Global proteomic responses of Escherichia coli and evolution of biomarkers under tetracycline stress at acid and alkaline conditions", *Science of the Total Environment*, Vol 627, pp. 1315-1326, 2018.
- [30] F. Zingl, P. Kohl, F. Cakar, Z. Guan, J. Reidl & S. Schild, "Outer Membrane Vesiculation Facilitates Surface Exchange and In Vivo Adaptation of Vibrio cholerae", *Cell Host & Microbe*, Vol 27 (2), pp. 1-13, 2020.

- [31] J. Panyam, D. Williams, A. Dash, D. Leslie & V. Labhasetwar, "Solidstate Solubility Influences Encapsulation and Release of Hydrophobic Drugs From PLGA/PLA Nanoparticles", *Journal of Pharmaceutical Sciences, Vol 93 (7)*, pp. 1804-1814, 2004.
- [32] E. Dassa & P. Lambert, "Activity of protein MalE (maltose-binding protein) fused to cytoplasmic and periplasmic regions of an Zhherichkz coli inner membrane protein", *Research in Microbiology, Vol 148(5)*, pp. 389-395, 1997.
- [33] H. Zhu, M. Bilgin & M. Snyder, "Proteomics", *Biochem*, Vol 72, pp. 783-812, 2003.
- [34] R. Horler, A. Müller, D. Williamson, J. Potts, K. Wilson & G. Thomas, "Furanose-specific Sugar Transport. Characterization of a bacterial galactofuranosa-binding protein", *The Journal of Biological Chemistry*, Vol 248 (45) pp 31156-31163, 2009.
- [35] I. Seong, J. Oh, J. Lee, K. Tanaka & C. Chung, "The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli", *FEBS Letters*, Vol 477 (3), pp. 224-228, 2000.
- [36] M. Park, C. Hill, Y. Li, K. Hardy, H. Khanna, Y. Khang & F. Raushel, "Catalytic properties of the PepQ prolidase from Escherichia coli", *Archives of Biochemistry and Biophysics, Vol 429 (2)*, pp. 224-230, 2004.
- [37] M. Han, "Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments", *Journal of Bioscience and Bioengineering*, Vol 122 (1) pp 1-9, 2015.
- [38] C. Tseng, "Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products", *FEMS Microbiology Letters*, Vol 157 (1), pp. 67-72, 1997.

#### Citación de artículo:

G. S. Ramíez-Forero, W. Valdivieso-Quintero, J. L. Ropero-Vega, G. Zafra & J. M. Flórez-Castillo, "Cambios en el perfil protéico de *E. coli* O157:H7 frente al tratamiento con Ib-M1 e IONP@Ib-M1", Rev. Colomb. Quim., vol. 50, no. 1, pp. 3-12, 2021. DOI: https://doi.org/10.15446/ rev.colomb.quim.v50n1.89105