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Sizes of flats of cycle matroids of

complete graphs
Los tamaños de los cerrados de la matroide gráfica del grafo

completo
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Abstract. We show that the problem of counting the number of flats of size
k for a cycle matroid of a complete graph is equivalent to the problem of
counting the number of partitions of an integer k into triangular numbers. In
addition, we give some values of k such that there is no flat of size k in a cycle
matroid of a complete graph of order n. Finally, we give a minimum bound
for the number of values, k, for which there are no flats of size k in the given
cycle matroid.
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Resumen. Demostraremos que el problema de contar los conjuntos cerrados
de tamaño k de la matroide gráfica de un grafo completo es equivalente al
problema de contar las particiones de un entero k en números triangulares.
Adicionalmente, daremos unos valores de k tales que no existe ningún cerrado
de tamaño k en la matroide gráfica de un grafo completo de orden n. Final-
mente, daremos una cota inferior para el número de valores k para los cuales
no existe ningún cerrado de tamaño k en la matroide gráfica.

Palabras y frases clave. Composiciones, matroide, particiones de números tri-
angulares.

1. Introduction

A matroid can be defined in several equivalent ways, using the set of indepen-
dent sets, the set of circuits, the set of bases, the rank function and the closure
operator. In this paper, we define a matroid using the rank function.

A matroid M(E) is a set E with a rank function r, for which the following
properties hold:
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64 CHRISTO KRIEL & EUNICE MPHAKO-BANDA

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

(R3) If X and Y are subsets of E, then

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Let cl : 2E → 2E for all X ⊆ E, given by cl(X) = X ∪{x ∈ E : r(X ∪x) =
r(X)}, where r(X) is the rank of X, then cl(X) is called the closure of the set
X. In addition, if X = cl(X), then X is called a flat of a matroid, see [5].
Furthermore, each graph G is a matroid, where E is the edge set, X ⊆ E, and
the rank function, r(X) = |V (X)|−k(X) where |V (X)| is the number of vertices
and k(X) is the number of components of X. This matroid is called the cycle
matroid of G and is denoted by M(G). The contraction of X from a matroid M
denoted by M/X is a matroid with a rank function rM/X(T ) = r(X∪T )−r(X)
for all T ⊂ E−X. Furthermore, the characteristic polynomial of a matroid M is

given by χ(M ;λ) =
∑
X⊆E

(−1)|X|λr(M)−r(X). For this introduction and further

reading on matroids, we refer to [5].

This paper was motivated by the fact that projective geometries play a
similar role in matroid theory to the role complete graphs play in graph theory.
For example, just as every simple graph on n vertices can be obtained from
Kn by deleting edges, so too can every simple F -representable matroid of rank
r be obtained from PG(r − 1, q) by deleting elements. Furthermore, there is
a simple explicit expression of the Tutte polynomial of a projective geometry
which is computed using nice properties of this structure, stated in the following
proposition, see [4].

Let q be a prime power and r a positive integer, we denote the rank r
projective geometry over a finite field GF (q) by PG(r − 1, q).

The Gaussian coefficient

[
r

j

]
q

for all integers r and j with 0 ≤ j ≤ r is

defined by [
r

j

]
q

=
(qr − 1)(qr − q) · · · (qr − qj−1)

(qj − 1)(qj − q) · · · (qj − qj−1).

Proposition 1.1. Let q be a prime power and r a positive integer. Then the
following hold for the projective geometry of rank r over a finite field q, PG(r−
1, q).

(i) All flats of PG(r − 1, q) of rank j are isomorphic to PG(j − 1, q).

(ii) PG(r − 1, q) has

[
r

j

]
q

flats of rank j.
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SIZES OF FLATS OF CYCLE MATROIDS OF COMPLETE GRAPHS 65

(iii) The simplification of PG(r− 1, q)/PG(j − 1, q) is isomorphic to PG(r−
j − 1, q).

(iv) PG(r − 1, q) has qr−1
q−1 elements.

(v) The characteristic polynomial of PG(r − 1, q) is

χ(PG(r − 1, q);λ) =

r−1∏
i=0

(λ− qi).

Unlike a projective geometry, a cycle matroid of a complete graph, M(Kn),
has flats of size k which are non-isomorphic and some having different ranks,
making counting the number of flats of size k very complicated. On the other
hand, one attractive property of M(Kn) is that it is closed up to simplification
under flat contraction just like projective geometries. For example in M(K6),
flats of size 3 are of two types: first type is a flat isomorphic to M(K3) of
rank 2 and the second type is a flat isomorphic to union M(K2) ∪M(K2) ∪
M(K2) of rank 3. Furthermore, the minor M(K6)/M(K3) is isomorphic up to
simplification to M(K4). The following proposition states without proof some
properties of flats of M(Kn) which can be easily verified.

Proposition 1.2. Let M(Kn) be the cycle matroid of Kn and Xk a flat of
M(Kn) of size k.

(i) All flats Xk are of the form Xk = ∪iM(Ki) i ∈ {1, 2, · · · , n}.

(ii) There is no simple formula for the number of flats of M(Kn) of size k.

(iii) The simplification of M(Kn)/Xk is isomorphic to M(Kn−r(Xk)).

(iv) M(Kn) has n(n−1)
2 elements.

(v) The characteristic polynomial of M(Kn) is
∏n−1
i=1 (λ− i).

The main problem of this paper is addressing part (i) and (ii) of Proposition
1.1 for projective geometries. We count the number of non-isomorphic flats of
size k in M(Kn). Further, we address the question of finding a number k such
that M(Kn) does not have a flat of size k.

2. Counting flats of a cycle matroid of a complete graph

In this section, we count the number of flats of size k for the matroid M(Kn).
We state some facts on triangular numbers and integer partitions, which we
need, without proof.

In the following definition of a triangular number, 0 is the first triangular
number, hence differs slightly from the usual definition, see [2].
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66 CHRISTO KRIEL & EUNICE MPHAKO-BANDA

Definition 2.1. The n-th triangular number is ∆n =
(
n
2

)
. In addition, ∆n+1

can be computed recursively as

∆n+1 = ∆n + n =

(
n

2

)
+ n =

n(n− 1) + 2n

2
=

(n+ 1)n

2
.

The following theorem is well known in the literature. We refer the reader
to [1, 3] for further discussion and proof.

Theorem 2.2 (Gauss Eureka). Every integer can be written as the sum of
three triangular numbers.

It is clear from this theorem that every integer can be partitioned into
triangular numbers.

The relationship between triangular numbers and complete graphs is stated
in the following lemma.

Lemma 2.3. There is a one-to-one correspondence between triangular numbers
and complete graphs.

Proof. For every complete graph Kn, the size of Kn, |E(Kn)| =

(
n

2

)
=

n(n− 1)

2
= ∆n, by Definition 2.1. �X

By applying the quadratic formula to solve for n where n(n−1)
2 = ∆n, we

have, for every triangular number ∆n,
1+
√

1+8∆n

2 = n = |V (Kn)|.

Corollary 2.4. Every triangular number partition of the integer k has a cor-
responding partition of the graph Kn of size k into subgraphs isomorphic to Ki

where i < n.

Notation. We denote the jth triangular number partition of the integer k by
πj(k) =

∑
∆i = k where ∆i is not necessarily distinct and i is an integer such

that 1 ≤ i ≤ k.

Thus each partition πj(k) has a corresponding vertex partition of V (Kn)
into subgraphs isomorphic to Ki for some i < n. Combining Lemma 2.3, Corol-
lary 2.4 and Proposition 1.2 lead us to use integer partitions of k to investigate
the number of flats of size k of M(Kn). Without loss of generality we proceed
with an example which gives an insight to the counting problem.

Example 2.5. We compute triangular number partitions, πj(6), and their
corresponding vertex partition of V (Kn).
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SIZES OF FLATS OF CYCLE MATROIDS OF COMPLETE GRAPHS 67

(a) π1(6) = 1 + 1 + 1 + 1 + 1 + 1 = ∆2 + ∆2 + ∆2 + ∆2 + ∆2 + ∆2 = 6.

(b) π2(6) = 3 + 1 + 1 + 1 = ∆3 + ∆2 + ∆2 + ∆2.

(c) π3(6) = 3 + 3 = ∆3 + ∆3.

(d) π4(6) = 6 = ∆4.

On the other hand, using the fact that 1+
√

1+8∆i

2 = |V (Ki)|, we let ∆i →
M(Ki).

(a) π1(6) = ∆2 + ∆2 + ∆2 + ∆2 + ∆2 + ∆2 → M(K2) ∪M(K2) ∪M(K2) ∪
M(K2) ∪M(K2) ∪M(K2).

(b) π2(6) = ∆3 + ∆2 + ∆2 + ∆2 →M(K3) ∪M(K2) ∪M(K2) ∪M(K2).

(c) π3(6) = ∆3 + ∆3 →M(K3) ∪M(K3).

(d) π4(6) = ∆4 →M(K4).

But flats X6 of size 6 in M(Kn) are of the form

(a) X61
∼= M(K2) ∪M(K2) ∪M(K2) ∪M(K2) ∪M(K2) ∪M(K2),

(b) X62
∼= M(K3) ∪M(K2) ∪M(K2) ∪M(K2),

(c) X63
∼= M(K3) ∪M(K3),

(d) X64
∼= M(K4).

Thus πj(6)→ X6j
.

Furthermore, to get a flat of size 6 in M(Kn) of the form X61 , six disjoint
copies of M(K2), we need n ≥ 12. Similarly, for X62

, X63
, and X64

we need
n ≥ 9, n ≥ 6 and n ≥ 4 respectively. For example, if n = 6, i.e. in M(K6), the
only possible flats are of the form X63

and X64
. This highlights a crucial point

in the counting of flats of M(Kn): not all integer partitions of k into triangular
numbers translate to flats of size k in M(Kn).

We now generalise the identification and enumeration problem of flats of
size k in M(Kn) as follows.

To ease notation, we label each block in the vertex partition as iβ , where i is
the number of vertices in the block and β the number of the block. We list the
blocks in decreasing size and increasing values of β. Set the value iβ = i and
let |βi| be the number of blocks in the partition that have the same number of
vertices i. Let Bj be the number of blocks in the vertex partition corresponding
to πj(k).
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68 CHRISTO KRIEL & EUNICE MPHAKO-BANDA

Thus, for example, we will label the block in the corresponding vertex par-
tition of π4(6) as 41, B4 = 1 and |β4| = 1. In the partition corresponding to
π3(6) we label the blocks 31 and 32, B3 = 2 and |β3| = 2.

Then the number of flats of size k corresponding to each πj(k) in Kn, |Xkj |,
is given by

|Xkj | =

(
n
i1

)(
n−i1
i2

)(
n−(i1+i2)

i3

)
· · ·
(n−(i1+i2+...+iBj−1)

iBj

)
∏
|βi|!

where |βi| is the number of blocks with size i in the partition and division by
|βi|! is to ensure that we don’t double count.

Example 2.6. To clarify the notation we use π2(6) from Example 2.5 and
calculate X62 in M(K9).

The triangular number partition π2(6) = ∆3 + ∆2 + ∆2 + ∆2 yields the
vertex partition labeled 31, 22, 23, 24. Thus,

|X62
| =

(
9
31

)(
9−31=6

22

)(
6−22=4

23

)(
4−23=2

24

)
(|β2| = 3)!

=

(
9
3

)(
6
2

)(
4
2

)(
2
2

)
3!

.

We note that the numerator in the above example can be written as the
multinomial coefficient

(
n

3,2,2,2

)
= 9!

3!2!2!2! .

Proposition 2.7. Let Xk be a flat of size k corresponding to π, a triangular
number partition of k = ∆i1 + · · ·+ ∆ia . Then there are exactly

|Xk| =
(

n

i1, . . . , ia, b

)
/
∏
|βi|!

flats of Kn = Ki1+···+ia+b of size k corresponding to π, where i1+· · ·+ia+b = n
and |βi| is the number of blocks in the partition that have the same number of
vertices, i.

The answer to Proposition 1.2 (ii) can be obtained by adding the answer
above over all triangular number partitions of k with i1 + · · ·+ ia + b = n.

This leads us to two more problems: when do we get
∑
i |V (Ki)| > n,

that is, determining the values of k such that |Xk| = 0 and when do we get∑
i |V (Ki)| < n i.e determining the values of k such that |Xk| 6= 0?

3. Values for which there are no flats of size k in M(Kn)

Next, we look at values of k for which there are no flats of size k of M(Kn).
According to Corollary 2.4 these are values of k for which every triangular
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SIZES OF FLATS OF CYCLE MATROIDS OF COMPLETE GRAPHS 69

number partition of k has a corresponding disjoint union of complete graphs
πj(|V (Kn)|) with

∑
i |V (Ki)| > n.

We will argue from the graph theoretic perspective in this section. In an
improper colouring of a graph G, call an edge bad if it connects two vertices of
the same colour. In an improper colouring of a graph G, a set of k bad edges
is a flat of size k.

Clearly, since there is a one-to-one correspondence between triangular num-
bers and complete graphs, there is a complete subgraph of Kn, that is, a flat
Xk ⊆ E(Kn) exists, for every triangular number k ≤

(
n
2

)
.

Now consider two successive triangular numbers ∆n−p =
(
n−p

2

)
and ∆n−p+1

=
(
n−p+1

2

)
such that the two corresponding complete graphs are both subgraphs

ofKn. We know by definition that ∆n−p+1−∆n−p = n−p and from the previous
paragraph that the number of flats for k = ∆n−p and k = ∆n−p+1 are non-zero.
To generate flats for

(
n−p

2

)
< k <

(
n−p+1

2

)
we need to add bad edges by choosing

complete subgraphs from the remaining p vertices in the partition {Kn−p,Kp}.
Once all p vertices have been chosen, the only way to add more edges is to add
edges between the two partitions, but this means that all vertices will be the
same colour. Thus, the number of flats for all

(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
will

be zero. We proceed to prove this statement in what follows.

Lemma 3.1. For integers n and p, if
p2 + p+ 4

2
≤ n, then there is at least

one integer between
(
n−p

2

)
+
(
p
2

)
and

(
n−p+1

2

)
.

Proof. With some manipulation p2+p+4
2 ≤ n can be written as

(
n−p

2

)
+
(
p
2

)
+2 ≤(

n−p+1
2

)
. Furthermore,

(
n−p

2

)
is a triangular number and

(
n−p+1

2

)
is the next

triangular number, so
(
n−p+1

2

)
>
(
n−p

2

)
.

If the difference between
(
n−p

2

)
+
(
p
2

)
and

(
n−p+1

2

)
is 1, then

(
n−p+1

2

)
is the

integer after
(
n−p

2

)
+
(
p
2

)
. Thus, since the difference is greater than or equal to

2, we must have at least one integer between the two integers
(
n−p

2

)
+
(
p
2

)
and(

n−p+1
2

)
. �X

From the inequality on p and n in Lemma 3.1, given n, we can calculate

the values of p as p ≤ b−1 +
√

8n− 15

2
c.

The following Lemma 3.2 is stated in [6].

Lemma 3.2. ∆n−i = ∆n + ∆i − i(n− 1).

We are now in a position to state and prove a theorem on some of the
integer intervals for which there are no flats of size k in M(Kn). Recall that,
by definition,

(
n
r

)
= 0 for n < r.
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Theorem 3.3. Let Kn be a complete graph of order n and for integers p and

k, 1 ≤ p ≤ b−1 +
√

8n− 15

2
c, let

(
n− p

2

)
+

(
p

2

)
< k <

(
n− p+ 1

2

)
. Then

the number of closed sets of edges of size k of Kn (flats of size k of M(Kn)) is
equal to zero.

Proof. Note that a set Xk of k bad edges in an improper colouring of a com-
plete graph Kn partitions Kn into a disjoint union of complete subgraphs, Ki,
such that | ∪E(Ki)| = k. Also note that any subgraph isomorphic to K1 in the
vertex partition contributes no edges to Xk.

Thus, we need to show that there is no disjoint union of complete subgraphs
of Kn with size k and order n. In other words, we need to show that once we
have partitioned Kn into two subgraphs Kn−p and Kp, it is not possible to
get more than

(
n−p

2

)
+
(
p
2

)
bad edges from any other partition until we choose

Kn−p+1 as a subgraph, thus giving us
(
n−p+1

2

)
bad edges. The proof is in two

parts. For ease of reference we will write the two parts as separate propositions.
Theorem 3.3 follows directly from Propositions 3.4 and 3.5. �X

We recall that our use of block refers to the elements of a set partition and
the size of a block B is given by |B|, the number of elements in B.

Proposition 3.4. Let Kn be a complete graph and p an integer such that

1 ≤ p ≤ b−1 +
√

8n− 15

2
c. Then there is no partition of Kn into two complete

subgraphs such that there will be more than
(
n−p

2

)
+
(
p
2

)
and less than

(
n−p+1

2

)
bad edges.

Proof. We have p ≥ 1 and p2+p+4
2 ≤ n. The latter inequality guarantees by

Lemma 3.1 that the interval
(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
is not empty.

Suppose there are two subgraphs Kn−r and Kr such that k =
(
n−r

2

)
+
(
r
2

)
and r 6= p such that

(
n−r

2

)
+
(
r
2

)
>
(
n−p

2

)
+
(
p
2

)
. We use all n vertices in the

supposed partition in order to maximise the number of bad edges. We must
have (n− r) < (n− p), otherwise

(
n−r

2

)
≥
(
n−p+1

2

)
, giving a value for k outside

our proposition statement. Hence we have r > p. Also, r, p ≤ bn2 c, otherwise,
the two parts in each partition simply reverse their places and our proof is the
same by symmetry. We use the identified inequalities and Lemma 3.2 to prove
that

(
n−p

2

)
+
(
p
2

)
>
(
n−r

2

)
+
(
r
2

)
. Using the correspondence between complete

graphs and triangular numbers(
n− p

2

)
+

(
p

2

)
>

(
n− r

2

)
+

(
r

2

)
⇒ ∆n−p + ∆p > ∆n−r + ∆r.

Hence, we need to show that

(∆n−p + ∆p)− (∆n−r + ∆r) > 0.
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Using Lemma 3.2 we can show that

(∆n−p + ∆p)− (∆n−r + ∆r) = (∆n + ∆p − p(n− 1) + ∆p)

− (∆n + ∆r − r(n− 1) + ∆r)

= (p− r)(p+ r − n).

Since r > p, (p− r) < 0. Also, r, p ≤ bn2 c. But p < r, so p ≤ bn2 c − 1.

Hence,

r + p ≤ bn
2
c+ bn

2
c − 1

≤ n

2
+
n

2
− 1 ≤ n− 1

< n.

Thus, (r + p− n) < 0 and (p− r)(p+ r − n) > 0.

We conclude that there is no partition of k into two triangular numbers such
that

(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
, given the bounds identified, and therefore there

is no partition of Kn into two complete subgraphs such that there will be more
than

(
n−p

2

)
+
(
p
2

)
and less than

(
n−p+1

2

)
bad edges. �X

Proposition 3.5. Let Kn be a complete graph and p an integer such that

1 ≤ p ≤ b−1 +
√

8n− 15

2
c. Then there is no partition of Kn into three or

more complete subgraphs such that there will be more than
(
n−p

2

)
+
(
p
2

)
and less

than
(
n−p+1

2

)
bad edges.

Proof. We proceed to prove that there is no disjoint union of three or more
complete subgraphs that will give us more bad edges on n vertices than we
get from the partition {Kn−p, Kp} and fewer bad edges than when we choose
Kn−p+1 as the induced closed subgraph with

(
n−p+1

2

)
edges.

There is a total of
(
n
2

)
edges in Kn. Choosing a flat of edges as bad edges

partitions the edge set, one part of the total set of edges will be bad and the
remainder will be ‘good’. Hence, in order to prove

(
n−p

2

)
+
(
p
2

)
yields more bad

edges than any partition of Kn into three (or more) complete subgraphs, it is
sufficient to show that the number of ‘good’ edges in the partition with larger
number of blocks is greater than the number of good edges in the partition
{Kn−p, Kp}, given certain bounds which arise naturally from the proposition
statement.

Revista Colombiana de Matemáticas
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Figure 1. We divide Kn−p into two subgraphs (I) and Kp into two subgraphs (II).

We start with two complete subgraphs Kn−p and Kp. We have (n− p)p good
edges, call these red edges. We partition Kn−p into two complete subgraphs
Kn−r and Kn−q. This gives the partition I in Figure 1. Since this is a partition
of the vertices of Kn−p, we have (n− r) + (n− q) = (n− p).

There are (n − q)p and (n − r)p good edges between Kp and Kn−q and
Kn−r respectively and (n−q)(n−r) good edges between Kn−q and Kn−r. Call
the good edges between the latter two graphs green edges. Clearly we have
more good edges in our partition {Kn−r, Kn−q, Kp} than in our partition
{Kn−p, Kp}. Also (n− q)p+ (n− r)p = (n− p)p since the good edges between
Kp and the other two graphs remain constant no matter how we split the
vertices in Kn−p (recall that these are red edges). Similarly we partition Kp

into two subgraphs Kq and Kp−q as in partition II in Figure 1. What should
be clear is that the ‘red’ edges remain the same as in the original {Kn−p, Kp}
partition and the ‘green’ edges resulting from our partitions I and II are extra.
So we have (n− q)(n− r) + (n− q)p+ (n− r)p > (n− p)p in Partition I and
(p− q)q + (n− p)(p− q) + (n− p)q > (n− p)p in Partition II.

Now partition Kn into three complete subgraphs, with vertex partitions
A, B and C. The induced subgraphs are all complete graphs and the edges in
each of the partitions are bad edges and the vertices all the same colour. The
edges between the partitions are good edges. We must have |A|, |B| and |C| ≤
n − p otherwise we have at least

(
n−p+1

2

)
bad edges and this falls outside the

proposition statement. If |A|, |B| or |C| = n − p or p then we have partition
I or II and the proposition holds, so we will assume that |A|, |B| or |C| 6=
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n− p nor p. Hence we have |A|, |B| and |C| < n− p. We use all the n vertices
in the partition in order to get as many bad edges as possible.

Suppose |A| ≥ |B|, |C| and let |A| = n − r for some integer r > p, then
|B|+ |C| = r. We know that there is no partition {Kn−r,Kr} such that there
are

(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
bad edges. Since B and C partition Kr, the

partition {K|B|,K|C|} has fewer bad edges than Kr and, hence, the number of
bad edges resulting from the vertex partition A,B and C is less than from the
partition {Kn−r,Kr} and, hence, less than {Kn−p,Kp} from Proposition 3.4.

By the same reasoning the proposition holds even if we are using a larger
number of blocks in our partition. �X

4. A lower bound on the number of flats of size k such that M(Kn)
has no flat of size k.

Finally, we state and prove a lower bound for the number of flats of size k
such that M(Kn) has no flat of size k. We need the following two identities on
triangular numbers which we state as lemmas. We note that Lemma 4.1 has
been known since at least 1261, see [3], and Lemma 3.2, listed in [6], is equally
easy to prove.

Lemma 4.1.

p∑
i=1

∆i =
(p− 1)p(p+ 1)

6
.

Theorem 4.2. The number of integers k such that M(Kn) has no flat of size

k, is at least p(n − 1) − p(p+1)(p+2)
6 , where p = b−1+

√
8n−15
2 c. Asymptotically

this number is at least ∼ 2
√

2
3 n
√
n

Proof. We know from Theorem 3.3 that for all integers k such that
(
n−p

2

)
+(

p
2

)
< k <

(
n−p+1

2

)
for 1 ≤ p ≤ b−1+

√
8n−15
2 c, there are no flats of size k in

M(Kn), so we will count this number of integers over all p on the interval.

There are
(
n−p+1

2

)
−
((
n−p

2

)
+
(
p
2

))
−1 integers between

(
n−p+1

2

)
and

(
n−p

2

)
+(

p
2

)
so the total number of integers is given by

p∑
i=1

((
n− i+ 1

2

)
−
(
n− i

2

)
−
(
i

2

)
− 1

)
.

By our definition of triangular numbers this is equivalent to

p∑
i=1

(∆n+1−i −∆n−i −∆i − 1),

where ∆i is the i-th triangular number.
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We recall from Definition 2.1 that ∆n+1 = ∆n + n and use the identities
from Lemmas 4.1 and 3.2 to evaluate the sum.

p∑
i=1

(∆n+1−i −∆n−i −∆i − 1)

=

p∑
i=1

(∆n+1 + ∆i − in− (∆n + ∆i − i(n− 1))−∆i − 1)

=

p∑
i=1

(∆n+1 −∆n −∆i − i− 1)

=

p∑
i=1

(n−∆i − i− 1)

= pn− (p− 1)p(p+ 1)

6
− p(p+ 1)

2
− p

= p(n− 1)− (p)(p+ 1)(p+ 2)

6
.

�X

Note, we know that there are some values for k outside the intervals iden-
tified in Theorem 3.3 such that there are no flats of size k in M(Kn). Without
loss of generality, let n = 6 then p = 2. By Theorem 3.3 this means that there
are no flats of size k for 7 < k < 10 as well as 10 < k < 15. Evaluating

p(n− 1)− p(p+1)(p+2)
6 this gives 6 values of k such that M(Kn) has no flats of

size k. However, there is also no flat of size k = 5 in M(K6), since the trian-
gular number partitions for 5 are 1 + 1 + 1 + 1 + 1 and 3 + 1 + 1, requiring a
complete graph of order at least ten and seven, respectively. But 5 falls outside

the intervals determined by Theorem 3.3. Thus p(n − 1) − p(p+1)(p+2)
6 gives a

lower bound on the number of values for k such that there are no such flats in
M(Kn).
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