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Abstract. The intersection of an affine hyperplane in L4 with the light cone C
is called a conic section. In this paper, it is proved that the conic sections in L4

are either Riemannian spheres, hyperbolic spaces or horospheres, depending
on the causal character of the hyperplane. Analogous results for affine sections
of de Sitter and hyperbolic spaces in L4 are also presented at the end.
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Resumen. La intersección de un hiperplano af́ın en L4 con el cono de luz C se
llama una sección cónica. En este art́ıculo, probamos que las secciones cónicas
de L4 son esferas de Riemann, espacios hiperbólicos o horoesferas, dependiendo
del carácter causal del hiperplano. Al final del art́ıculo presentamos resultados
similares para secciones afines de espacios de Sitter y espacios hiperbólicos de
L4.

Palabras y frases clave. Espacio de Minkowski 4-dimensional, cono de luz, sec-
ciones cónicas, hipercuádricas.

1. Introduction

If we take an affine hyperplane in L4 and consider the intersection of this
hyperplane with the light cone C, we get a set that is called a conic section. The
aim of this paper is to give a formal demonstration that the conic sections in
L4 are either Riemannian spheres, hyperbolic spaces or horospheres, depending
on the causal character of the hyperplane. Moreover a corresponding general
equation for these affine sections is given.
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Conic sections are essential study objects in Lorentzian geometry. There are
a wide variety of results in the literature where these objects play an important
role. For example, in [4], the author shows that the geometric properties of
the intersection of a lightlike hyperplane with a light cone in the Minkowski
spacetime are connected with the construction of the trapped surface in [1],
and hence provides a better conceptual understanding of the result in [1].

On the other hand, affine sections obtained from the intersection of an affine
hyperplane in L4 with a hyperquadric are also of interest and play essential
functions in geometry. For instance, in the study of surfaces in S3

1 and H3,
we have that totally umbilical spacelike surfaces in S3

1 and totally umbilical
surfaces in H3 are contained in these affine sections.

In the next section, we are going to introduce the Minkowski 4-space L4,
the causal character of a vector and a subspace in this space, and the notion of
angle between two vectors. Some known facts and properties of space L4 will
also be presented. A more detailed and extensive treatment of the subject, as
well as the demonstrations of those results can be found in [3], [2] and [7]. Some
references about hyperbolic geometry and horospheres are [5] and [6]. In the
last section, we will present our result.

2. The Minkowski 4-space L4

Let R4 denote the real vector space with its usual structure. Let {ei : 1 ≤ i ≤ 4}
the canonical basis of R4. We denote (x1, x2, x3, x4) the coordinates of a vector
with respect to this basis. We also consider in R4 its affine structure.

The Minkowski 4-space L4 is the real vector space R4 endowed with the
Lorentz scalar product 〈·, ·〉 defined by the pseudometric

ds2 = −
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+
(
dx4
)2

(2.1)

in canonical coordinates and, oriented by dL4 =
(
−dx1

)
∧ dx2 ∧ dx3 ∧ dx4.

A vector v ∈ L4 is said to be

(i) spacelike if 〈v, v〉 > 0 or v = 0,

(ii) timelike if 〈v, v〉 < 0,

(iii) lightlike if 〈v, v〉 = 0 and v 6= 0.

The label spacelike, timelike or lightlike is called the causal character of a
vector. Moreover, it is said that a timelike or spacelike vector v is future-directed
if 〈v, e1〉 < 0 and past-directed if 〈v, e1〉 > 0.
The light cone of L4 is the set of all lightlike vectors of L4:

C = {(x1, x2, x3, x4) ∈ L4 : −(x1)2 + (x2)2 + (x3)2 + (x4)2 = 0} − {(0, 0, 0, 0)}.
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The set of all timelike vectors in L4 is

T = {(x1, x2, x3, x4) ∈ L4 : −(x1)2 + (x2)2 + (x3)2 + (x4)2 < 0}.

Observe that both C and T have two connected components.

Vectors v and w in L4 are called orthogonal if 〈v, w〉 = 0. A set of vectors
{εi : 1 ≤ i ≤ 4} is an orthonormal basis for L4 if

• 〈εi, εj〉 = 0 for i 6= j,

• 〈ε1, ε1〉 = −1,

• 〈εi, εi〉 = 1 for all 2 ≤ i ≤ 4.

Note that the canonical basis of R4 is an orthonormal basis of L4 which
will also be called canonical. It is said that an orthonormal basis is positively
oriented or a Minkowski reference frame if it is compatible with the orientation
dL4(ε1, ε2, ε3, ε4) < 0 and, in addition, the timelike vector ε1 is future-directed.

The Lorentzian norm ‖v‖ of a vector v of L4 is defined by ‖v‖ =
√
|〈v, v〉|.

The vector v is called unitary if its norm is 1.

Remark 2.1. An orthonormal basis of L4 cannot contain lightlike vectors,
since 〈·, ·〉 is non-degenerate.

Let V be a vector subspace of L4, it is said to be

(i) spacelike if 〈·, ·〉|V is positive definite,

(ii) timelike if 〈·, ·〉|V is non-degenerate and has index 1 (the maximum pos-
sible dimension of a negative definite subspace is 1),

(iii) lightlike if 〈·, ·〉|V is degenerate.

The causal character of a subspace is the property to be spacelike, time-
like or lightlike. Note that this definition is consistent with the definition of
causal character of a vector in the sense that the causal character of an indi-
vidual vector v is the same as the causal character of the subspace span {v} it
generates.

Remark 2.2. An unidimensional subspace is usually called a light ray. Every
subspace of L4 necessarily has one of the three causal types above. For simplic-
ity, when a subspace is not lightlike, it is said only that it is non-degenerate.

It is said that a set S ⊆ L4 is orthogonal if any two distinct vectors in S are
orthogonal. Moreover, if all vectors in S are unitary vectors, then S is called
orthonormal. We see that an orthonormal basis is an example of an orthonormal
set.
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For any subset S ⊆ L4, the orthogonal space of S in L4 is defined by

S⊥ = {w ∈ L4 : 〈v, w〉 = 0 ∀v ∈ S}.

Remark 2.3. The orthogonal space of a subset in L4 is always a subspace of
L4, even if the subset itself is not. We use the term “orthogonal space” instead of
“orthogonal complement” because, in this case, we do not necessarily have that,
if S ⊆ L4 is a subspace, then L4 = S ⊕S⊥. A counterexample can be obtained
by taking the subspace V = {(x1, x2, x3, x4) ∈ L4 : x1 = x3}. The orthogonal
space to this subspace is V ⊥ = {(x1, x2, x3, x4) ∈ L4 : x1 = x3 , x2 = x4 = 0}.

The notion of causal character for subspaces is naturally related to the
notion of orthogonality, as it can be concluded from the following results.

Proposition 2.4. If V is a subspace of L4, then

(i) dimV + dimV ⊥ = 4,

(ii) (V ⊥)⊥ = V .

Corollary 2.5. Let V ⊆ L4 be a subspace. Then V is non-degenerate if and
only if L4 = V ⊕ V ⊥. In particular, V is non-degenerate if and only if V ⊥ is
also non-degenerate.

Lemma 2.6. Let V ⊆ L4 be a non-degenerate subspace. Then V is timelike
(spacelike) if and only if V ⊥ is spacelike (timelike). In particular, if v is a time-

like (spacelike) vector of L4, then the subspace span {v}⊥ is spacelike (timelike)

and L4 = span {v} ⊕ span {v}⊥.

Comparing with Euclidean space R4, the existence of timelike and lightlike
vectors in L4 gives rise to some “strange” properties, as the following:

Proposition 2.7. In L4, we have that:

(i) Two lightlike vectors are orthogonal if and only if they are proportional.

(ii) A timelike vector cannot be orthogonal to a lightlike vector or to another
timelike vector.

(iii) If V is a lightlike subspace, then dim(V ∩ V ⊥) = 1.

Now, we consider some criteria for a subspace of dimension ≥ 2 to be
timelike.

Proposition 2.8. Let V ⊆ L4 be a subspace of dimension ≥ 2. Then, the
following conditions are equivalent:

(i) V is a timelike subspace.
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(ii) V contains two linearly independent lightlike vectors.

(iii) V contains a timelike vector.

Now, we characterize lightlike subspaces.

Proposition 2.9. Let V ⊆ L4 be a subspace. The following statements are
equivalent:

(i) V is a lightlike subspace.

(ii) V contains a lightlike vector but not a timelike vector.

(iii) V ∩ C = L− {0}, where L is a one-dimensional subspace.

2.1. Angles between two vectors

For u ∈ T , the open set:

C(u) = {v ∈ T : 〈u, v〉 < 0}

is the timecone of L4 containing u. The opposite timecone is

C(−u) = −C(u) = {v ∈ T : 〈u, v〉 > 0}.

The set C(u) is non-empty since u ∈ C(u). Moreover, if v is another timelike
vector, by Proposition 2.7 we have that 〈u, v〉 < 0 or 〈u, v〉 > 0. This means
that T is the disjoint union of these two timecones.

Proposition 2.10. Let u, v ∈ L4 be timelike vectors. Then,

(i) They are in the same timecone if and only if 〈u, v〉 < 0.

(ii) u ∈ C(v) if and only if v ∈ C(u).

A difference that we find between R4 and L4 refers to the Cauchy–Schwarz
inequality. Recall that if u, v ∈ R4, the Cauchy–Schwarz inequality asserts
|〈u, v〉| ≤ ‖u‖‖v‖ and the equality holds if and only if u and v are proportional.
This inequality permits the definition of angle between two vectors.

In Minkowski space, and for timelike vectors, there exists a “reverse” in-
equality called backwards Cauchy–Schwarz inequality.

Theorem 2.11. Let u and v be timelike vectors in L4. Then

|〈u, v〉| ≥ ‖u‖‖v‖

and the equality holds if and only if u and v are proportional. In the case that
both vectors lie in the same timelike cone, there exists a unique number ϕ ≥ 0
such that

〈u, v〉 = −‖u‖‖v‖ coshϕ. (2.2)
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Since the Cauchy–Schwarz inequality runs backwards in this context, so
does the triangle inequality.

Corollary 2.12. If u and v are timelike vectors in the same timecone, then
‖u+ v‖ ≥ ‖u‖+ ‖v‖, with equality if and only if u and v are proportional.

The number ϕ ≥ 0 of the Theorem 2.11 is called the hyperbolic angle between
u and v. The angle ϕ is also called rapidity in more physical literature.

After the definition of angle between two timelike vectors that lie in the same
timecone, we ask how to define the angle between any two vectors u, v ∈ L4.
Assume that u, v are linearly independent and that they are not lightlike. The
angle is defined depending on the causal character of the plane (2-dimensional
subspace) P spanned by u and v. The induced metric on P can be Riemannian,
Lorentzian or degenerate.

Let u and v be spacelike vectors in L4 that span a spacelike subspace. It is
obvious that we have

|〈u, v〉| ≤ ‖u‖‖v‖

with equality if and only if u and v are proportional. Hence, there exists a
unique number 0 ≤ θ ≤ π such that

〈u, v〉 = ‖u‖‖v‖ cos θ. (2.3)

The number θ is called the Lorentzian spacelike angle [5, p. 68] between u and
v.

Let u and v be spacelike vectors in L4 that span a timelike subspace. In [5],
it was proved that

|〈u, v〉| > ‖u‖‖v‖

and hence, that there exists a unique real number θ > 0 such that

〈u, v〉 = ‖u‖‖v‖ cosh θ. (2.4)

The Lorentzian timelike angle [5, p. 69] between spacelike vectors u and v is
defined to be θ.

Let u be a spacelike vector and v be a timelike vector in L4. In [5], it was
proved that there exists a unique real number θ ≥ 0 such that

〈u, v〉 = ‖u‖‖v‖ sinh θ. (2.5)

The Lorentzian timelike angle [5, p. 71] between u and v is defined to be θ.
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2.2. Hyperquadrics

Let’s consider q(u) = 〈u, u〉 the associated quadratic form of 〈·, ·〉. Relative to
standard coordinates,

q(u) = −(u1)2 + (u2)2 + (u3)2 + (u4)2.

The sets, for r > 0 and ε = ±1, Q = q−1(εr2) are called the (central) hyper-
quadrics or pseudo-spheres of L4. The two families ε = 1 and ε = −1 fill all of
L4 except the set q−1(0), which consists of the light cone C and the origin 0.

The hyperquadric of L4 given by

S3
1(r) = q−1(r2) = {x ∈ L4 : 〈x, x〉 = r2}

is called de Sitter space (with center at the origin and radius r).

The hyperquadric of L4 given by

H3
1(r) = q−1(−r2) = {x ∈ L4 : 〈x, x〉 = −r2}

is called Anti-de Sitter space or hyperbolic space (with center at the origin and
radius r).

For the purposes of this work it is sufficient to consider r = 1 in both cases
and hence denote S3

1(1) by S3
1 and H3

1(1) by H3.

The translations of theses spaces are also considered:

S3
1(x0, r) = {x ∈ L4 : 〈x− x0, x− x0〉 = r2}

and
H3

1(x0, r) = {x ∈ L4 : 〈x− x0, x− x0〉 = −r2},
which are called de Sitter space and hyperbolic space with center at x0 and
radius r, respectively.

Remark 2.13. A linear transformation A : L4 → L4 is called a Lorentz
transformation if 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ L4. The fact that a change of
reference frame is determined by a Lorentz transformation shows us that the
central hyperquadrics remain fixed when taking any reference frame.

In the next section we will study the following algebraic system of equations:{
−a1x1 + a2x2 + a3x3 + a4x4 = b

−x2
1 + x2

2 + x2
3 + x2

4 = εr2,
(2.6)

for ai, b, r ∈ R with r > 0, and ε ∈ {−1, 0, 1}, and we will interpret the solutions
of this system as a surface in L4.

The first equation of the system above, can be seen as an equation of an
affine hyperplane and the second equation, can be seen as a leaf of the foliation
of L4 given by its central hyperquadrics or pseudo-spheres.

The foliation given by the second equation induces a foliation of the affine
hyperplane given by the quadrics of this 3-dimensional subspace.
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3. Sections of the light cone

A hyperplane of L4 is a vector subspace of codimension one in L4. The trans-
lation of a hyperplane is known as an affine hyperplane. We know that there
are three mutually exclusive cases for a hyperplane H in L4: H is a spacelike
hyperplane, H is a timelike hyperplane or H is a lightlike hyperplane.

If H is a spacelike (timelike) affine hyperplane in L4, by Lemma 2.6 there
exists a timelike (spacelike) vector τ and a real number c (that can be either
positive, negative or zero) such that

H = {x ∈ L4 : 〈x, τ〉 = c}.

3.1. Spacelike case

Let us consider a spacelike affine hyperplane that intersects the x1-axis at the
point p = (a, 0, 0, 0), and denote it by H(p). We can assume without loss of gen-
erality that a > 0. Thus, there exists an unique future-directed unitary timelike
vector τ such that the affine hyperplane H(p) has the following equation:

x ∈ H(p) if and only if 〈x− p, τ〉 = 0. (3.1)

The solution of the following system of equations:{
〈x, x〉 = 0

〈x− p, τ〉 = 0
(3.2)

is the intersection of the affine hyperplane H(p) with the light cone C.

e1τ

p

ϕ

H(p)

C

Figure 1. Affine section obtained from the intersection of a spacelike affine hyper-
plane in L4 with the like cone C.

To solve the previous system (3.2), we are going to find an appropriate
Minkowski reference frame adapted to the timelike vector τ . Let coshϕ =
−〈e1, τ〉 be the hyperbolic angle between the future-directed timelike vectors
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e1 = (1, 0, 0, 0) and τ (see Fig. 1). Firstly, assume that e1 6= τ . Take an unitary

vector e4 of the subspace span {e1}⊥, and an orthonormal basis {τ, ν} for the
vector subspace span {e1, τ} such that

τ = coshϕe1 + sinhϕe4 and ν = sinhϕe1 + coshϕe4. (3.3)

Observe that ν is an unitary vector of H(p).

Now, consider a Minkowski reference frame {f1, f2, f3, f4} of L4, where f1 =
τ and f4 = ν. Thus, we have the following vectorial equation for the hyperplane
H(p)

x(r, s, t) = p+ rf2 + sf3 + tf4, (3.4)

r,s and t any real numbers.

Hence, if x satisfies the system (3.2), we have that

x = p+ rf2 + sf3 + tf4 and 〈x, x〉 = 0, (3.5)

for certain real numbers r, s and t.

Therefore, from (3.5), (3.3) and the above considerations, we get

r2 + s2 + (t− a sinhϕ)2 = a2 cosh2 ϕ. (3.6)

Secondly, assume that e1 = τ . Then, the following equation is a vectorial equa-
tion for the hyperplane H(p)

x(r, s, t) = p+ re2 + se3 + te4, (3.7)

r, s, and t any real numbers.

Thus, if x satisfies the system (3.2), we have that

x = p+ re2 + se3 + te4 and 〈x, x〉 = 0, (3.8)

for certain real numbers r, s and t.
Therefore, from (3.8), we obtain

r2 + s2 + t
2

= a2. (3.9)

It follows from the above, the next result:

Proposition 3.1. The section H(p)∩C in L4 is a 2-dimensional Riemannian
sphere. More precisely, with the above notations, we have that

H(p) ∩ C = S2(x0, ρ), (3.10)

where x0 = a coshϕf1, ρ = a coshϕ and S2(x0, ρ) is the sphere in H(p) with
center at x0 and radius ρ.
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3.2. Timelike case

Now, let us consider a timelike affine hyperplane. This hyperplane intersects
some spatial axis, let us suppose that it cuts the x4-axis. Let p = (0, 0, 0, a) be
the point of intersection between the hyperplane and the x4-axis, and denote
the hyperplane by H(p). We can assume without loss of generality that a > 0.
Thus, there exists an unitary spacelike vector ν such that the affine hyperplane
H(p) has the following equation:

x ∈ H(p) if and only if 〈x− p, ν〉 = 0. (3.11)

We want to solve the following system of equations:{
〈x, x〉 = 0,

〈x− p, ν〉 = 0,
(3.12)

i.e., to find the intersection of the timelike affine hyperplane H(p) with the
light cone C.

e4 p

ν

θ

C

H(p)

Figure 2. Affine section obtained from the intersection of a timelike affine hyperplane
in L4 with the like cone C.

To solve the system (3.12), we are going to find a very good Minkowski
reference frame adapted to the spacelike vector ν. Firstly, assume that e4 6= ν.
Consider the plane span {e4, ν}, this plane can be spacelike or timelike.

If span {e4, ν} is a spacelike plane, then take cos θ = 〈e4, ν〉 the Lorentzian
spacelike angle between e4 and the spacelike vector ν (see Fig. 2). Take an

unitary spacelike vector e2 of the subspace span {e4}⊥, and an orthonormal
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basis {v, ν} for the vectorial subspace span {e4, ν} such that

v = cos θe2 − sin θe4 and ν = sin θe2 + cos θe4. (3.13)

Now, consider a Minkowski reference frame {f1, f2, f3, f4} of L4, where f1 is a
future-directed unitary timelike vector, f2 = v and f4 = ν. Then, we obtain
the following vectorial equation for the hyperplane H(p)

x(r, s, t) = p+ rf1 + sf2 + tf3, (3.14)

r,s and t any real numbers.

Therefore, if x satisfies the system (3.12), we have that

x = p+ rf1 + sf2 + tf3 and 〈x, x〉 = 0, (3.15)

for certain real numbers r, s and t.

Thus, from (3.15), (3.13) and the above considerations, we get

−r2 + (s− a sin θ)2 + t
2

= −a2 cos2 θ. (3.16)

On the other hand, if span {e4, ν} is a timelike plane, then take coshψ = 〈e4, ν〉
the Lorentzian timelike angle between e4 and the spacelike vector ν. Take an
unitary timelike vector e1 of the subspace span {e4}⊥, and an orthonormal
basis {τ, ν} for the vectorial subspace span {e4, ν} such that

τ = coshψe1 + sinhψe4 and ν = sinhψe1 + coshψe4. (3.17)

Consider a Minkowski reference frame {f1, f2, f3, f4} of L4, where f1 = τ and
f4 = ν. Thus, a vectorial equation for the hyperplane H(p) is

x(r, s, t) = p+ rf1 + sf2 + tf3, (3.18)

r,s and t any real numbers.

Hence, if x satisfies the system (3.12), we have that

x = p+ rf1 + sf2 + tf3 and 〈x, x〉 = 0, (3.19)

for certain real numbers r, s and t.

Therefore, from (3.19), (3.17) and the above considerations, we get

−(r − a sinhψ)2 + s2 + t
2

= −a2 cosh2 ψ. (3.20)

Secondly, assume that e4 = ν. Then, the following equation is a vectorial equa-
tion for the hyperplane H(p):

x(r, s, t) = p+ re1 + se2 + te3, (3.21)
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r, s, and t any real numbers.

Thus, if x satisfies the system (3.12), we have that

x = p+ re1 + se2 + te3 and 〈x, x〉 = 0, (3.22)

for certain real numbers r, s and t.

Therefore, from (3.22), we obtain

−r2 + s2 + t
2

= −a2. (3.23)

It follows from the above, the next result:

Proposition 3.2. The section H(p) ∩ C in L4 is a 2-dimensional hyperbolic
space. More precisely, with the above notations, we have that

H(p) ∩ C = H2
1(x0, ρ), (3.24)

where x0 = a cos θf4 and ρ = a cos θ, or x0 = a coshψf4 and ρ = a coshψ, and
H2

1(x0, ρ) is the hyperbolic space in H(p) with center at x0 and radius ρ.

3.3. Lightlike case

At last, let us consider a lightlike affine hyperplane. We can assume without loss
of generality that this hyperplane intersects the upper part of the light cone.
Let p = (a, p2, p3, p4) be the point of intersection between this hyperplane and
the light cone C such that

a = min{x1 > 0 : (x1, x2, x3, x4) is at the intersection

of the hyperplane with the light cone C}.

Denote the hyperplane by H(p). We have that there exists a lightlike vector υ
in the upper part of the light cone such that the affine hyperplane H(p) has
the following equation:

x ∈ H(p) if and only if 〈x− p, υ〉 = 0. (3.25)

We want to solve the following system of equations:{
〈x, x〉 = 0,

〈x− p, υ〉 = 0,
(3.26)

and so, to find the intersection of the lightlike affine hyperplane H(p) with the
light cone C.
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e1

υ

ê4

p

Figure 3. Affine section obtained from the intersection of a lightlike affine hyperplane
in L4 with the like cone C.

Consider TυC the lightlike tangent hyperplane to C at the point υ. Now,
take a basis {e2, e3, υ} of TυC in such a way that {e2, e3} is an orthonormal

basis of the plane TυC ∩ span {e1}⊥, and for the positive real number a

υ = ae1 + aê4 and p = ae1 − aê4, (3.27)

where ê4 = e2 ∧ e3 and “∧” is the vector product in span {e1}⊥ (see Fig. 3).
Observe that {e1, e2, e3, ê4} is a Minkowski reference frame of L4.

We have that, a vectorial equation for the hyperplane H(p) is

x(r, s, t) = p+ re2 + se3 + tυ, (3.28)

for any real numbers r,s and t.

Hence, if x satisfies the system (3.26), we have that

x = p+ r̃e2 + s̃e3 + t̃υ and 〈x, x〉 = 0, (3.29)

for certain real numbers r̃, s̃ and t̃.

Therefore, from (3.29), (3.27) and the above considerations, we get

r̃2 + s̃2 = 4a2t̃. (3.30)

It follows from the above, the next result:

Proposition 3.3. The section H(p)∩C in L4 is a horosphere. More precisely,
with the above notations, we have that H(p) ∩ C is the horosphere

r̃2 + s̃2 = 4a2t̃. (3.31)

(See Corollary 4.5 and Corollary 4.6).
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4. An application to hyperbolic geometry

Let {εi : 1 ≤ i ≤ 4} be a Minkowski reference frame of L4. We denote the co-
ordinates of a vector with respect to this basis by (t, x, y, z).

Consider H3
+ =

{
(t, x, y, z) : −t2 + x2 + y2 + z2 = −1 , t > 0

}
the upper

part of the hyperbolic space, and B3 =
{

(0, u, v, w) : u2 + v2 + w2 < 1
}

the
Euclidean open ball contained in the slice {0} × R3 of the space L4.

The hyperbolic stereographic projection. We fix the point
S = (−1, 0, 0, 0) (south pole of H3), and for each point A = (0, u, v, w) ∈ B3 we
consider the equation

P (λ) = S + λ(A− S) = (−1, 0, 0, 0) + λ(1, u, v, w) for each λ > 0.

If 〈P, P 〉 = −(λ− 1)2 + λ2(u2 + v2 + w2) = −1 and λ > 0, then

λ =
2

1− u2 − v2 − w2
, (4.1)

which implies that P (λ) = F (u, v, w) is given by

F (u, v, w) =
1

1− u2 − v2 − w2
(1 + u2 + v2 + w2, 2u, 2v, 2w). (4.2)

The inverse of the function F : B3 → H3
+ it will denote by St(t, x, y, z) =

(0, u, v, w), and can be obtained from the equation

Q(ψ) = S + ψ(Y − S) for each ψ > 0, where Y = (t, x, y, z).

Thus, we have that St(t, x, y, z) = A = (0, u, v, w) for ψ =
1

1 + t
, hence:

St(t, x, y, z) =

(
0,

x

1 + t
,

y

1 + t
,

z

1 + t

)
. (4.3)

St is called the stereographic projection from H3
+ onto the Euclidean ball B3.

It can be observed that the straight line segment given by 0 ≤ ψ ≤ 1 cuts
the future directed light cone C+ at a unique point given by 〈Q(ψ), Q(ψ)〉 = 0,
since the light cone is the asymptotic hyperquadric in the set of all central
hyperquadrics of L4.

Proposition 4.1. For each geometric figure F contained in the open ball B3

there exists an unique figure FC+ in the light cone C and an unique figure FH3
+

in the hyperbolic space H3 determined by the stereographic projection.

4.1. Horospheres

To define the horospheres and their parametrization in this context we start
by introducing the conformal ball model of the hyperbolic 3-space as follows.
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Definition 4.2. The line element given by the parametrization in equation
(4.1) of the upper part of the hyperbolic space H3

+ is

ds2(F ) =
4

(1− u2 − v2 − w2)2
(du2 + dv2 + dw2). (4.4)

The Poincaré ball model is the ball B3 equipped with the line element deter-
mined by equation (4.4).

Since this metric is conformal it preserves Euclidean angles. The Euclidean
spheres are also hyperbolic spheres.

Let A be a point on a hyperbolic sphere S of B3, and let R be the geodesic
ray of B3 starting at A and passing through the center C of S. If we expand S
by moving C away from A on R at a constant rate while keeping A on S, the
sphere tends to a limiting hypersurface Σ in B3 containing A. By moving A to
0, we see that Σ is a Euclidean sphere minus the ideal endpoint B of R and
that the Euclidean sphere Σ is tangent to ∂B3 at B.

Definition 4.3. A horosphere Σ of B3, based at a point B of ∂B3, is the
intersection with B3 of a Euclidean sphere in B3 tangent to ∂B3 at B.

Parametrization of a horosphere. We take the following family of para-
metric surfaces in L4:

X(x, y) = (α, 0, 0, β) +

(
x2 + y2

2m
,x, y,

x2 + y2

2m

)
,

defined for each (x, y) ∈ R2 and constants m,α, β ∈ R.

Since the tangent vectors
∂X

∂x
and

∂X

∂y
are unitary spacelike and orthogonal

to each other, these surfaces are conformal to the Euclidean plane R2. The first
quadratic form is given by

ds2(X) = dx2 + dy2.

As a consequence, the Gauss curvature K(X)(x, y) = 0 for each (x, y) ∈ R2.
Furthermore, the mean curvature vectors of each of these surfaces are lightlike
vectors

H(X)(x, y) =
1

m
(ε1 + n).

Now, we have that

〈X(x, y), X(x, y)〉 = −α2 + β2 + x2 + y2 +
x2 + y2

m
(−α+ β) = −1

if and only if α2−β2 = 1 and β−α = −m. Solving these equations, we obtain

α =
1 +m2

2m
and β =

1−m2

2m
.

We have shown the following result:
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Proposition 4.4. The parametric surface given by

X(x, y) =

(
x2 + y2 +m2 + 1

2m
,x, y,

x2 + y2 −m2 + 1

2m

)
,

is a surface contained in the hyperbolic space H3 and in the lightlike affine hy-
perplane with lightlike direction ε1 +n, passing through the point V = X(0, 0) =(
(m2 + 1)/2m, 0, 0, (1−m2)/2m

)
.

Corollary 4.5. Using the stereographic projection, we obtain the following
parametric surface in the Euclidean ball B3 of {0} × R3:

Y (x, y) =

(
0,

2mx

x2 + y2 + (m+ 1)2
,

2my

x2 + y2 + (m+ 1)2
,
x2 + y2 −m2 + 1

x2 + y2 + (m+ 1)2

)
,

(4.5)
which is a horosphere passing through the point A = (0, 0, 0, (1−m)/(1 +m)),
with center at C = (0, 0, 0, 1/(1 +m)), radius m/(1+m) and point of tangency
P = (0, 0, 0, 1) ∈ ∂B3.

Proposition 4.6. The surfaces given by

X(x, y) = (α, 0, 0, β) +

(
x2 + y2

2m
,x, y,

x2 + y2

2m

)
,

defined for each (x, y) ∈ R2 and constants m,α, β ∈ R, are congruent by a
translation to the horosphere F (Y (R2)) ⊂ H3 where Y (x, y) is given by equation
(4.5).

5. Sections of S3
1 and H3

In like manner as considering a conic section we can also consider an affine
section obtained from the intersection of an affine hyperplane in L4 with the
de Sitter space S3

1, as well as one obtained by cutting the hyperbolic space H3

with an affine hyperplane in L4.

We have the following results:

Proposition 5.1. (i) If H(p) is a spacelike affine hyperplane, the section
H(p) ∩ S3

1 in L4 is a 2-dimensional Riemannian sphere. More precisely,
with the above notations, we have that

H(p) ∩ S3
1 = S2(x0, ρ), (5.1)

where x0 = a coshϕf1, ρ =
√
a2 cosh2 ϕ+ 1 and S2(x0, ρ) is the sphere

in H(p) with center at x0 and radius ρ.

(ii) If H(p) is a timelike affine hyperplane, with the above notations, we have
that:
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If 1 < a cos θ or 1 < a coshψ, then H(p)∩S3
1 is the two-sheeted hyperbolic

space with center at x0 = a cos θf4 and radius ρ =
√
a2 cos2 θ − 1, or with

center at x0 = a coshψf4 and radius ρ =
√
a2 cosh2 ψ − 1.

If 1 = a cos θ or 1 = a coshψ, then H(p)∩S3
1 is the two-sheeted light cone

with center at x0 = a cos θf4 or x0 = a coshψf4.

If 1 > a cos θ or 1 > a coshψ, then H(p) ∩ S3
1 is the 2-dimensional de

Sitter space with center at x0 = a cos θf4 and radius ρ =
√

1− a2 cos2 θ,

or with center at x0 = a coshψf4 and radius ρ =
√

1− a2 cosh2 ψ.

(iii) If H(p) is a lightlike affine hyperplane, the section H(p) ∩ S3
1 in L4 is

a horosphere. More precisely, with the above notations, H(p) ∩ S3
1 is the

horosphere
r̃2 + s̃2 = 4a2t̃+ 1. (5.2)

(See Corollary 4.5 and Corollary 4.6).

Proposition 5.2. (i) If H(p) is a spacelike affine hyperplane, the section
H(p) ∩ H3 in L4 is a 2-dimensional Riemannian sphere. More precisely,
with the above notations, if a coshϕ > 1 then we have that

H(p) ∩H3 = S2(x0, ρ), (5.3)

where x0 = a coshϕf1, ρ =
√
a2 cosh2 ϕ− 1 and S2(x0, ρ) is the sphere

in H(p) with center at x0 and radius ρ.

(ii) If H(p) is a timelike affine hyperplane, the section H(p) ∩H3 in L4 is a
two-sheeted hyperbolic plane. More precisely, with the above notations, we
have that H(p)∩H3 is a two-sheeted hyperbolic plane with center at x0 =
a cos θf4 and radius ρ =

√
a2 cos2 θ + 1, or with center at x0 = a coshψf4

and radius ρ =
√
a2 cosh2 ψ + 1.

(iii) If H(p) is a lightlike affine hyperplane, the section H(p) ∩ H3 in L4 is
a horosphere. More precisely, with the above notations, H(p) ∩H3 is the
horosphere

r̃2 + s̃2 = 4a2t̃− 1, (5.4)

with center at
1

1 + 2a
ê4, radius

2a

1 + 2a
and point of tangency ê4 (see

Corollary 4.5).
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