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Profundidad mı́nima de extensiones de álgebras de factorización
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Abstract. In this paper we study the minimum depth of a subalgebra embed-
ded in a factorization algebra, and outline how subring depth, in this context,
is related to module depth of the regular left module representation of the
given subalgebra, within the appropriate module ring. As a consequence, we
produce specific results for subring depth of a Hopf subalgebra in its Drinfel’d
double. Moreover we study a necessary and sufficient condition for normality
of a Hopf algebra within a double cross product context, which is equivalent
to depth 2, as it is well known by a result of Kadison. Using the sufficient con-
dition, we then prove some results regarding minimum depth 2 for Drinfel’d
double Hopf subalgebra pairs, particularly in the case of finite group algebras.
Finally, we provide formulas for the centralizer of a normal Hopf subalgebra
in a double cross product scenario.
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Resumen. En este art́ıculo estudiamos la profundidad mı́nima de una subálge-
bra en el contexto de álgebras de factorización, además describimos como
la profundidad de subálgebra se relaciona con la profundidad modular de la
representación regular del álgebra en el anillo de representaciones correspon-
diente. Como consecuencia de esto, obtenemos resultados espećıficos para ex-
tensiones de un álgebra de Hopf en su doble de Drinfel’d. Más aún, estudiamos
una condición suficiente y necesaria para la normalidad de un álgebra de Hopf
en un producto doble cruzado y utilizando la condición de suficiencia produci-
mos resultados espećıficos para extensiones normales de un álgebra en su doble
de Drinfel’d en el caso de álgebras de grupo finito. Finalmente encontramos
fórmulas para el centralizador de una Hopf subalgebra en un producto doble
cruzado.
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Palabras y frases clave. Profundidad de subanillos, Subalgebras de Hopf, Alge-
bras de Hopf de producto doble cruzado, Normalidad.

1. Introduction and preliminaries

1.1. Motivation

The paper [6], studies in depth the relationship between subgroup depth of
a finite-dimensional Hopf algebra extension R ↪→ H, and module depth of
its quotient module Q = H/R+H in the finite tensor category of H-modules
(respectively R modules), HM, (respectively RM). In particular, [6][Section
5] deals with semisimple group algebra extensions in their Drinfel’d double.
Lemma (5.1) and Proposition (5.2) study the structure of Q as a G-module
and then establish that its module depth n is implied by the faithfulness of
the n-th tensor power Q⊗n, respectively. A converse with stronger conditions
is also stated.

Continuing, in [6][Section 6] we study algebra extensions H ↪→ A#H of
a finite-dimensional Hopf algebra H in its smashed product with a given H-
module algebra A, Proposition (6) tells us that

(A#H)⊗Hn ∼= A⊗n ⊗H (1)

As a consequence, Theorem (6.2) relates subgroup depth to module depth in
this context through the following equation:

d(H,A#H) = 2d(A,HM) + 1 (2)

Motivated by these results, in [4][Chapter 2.3], the author used module depth
and Theorem (1.5) to calculate the minimum even depth of the 4-dimensional
Sweedler algebra S4 in its Drinfel’d double D(S4). This was later generalized
in [5] to the minimum even depth of the n2-dimensional half quantum group
Hn in its Drinfel’d double.

Finally, in [10][Example 4.6], it is proved that the minimum even depth
of the 8-dimensional small quantum group, Uq(sl2) in its Drinfel’d double, is
computed to be less than or equal to 4.

These results, and other examples, set the tone for this study. All of them
being instances of factorization algebras, for which at least one of its factors
is a finite-dimensional Hopf algebra. For this reason, it is natural to study the
subalgebra depth for factorization algebra extensions.

1.2. Outline

Throughout this paper, all rings R, and algebras A, are associative with unit, all
algebras are finite-dimensional over a field k of characteristic zero. All modules
M are finite-dimensional as well. All subring pairs S ⊆ R satisfy 1S = 1R and
we denote the extension as S ↪→ R.
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The paper is organized as follows: In Subsection (1.3), we deal with pre-
liminaries on the concept of depth. The main concepts include subring depth,
module depth in a tensor category, and we introduce some results that will
be of interest further in this study. Other concepts will be introduced when
needed.

Section (2) introduces the reader to factorization algebras and their subal-
gebras; it contains our main results in the form of Theorems (2.1), (2.2), and
Corollary (2.3). Example (2.4) deals with the case of the minimum depth of a
Hopf algebra H in its smash product with an H-module algebra A, in particu-
lar the case of the Heisenberg double H(H) of finite-dimensional Hopf algebras,
which motivates the next two sections.

Section (3) deals with the definitions of double cross products as factoriza-
tion algebras in Propositions (3.2) and (3.3), and explores minimum odd depth
for these cases in Theorems (3.4) and (3.6).

Section (4) studies normality (depth ≤ 2) in double cross product Hopf
algebras. Theorem (4.1) states a necessary and sufficient condition for normality
of a Hopf algebra in its double cross product with another Hopf algebra. This
sufficient condition is then used to prove particular cases for Drinfel’d double
extensions, in the case of finite group algebras in Corollary (4.2), and to provide
formulas for the centralizer of a Hopf subalgebra, in the case of a depth two
double cross product extension in Proposition (4.4) and Corollary (4.5).

1.3. Preliminaries on Depth

Let R be a ring and M and N two left (or right) R-modules. We say M is
similar to N as an R-module if there are positive integers, p and q, such that
M |pN and N |qM , where nV means ⊕nV for every n and every R-module
V , and M |pN means that M is a direct summand of pN or equivalently that
M⊗∗ ∼= pN . Whenever this is the case, we denote similarity as M ∼ N . Notice
that similarity is compatible with induction and restriction functors on RM,
for if R ↪→ L is an extension of R, and K is a right L-module, then M ∼ N
as R-modules implies M ⊗R K ∼ N ⊗R K as right L-modules. Moreover, if
S ↪→ R is a subring then M ∼ N as R-modules implies M ∼ N as S-modules.

Consider now a ring extension B ↪→ A. Let n ≥ 1, by A⊗B(n) we mean
A⊗BA⊗B · · ·⊗BA n times, and define A⊗B(0) to be B. Notice that for n ≥ 1,
A⊗B(n) has a natural X-Y -bimodule structure where X and Y could be either
A or B in all four possible combinations.

Definition 1.1. Let B ↪→ A be a ring extension, we say B has:

(1) Minimum odd depth 2n +1, denoted d(B,A) = 2n+ 1, if :

A⊗B(n+1) ∼ A⊗B(n)

as B-B modules for n ≥ 0.
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(2) Minimum even depth 2n, denoted d(B,A) = 2n, if:

A⊗B(n+1) ∼ A⊗B(n)

as either B-A or A-B modules for n ≥ 1.

Notice that by the observation above, one has that for all n ≥ 1, d(B,A) =
2n implies d(B,A) = 2n + 1 by module restriction, and that for all m ≥ 0,
d(A,B) = 2m + 1 implies d(B,A) = 2m + 2 for all m by module induction.
Hence, we are only interested in the minimum values for which any of these
relations are satisfied. In case there is no such minimum value we say the
extension has infinite depth.

A third type of subring depth, called H-depth, denoted by dh(B,A) =
2n − 1 if A⊗B(n+1) ∼ A⊗B(n) as A-A modules for n ≥ 1, was introduced
by Kadison in [8], as a continuation of the study of H-separable extensions
introduced by Hirata, where such extensions are exactly the ones satisfying
dh(B,A) = 1. For the purposes of this paper, we will restrict our study to
minimum odd and even depth only. In particular the cases d(B,A) ≤ 3 and
d(A,B) ≤ 2.

Example 1.2. Let B ↪→ A be a ring extension, R = AB the centralizer and
T = (A⊗B A)B the B central tensor square. It is shown in [7, Section 5] that
d(A,B) ≤ 2 implies a Galois A-coring structure in A⊗R T in the sense of [2].
Furthermore, it is also shown in [7] that if the extension B ↪→ A is Hopf Galois
for a given finite dimensional Hopf algebra H, then d(B,A) ≤ 2.

An instance of this result, involving normality of a Hopf algebra extension
can be obtained by looking into the quotient module defined for the extension,
and the Galois coring structure obtained in this scenario. This result extends a
similar result for finite group extensions and the role played by the permutation
module of the subgroup pair.

Example 1.3. Let R ↪→ H be a finite dimensional Hopf algebra extension.
Define their quotient module Q as H/R+H, where R+ = kerε∩R and ε denotes
the counit of H. Suppose that R is a normal Hopf subalgebra of H, one can
easily show that the extension R ↪→ H is Q-Galois and therefore d(R,H) ≤ 2.
The converse is true as well, and the details can be found in [1, Theorem 2.10].

Hence, the following result holds:

Theorem 1.4. Let R ↪→ H be a finite dimensional Hopf algebra pair. Then,
R is a normal Hopf subalgebra of H if and only if

d(R,H) ≤ 2
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Now, we again consider a k algebra A and an A-module M . Recall that the
n-th truncated tensor algebra of M in AM is defined as

Tn(M) =

n⊕
i=1

M⊗(n) and T0(M) = k

We then define the module depth of M in AM as d(M,AM) = n if and only
if Tn(M) ∼ Tn+1(M). In case M is an A-module coalgebra (a coalgebra in the
category of A-modules), then d(M,AM) = n if and only if M⊗(n) ∼M⊗(n+1),
see [9], [6].

We point out that an A-module M has module depth n if and only if it
satisfies a polynomial equation p(M) = q(M) in the representation ring of A.
Where p and q are polynomials with integer coefficients of degree at most n+1.
A brief proof of this can be found in [4]. For this reason, we say that a module
M has finite module depth in AM if and only if it is an algebraic element in
the representation ring of A.

Finally, we would like to mention that in the case of Hopf subalgebra ex-
tensions R ↪→ H, there is a way to link subalgebra depth with module depth.
The reader will find a proof of the following in [9, Example 5.2]:

Theorem 1.5. Let R ↪→ H be a Hopf subalgebra pair. Consider their quotient
module Q, then the minimum depth of the extension satisfies:

2d(Q,RM) + 1 ≤ d(R,H) ≤ 2d(Q,RM) + 2

2. Depth of factorization algebra extensions

The concept of factorization algebras is well-known in algebra. Recall that an
algebra S is a factorization if there are two S subalgebras A,B ⊆ S such that
multiplication A ⊗ B −→ S; a ⊗ b 7→ ab and B ⊗ A −→ S; b ⊗ a 7→ ba are
isomorphisms of vector spaces.

This can be understood in terms of a map

ψ : B ⊗A −→ A⊗B ; b⊗ a 7−→ aα ⊗ bα (3)

satisfying the following octagon for all a, d ∈ A, and all b, c ∈ B:

(adα)β ⊗ bβcα = aβdα ⊗ (bβc)α (4)

In this case, we denote the factorization as

Sψ := A⊗ψ B. (5)

Factorization algebras are ubiquitous: setting ψ(b⊗a) = a⊗ b yields the tensor
algebraA⊗B. IfH is a Hopf algebra andA is a leftH-module algebra, satisfying
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92 ALBERTO HERNÁNDEZ ALVARADO

h · (ab) = (h1 · a)(h2 · b), h · 1A = ε(h)1A for all h ∈ H and a, b ∈ A, define
ψ : H ⊗A; h⊗ a 7−→ h1 · a⊗ h2, then the product becomes (a⊗ h)(b⊗ g) =
aψ(h ⊗ b)g = a(h1 · b ⊗ h2)g = ah1 · b ⊗ h2g. It is a routine exercise to verify
that A⊗ψ H is a factorization algebra and that A⊗ψ H = A#H is the smash
product of A and H. Double cross products of Hopf algebras are also examples
of factorization algebras, we will study them further in Section (3).

Now let Sψ be a factorization algebra via ψ : B⊗A 7−→ A⊗B. We point out
that due to multiplication in Sψ and the fact that both A and B are subalgebras

of Sψ, we get that for every n ≥ 1, S
⊗B(n)
ψ ∈ SψMSψ in the following way:

(a⊗ψ b)(a1 ⊗ b1 ⊗B · · · ⊗B an ⊗ bn)(c⊗ψ d)

= aψ(b⊗ a1)b1 ⊗B · · · ⊗B anψ(bn ⊗ c)d

= aa1α ⊗ bαb1 ⊗B · · · ⊗B ancα ⊗ bαnd. (6)

The same condition holds for Sψ as either a left or right B module via subal-

gebra restriction. In this case, we can assume n ≥ 0 and define S
⊗B(0)
ψ = B.

This allows us to consider the following isomorphism:

Theorem 2.1. Let A and B be algebras, ψ : B ⊗A 7−→ A⊗B a factorization
and Sψ the corresponding factorization algebra. Then

S
⊗B(n)
ψ

∼= A⊗(n) ⊗B (7)

as Sψ-B or B-Sψ-bimodules for n ≥ 1 and as B-B-bimodules for n ≥ 0.

Proof. First notice that for n = 1 the result follows since A,B ⊂ Sψ is a
factorization.

Now, for every n > 1, (A⊗ψ B)⊗B(n) ∼= (A⊗ψ B)⊗B(n−1)⊗B (A⊗ψ B). By
induction on n and noting that B ⊗B A ∼= A one gets

(A⊗ψ B)⊗B(n−1) ⊗B A⊗ψ B ∼= A⊗B(n−1) ⊗B ⊗B A⊗B

∼= A⊗(n−1) ⊗A⊗B ∼= A⊗(n) ⊗B. (8)

Finally for n = 0 we get S
⊗B(0)
ψ = B ∼= k ⊗B ∼= A⊗(0) ⊗B as B-B bimodules.

�X

Recall that a Krull-Schmidt category is a generalization of categories where
the Krull-Schmidt Theorem holds. They are additive categories such that each
object decomposes into a finite direct sum of indecomposable objects having
local endomorphism rings, also this decompositions are unique in a categorical
sense. For example categories of modules having finite composition length are
Krull-Schmidt.
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Theorem (2.1), in the context of a Krull-Schmidt category, allows us to
relate subalgebra depth in a factorization algebra with module depth in the
finite tensor category of finite dimensional left B-modules. In turn, this will
allow us to compute minimum odd depth values in the case of Smash Product
algebras and Drinfel’d Double Hopf algebras at the end of this section, as well as
in Section (3). The following theorem and its corollary provide this connection
and generalize [9, Equation 19] and [6, Equation 23].

Theorem 2.2. Let A ⊗ψ B be a factorization algebra with BMB a Krull-
Schmidt category, and A ∈BM. Then, the minimum odd depth of the extension
satisfies:

d(B,Sψ) ≤ 2d(A,BM) + 1. (9)

Proof. Let d(A,BMB) = n. Since BMB is a Krull-Schmidt category, stan-
dard face and degeneracy functors imply A⊗B(m)|A⊗B(m+1) for m ≥ 0. Then
Tn(A) ∼ Tn+1(A) implies A⊗(n+1) ∼ A⊗(n). Tensoring on the right by (−⊗B)
one gets A⊗(n+1) ⊗ B ∼ A⊗(n) ⊗ B. By Theorem (2.1), this is equivalent to
(A⊗ψB)⊗B(n+1) ∼ (A⊗ψB)⊗B(n). This by definition is d(B,Sψ) ≤ 2n+1. �X

Recall that B is a bialgebra if it is both an algebra and a coalgebra, such
that the coalgebra morphisms are algebra maps, i.e., B is a coalgebra in the
category of k algebras. This means that the counit ε : B −→ k is an algebra
map that splits the coproduct: (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id. Via the counit,
the ground field k becomes a trivial right B module: k · b = kε(b). Hence, a k
vector space V becomes a right B-module: V ∼= V ⊗ k.

Corollary 2.3. Let B be a bialgebra. Then, the inequality in Theorem (2.2)
becomes an equality.

Proof. Let B be a bialgebra, since k becomes a B-module via the counit of B,
tensoring by − ⊗B k or k ⊗B − is a morphism of B-modules. Let d(B,Sψ) =

2n + 1, then by definition S
⊗B(n)
ψ ∼ S

⊗B(n+1)
ψ as B-B-bimodules, and by the

isomorphism in Theorem (2.1), this implies A⊗(n) ⊗B ∼ A⊗(n+1) ⊗B, then it
suffices to tensor on the right by (− ⊗B k) on both sides of the similarity to
get A⊗n+1 ∼ A⊗n, which in turn implies d(A,BM) ≤ n. �X

Notice that assuming that A ∈B M makes sense, since the factorization
algebras we are considering all depend on this fact to be well defined. On the
other hand this result says nothing about even depth since by no means one
should expect A to be a right or left Sψ-module.

The reader may have already noticed that the three previous results are
sufficient to recover the main results stated in the Motivation subsection at the
beginning of this manuscript, in particular we point out the following:
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Example 2.4. [6, Theorem 6.2] Let H be a Hopf algebra and A an H-module
algebra, consider their smash product algebra A#H, and the algebra extension
H ↪→ A#H. The extension satisfies.

d(H,A#H) = d(A,HM) + 1.

Moreover, one can show the following: let H be a cocommutative Hopf algebra
such that dimk(H) ≥ 2 and consider H∗ as a H-module algebra via h ⇀ f and
their smash product H∗#H, also known as their Heisenberg double, then the
extension H ↪→ H∗#H satisfies

d(H,H∗#H) = 3.

This follows since H is a factor H∗#H subalgebra and the fact that HH
∗ ∼=

HH by self duality and Frobenius reciprocity. Finally minimum module depth
satisfies d(H,MH) = 1.

This example motivates the question of whether this result (or an equivalent
one) can be attained for a more general class of extensions of Hopf algebras
into factorization algebras. The next two sections deal with this question in the
context of the Drinfel’d double D(H) of a Hopf algebra and more generally in
the case of the double cross product A ./ B of a matched pair of Hopf algebras
A and B.

3. Double cross products and minimum odd depth

The study of double cross products was started in the early seventies by W.
Singer with the introduction of matched pairs of Hopf algebras satisfying certain
module-comodule factorization conditions in the setting of connected module
categories, [14]. Later M. Takeuchi [15] furthered the study of matched pairs
in the ungraded case, in particular, he aimed at describing natural properties
of braided groups. Later S. Majid [11] studied bicrossed products as a means
to construct self dual objects in the category of Hopf algebras, primarily in
the non cocommutative cases, in some sense motivated by the possibility to
construct models for quantum gravity. We follow Majid’s definition of double
cross products as in [12].

Definition 3.1. Let A and B be two Hopf algebras such that A is a left B-
module coalgebra and B a right A-module coalgebra. We say B and A are a
matched pair [12, Definition 7.2.1] if there are coalgebra maps

α : B ⊗A −→ B; h⊗ k 7−→ h / k and β : B ⊗A −→ A; h⊗ k 7−→ h . k

such that the following compatibility conditions hold:

(hg) / k =
∑

(h / (g1 . k1))(g2 / k2); 1B / k = εA(k)1B (10)
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and

h . (kl) =
∑

(h1 . k1)((h2 / k2) . l); h . 1A = εB(h)1A. (11)

Define a product by

(k ./ h)(l ./ g) =
∑

k(h1 . l1) ./ (h2 / l2)g; (12)

the resulting algebra B ./ A is called the double crossed product of A and B
[12, Theorem 7.2.2], and is a Hopf algebra with coproduct, counit and antipode
given by

∆(k ./ h) = k1 ./ h1 ⊗ k2 ./ h2 (13)

ε(k ⊗ h) = εK(k)εH(h), (14)

S(k ./ h) = (1K ./ SH(h))(SK(k) ./ k) (15)

= SH(h1) . SK(k1) ./ SH(h2) / SK(k2)

respectively.

The following are well known results and are cited here for the sake of
completeness, they summarize the fact that Double Cross Products of Hopf
algebras are exactly the Hopf algebras that factorize as the product of two
Hopf subalgebras. More information about them can be found in [12] and [11]
as well as in [3].

Proposition 3.2. Double cross products are factorization algebras.

This is evident and a consequence of the definition, more importantly the
converse is also true:

Proposition 3.3. [12, Theorem 2.7.3] Suppose H is a Hopf algebra and L and
A two sub-Hopf algebras, such that H ∼= A ⊗ψ L is a factorisation, then H is
a double crossed product.

Proof. The multiplication m : L ⊗ A −→ H defined by a ⊗ l 7−→ al is a

bijection. This implies A
⋂
L = k. Then consider the map:

µ : L⊗A −→ A⊗ L; l ⊗ a 7−→ m−1(la)

then define

. : L⊗A −→ A; l . a = ((εL ⊗ Id) ◦ µ)(l ⊗ a),

/ : L⊗A −→ L; l / a = ((Id⊗ εA) ◦ µ)(l ⊗ a).

�X
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We wrote the proof of this last Proposition since it allows us to construct
examples such as Example (3.5).

Now, let H be any Hopf algebra with bijective antipode S with composition
inverse S. Let S∗ be the bijective antipode of H∗ and S∗ its composition inverse,
then H is a right H∗cop-module coalgebra via

h ↼↼ f =
∑

S∗(f2) ⇀ h ↼ f1

and H∗ is a left H-module coalgebra via

h ⇀⇀ f =
∑

h1 ⇀ f ↼ S(h2);

see [13, Chapter 10] for details on this actions. Define the Drinfel’d double of
H, D(H) as the double cross product H∗cop ./ H with product

(f ./ h)(g ./ k) =
∑

f(h1 ⇀⇀ g2) ./ (h2 ↼↼ g1)k.

The coproduct, counit and antipode are given by

∆(f ./ h) =
∑

(f2 ./ h1)⊗ (f1 ./ h2),

εD(H)(f ./ h) = εH∗(f)εH(h)

and
SD(H)(f ./ h) =

∑
(S(h2) ⇀ S(f1)) ./ (f2 ↼ S(h1))

respectively.

Since double crossed products of Hopf algebras are both factorization alge-
bras and Hopf algebras Corollary (2.3) becomes:

Proposition 3.4. Let H and K be a matched pair of Hopf algebras and con-
sider their double crossed product H ./ K, then the Hopf algebra extension
H ↪→ H ./ K satisfies

d(H,H ./ K) = 2d(K,HM) + 1

Example 3.5. Recall that two Hopf algebras A and B are said to be paired
[11, 1.4.3] if there is a bilinear map

A⊗B −→ k; a⊗ b 7−→ 〈a, b〉

satisfying 〈ac, b〉 = 〈a⊗ c,∆b〉, 〈a, 1〉 = ε(a), 〈1, b〉 = ε(b) and 〈Sa, b〉 = 〈a, Sb〉.
We also say it is nondegenerate if and only if 〈a, b〉 = 0 for all b ∈ B implies
a = 0 and 〈a, b〉 = 0 for all a ∈ A implies b = 0. Assume now that A and B are
paired and that 〈, 〉 is convolution invertible, define

a / b =
∑

a2〈a1, b1〉−1〈a3, b2〉.
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a . b =
∑

b2〈a1, b1〉−1〈a2, b3〉

With this action we can endow Aop ./ B with a double cross product structure.
Consider then H to be a finite dimensional Hopf algebra and

〈, 〉 : H ⊗H −→ k;h⊗ g 7−→ ε(a)ε(b)

then 〈, 〉 satisfies the conditions above, is nondegenerate if and only if H is
semisimple via Maschke’s theorem and is convolution invertible via 〈, 〉〈, 〉 = ε
Then Hop ./ H is a double cross product isomorphic to the tensor Hopf algebra
Hop ⊗H, Proposition (3.3), and the minimum odd depth satisfies

d(H,Hop ./ H) = 3

since d(H,HopM) = 1.

Proposition 3.6. Let H be a finite-dimensional Hopf algebra of dimension
m ≥ 2 and consider D(H) = H∗cop ./ H its Drinfel’d double. Then the mini-
mum odd depth satisfies:

d(H,D(H)) ≥ 3.

Proof. The proof is analogous to the one in Example (2.4). �X

4. Depth two

In this last section we will focus on depth two, for double cross product Hopf
subalgebra extensions. Results are motivated by the following example:

Consider a finite group algebra kG and its dual (kG)∗ = k〈px|x ∈ G〉 where
the {px} form the dual basis of G satisfying px(y) = δx,y for all x, y ∈ G. This
is an algebra via convolution product, and the identity element is ε =

∑
y∈G py.

It is easy to check that (kG)∗ has a Hopf algebra structure given by

∆∗px =
∑
lk=x

pl ⊗ pk,

ε∗(px) = δx,1,

and antipode S∗.

Consider then R = kG a finite group algebra and H = D(kG) = (kG)∗cop ./
kG its Drinfel’d double. Multiplication is given by

(px ./ g)(py ./ k) = pxpgyg−1 ./ gk

and the antipode is

S(px ./ g) = (ε ./ g−1)(S∗px ./ e) = S∗pg−1xg ./ g
−1.
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Let px = px ./ e ∈ (kG)∗, and py ./ g ∈ H. The right adjoint action of H
on (kG)∗ is given by

S(py ./ g)1(px ./ e)(py ./ g)2 =
∑
lk=y

S(pl ./ g)(px ./ e)(pk ./ g).

A quick calculation and using the formulas above shows that the latter equals∑
lk=y

S∗(pg−1lg)pg−1xgpg−1kg ./ e.

A similar calculation shows that the left adjoint action of H on (kG)∗ yields

(py ./ g)1(px ./ e)S(py ./ g)2 =
∑
lk=y

plpgxg−1pk ./ e

and hence, (kg)∗ is H left and right ad stable and hence normal. As it is shown
in Theorem (1.4) this implies that

d((kG)∗, H) ≤ 2.

We point out that this is true since the left coadjoint action of (kG)∗ on kG
given by ↼↼ is trivial on the generators:

g ↼↼ px = g

The following proposition tells us that this is in fact a necessary and sufficient
condition for depth 2 in the more general case of double cross products:

Proposition 4.1. Let A,B be a matched pair of Hopf algebras, and let H =
A ./ B be their double cross product. Then d(A,H) ≤ 2 (Equivalently d(B,H) ≤
2) if and only if B / A (Equivalently B . A) is trivial.

To prove that d(A,H) ≤ 2 implies B /A is trivial is a standard calculation
involving the left and right adjoint action of A ./ B on A and assuming A is
ad-stable, or in simpler terms, a normal A ./ B subalgebra. The converse is
standard as well. It is in fact easy to check that if B / A is trivial, then A is
ad-stable in A ./ B. The equivalent condition, that d(B,H) ≤ 2 if and only if
B . A is trivial follows by the symmetry of the argument.

The following are special cases and consequences of this proposition. In
particular for the case of D(kG), the Drinfel’d double of a finite group algebra.

Corollary 4.2. Let G be a finite group and consider D(kG) = (kG)∗cop ./ kG,
then

d(kG,D(kG)) ≤ 2

if and only if G is abelian.
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Proof. Let g, x ∈ G. Recall that the left coadjoint action of kG on (kG)∗ is
given by g ⇀⇀ px = pgxg−1 which is trivial (i.e pgxg−1 = px for all g, x ∈ G) if

and only if G is abelian. �X

Example 4.3. Consider Hop ./ H as in Example (3.5), then the minimum
depth satisfies

d(H,Hop ./ H) ≥ 2

since h . g =
∑
g2〈h1, g1〉−1〈h2, g3〉 = g2ε(h1)ε(g1)ε(h2)ε(g3) = gε(h) for all

h, g ∈ H and hence H .Hop is trivial.

Now consider the double cross product H = A ./ B, Z(A), CH(A) and
NH(B) the center of A, the centralizer of A in H and the normal core of B in
H respectively. Then CH(A) satisfies the following:

Proposition 4.4. Let H = A ./ B be a double cross product such that
d(A,H) ≤ 2. Then

CH(A) = Z(A) ./ NH(B)

as algebras

Proof. Let f ./ k ∈ CH(A) and a ./ 1B ∈ A. Then (f ./ k)(a ./ 1B) = (a ./
1B)(f ./ k). On one hand we have

(a ./ 1B)(f ./ k) = af1 ./ (1B / f2)k = af ./ k

Since depth two implies A / B is trivial. On the other hand

(f ./ k)(a ./ 1B) = f(k1 . a) ./ k2

Now
f(k1 . a) ./ k2 = af ./ k

if and only if k . a = ε(k)a and fa = af for all a ∈ A if and only if k ∈ NH(B)
and f ∈ Z(A). �X

Corollary 4.5. Let kG be a finite group algebra and consider H = D(kG) its
Drinfel’d double. Then

CH((kG)∗) = Z((kG)∗) ./ Z(kG)

as algebras.
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